New York City College of Technology
 Mathematics Department

COURSE CODE: MAT 1190

TITLE: Quantitative Reasoning

PREPARED BY: Nadia Benakli and QR fellows
REVISED BY: Nadia Benakli, Spring 2021
Number of class hours, lab hours if applicable, credits 3 class hours, 3 credits

COURSE DESCRIPTION:

Students develop and apply mathematical, logical, critical thinking, and statistical skills to solve problems in real-world contexts. They acquire skills in the fields of algebra, geometry, probability, statistics, and mathematical modeling. The course incorporates opportunities within the classroom to develop students' reading, writing, oral, and listening skills in a mathematical context.

COURSE CO/PREREQUISITE (S):

CUNY proficiency in mathematics. PRE/CO ENG 1101 OR PRE ENG 1101CO/ML

REQUIRED TEXTBOOKS

1. Title: Math in Society

Author: David Lipman
Publisher: Independent
Available at https://open.umn.edu/opentextbooks/textbooks/math-in-society
2. Title: Introductory Statictics

Authors: Barbara Illowsky, Susan Dean, et al.
Publisher: OpenStax
Available at https://openstax.org/details/books/introductory-statistics
A scientific calculator is required.

Course Learning Outcomes	General Education	Required Core-

	Learning Outcomes	Mathematical \& Quantitative Reasoning
Apply mathematical, logical, critical thinking, and statistical skills to solve problems in real- world contexts	Be able to understand and employ both quantitative and qualitative analysis to identify issues and evaluate evidence in order to make informed decisions and draw appropriate conclusions Be able to connect the acquired knowledge by applying mathematical skills for real world problems	Use algebraic, numerical, graphical, or statistical methods to draw accurate conclusions and solve mathematical problems
Apply mathematical methods to		
problems in other fields of study		

between quantities in multiple ways and solve problems that require an understanding of functions	information into various mathematical forms	problems expressed in natural language in a suitable mathematical format
Describe the behavior of common functions in words, graphically, algebraically and in tables	Be able to explain information presented in different mathematical forms	Interpret and draw appropriate inferences from quantitative representations, such as formulas, graphs, or tables

SCOPE OF ASSIGNMENTS and other course requirements*

- Learning log
- Participation in group work and discussion
- Homework reading assignments
- Group projects and presentation
- Tests
- Attendance

ACADEMIC INTEGRITY POLICY STATEMENT

Students and all others who work with information, ideas, texts, images, music, inventions, and other intellectual property owe their audience and sources accuracy and honesty in using, crediting, and citing sources. As a community of intellectual and professional workers, the College recognizes its responsibility for providing instruction in information literacy and academic integrity, offering models of good practice, and responding vigilantly and appropriately to infractions of academic integrity. Accordingly, academic dishonesty is prohibited in The City University of New York and at New York City College of Technology and is punishable by penalties, including failing grades, suspension, and expulsion. The complete text of the College policy on Academic Integrity may be found in the catalog.

COLLEGE POLICY ON ABSENCE/LATENESS

A student may be absent without penalty for 10% of the number of scheduled class meetings during the semester as follows:

```
Class Meets Allowable Absence
1 time/week 2 classes
2 times/week 3 classes
```

The official Mathematics Department policy is that two latenesses (this includes arriving late or leaving early) is equivalent to one absence.
*depending on department policy these may be uniform and required of all instructors of the course or there may be guidelines or samples from which instructors may select or adapt

References (MS = Math in Society; IS = Introductory Statistics)

Session	Topics	Pages	Homework

1	Percents	$\begin{aligned} & \text { MS p. 1-3 } \\ & \text { (ex. 1-5) } \end{aligned}$	MS p.18: 1-3, 6-8
2	Proportions, rates, unit conversions	$\begin{aligned} & \text { MS p.6-8 (ex. } \\ & 12-15) \end{aligned}$	MS p.20: 27-32
3	Proportions, rates, unit conversions (continued)	$\begin{aligned} & \text { MS p.8-10 } \\ & (\text { ex. 16, 18, } \\ & 19,20) \\ & \hline \end{aligned}$	MS p.20: 35-40
4	Geometry	$\begin{aligned} & \text { MS p. } 9 \text { (ex. } \\ & \text { 17) } \\ & \text { MS p.10-12 } \\ & \text { (ex. 21, } \\ & 22,23 \text {) } \end{aligned}$	MS p.22: 51,52,56,63
5	Problem solving, estimation	$\begin{aligned} & \text { MS p.14-16 } \\ & \text { (ex. 26, 27, } \\ & \text { 28) } \\ & \hline \end{aligned}$	MS p.23: 61,62,64,65,68
6	Taxes	$\begin{aligned} & \text { MS p.30-31 } \\ & \text { (ex. 1-4) } \\ & \hline \end{aligned}$	MS p.32: project 1
7	Exam I		
8	Linear growth	$\begin{aligned} & \hline \text { MS p.173- } \\ & 177 \text { (ex. 1-3) } \\ & \hline \end{aligned}$	MS p.193: 1-4,16
9	Exponential growth	$\begin{aligned} & \hline \text { MS p.178- } \\ & 181 \text { (ex. 5-7) } \\ & \hline \end{aligned}$	MS p.194: 9-12
10	Simple interest	$\begin{aligned} & \hline \text { MS p.197- } \\ & 198 \text { (ex. 1-3) } \end{aligned}$	MS p. 222: 1-3
11	Compound interest	$\begin{aligned} & \text { MS p.199- } \\ & 203 \text { (ex. 4-6) } \end{aligned}$	MS p.222: 6-12
12	Compound interest cont.	$\begin{aligned} & \text { MS p.199- } \\ & 203 \text { (ex. 4-6) } \end{aligned}$	MS p.222: 6-12
13	Exam 2		
14	Basic probability	$\begin{aligned} & \hline \text { MS p.279- } \\ & 281 \text { (ex. 1-5) } \\ & \hline \end{aligned}$	MS p.310: 1-10
15	Working with events	$\begin{aligned} & \text { MS p.282- } \\ & 286 \text { (ex. 5- } \\ & \text { 11) } \\ & \hline \end{aligned}$	MS p.311: 13-18, 3116-19
16	Conditional probability	$\begin{aligned} & \text { MS p.286- } \\ & 289 \text { (ex. } \\ & 13,14,15) \\ & \hline \end{aligned}$	MS p.311: 21, 27-30
17	Basic counting, tree diagrams	$\begin{aligned} & \text { MS p.293- } \\ & 295 \text { (ex.21- } \\ & 24 \text {) } \\ & \hline \end{aligned}$	MS p.314: 49-50
18	Permutations	$\begin{aligned} & \text { MS p.296- } \\ & 298 \text { (ex.25- } \\ & 30 \text {) } \end{aligned}$	MS p.314: 51-53, 55-56
19	Combinations	$\begin{aligned} & \text { MS p.298- } \\ & 300 \text { (ex.31- } \end{aligned}$	MS p.315: 61-62, 65-66

		33)	
20	Probability using permutations and combinations	$\begin{aligned} & \text { MS p.301- } \\ & 303 \text { (ex.34- } \\ & 38 \text {) } \\ & \hline \end{aligned}$	MS p.315: 67-72
21	Expected value	$\begin{aligned} & \text { MS p.305- } \\ & 308 \text { (ex. 42- } \\ & 44 \text {) } \\ & \hline \end{aligned}$	MS p.316: 73-76
22	Exam 3		
23	Describing data	$\begin{aligned} & \hline \text { MS p.247- } \\ & 253 \text { (ex. } \\ & 1,2,4,5,6,8 \text {) } \end{aligned}$	MS p.275: 1-6
24	Measures of central tendency	$\begin{aligned} & \text { MS p.258- } \\ & 262 \text { (ex.14- } \\ & \text { 19) } \end{aligned}$	MS p.276-277: 7-10 (a,b only)
25	Measures of variation	$\begin{aligned} & \text { MS p.263- } \\ & 266 \text { (ex.23- } \\ & \text { 24) } \\ & \hline \end{aligned}$	MS p.278: 15-16
26	Normal distribution, zscores	$\begin{aligned} & \text { IS p.311-313, } \\ & 366-368 \end{aligned}$	IS p.389: 60-67
27	Scatter plots, correlation coefficient	$\begin{aligned} & \text { IS p.682-685, } \\ & 690-691 \end{aligned}$	IS p.720: 57, 59-61, 68-69 (a, b, d only)
28	Voting theory (ex. 1-4)	MS p.35-38	MS p.54: 1-2, 3-6 (a, b, c only)
29	Review		
30	Final exam		

