NEW YORK CITY COLLEGE OF TECHNOLOGY The City University of New York

DEPARTMENT:
COURSE:
TITLE:

DESCRIPTION:

TEXTS:

CREDITS:
PREREQUISITES:

Mathematics
MAT 1275
College Algebra and Trigonometry
An intermediate and advanced algebra course. Topics include quadratic equations, systems of linear equations, exponential and logarithmic functions; topics from trigonometry, including identities, equations and solutions of triangles.

A custom edition by McGraw-Hill:

1) Intermediate Algebra by Miller, O'Neill, and Hyde, $5^{\text {th }}$ edition, and
2) Trigonometry by Coburn, $2^{\text {nd }}$ edition

4
MAT 1175 OR high school mathematics GPA of at least 70 and a successful completion of at a high school math course of least Algebra 1 OR NYS Regents Algebra 1 score of at least 75 OR NYS Regents Geometry score of at least 70.

Updated Spring 2020 by H. Carley, A. Masuda, and K. Poirier
A. Testing/Assessment Guidelines:

The following exams should be scheduled:

1. A one-hour exam at the end of the First Quarter.
2. A one session exam at the end of the Second Quarter.
3. A one-hour exam at the end of the Third Quarter.
4. A one session Final Examination.
B. A scientific calculator is required.

COURSE INTENDED LEARNING OUTCOMES

Course Learning Outcomes	General education Learning Outcomes	Required Core: Mathematical and Quantitative Reasoning
Be able to simplify and manipulate linear, quadratic, radical, rational, exponential, logarithmic, and trigonometric expressions.	FS: Transfer; Be able to refer to prior knowledge or skill and can apply such to new situations.	Be able to use algebraic, numerical, graphical, or statistical methods to draw accurate conclusions and solve mathematical problems.
Be able to solve equations involving linear, quadratic, radical, rational, exponential, logarithmic, or trigonometric expressions as well as systems of linear/quadratic equations.	Foundation and skills: Curiosity: Explore a topic in depth yielding insight indicating interest.; QL: Interpretation, presentation: Be able to explain information presented in mathematical forms and to convert relevant information into various mathematical forms.	Interpret and draw appropriate inferences from quantitative representations, such as formulas, graphs, or tables.
Be able to graphically solve equations involving linear and quadratic expressions (including systems of such). Be able to use the unit circle to solve trigonometric equations. Understand the relationships between solutions to equations and their graphs.	FS: Transfer; Be able to refer to prior knowledge or skill and can apply such to new situations. QL: Calculation, Application/Analysis: Be able to carry out accurate calculations in order to solve a problem and to make judgements and draw appropriate conclusions based on the quantitative analysis of data, while recognizing the limits of this analysis.	Be able to use algebraic, numerical, graphical, or statistical methods to draw accurate conclusions and solve mathematical problems.
Be able to frame word problems in terms of mathematical equations and/or graphs. Be able to interpret the mathematical solutions in terms of the original language of the problem.	FS: Independence, reflection: Pursue knowledge beyond classroom requirements and/or show interest in independent educational experiences and reviews prior learning leading to clarification and broader perspectives.	Be able to represent quantitative problems expressed in natural language in a suitable mathe matical format and apply mathematical methods to problems in other fields of study.
Be able to write solutions of mathematical problems involving linear, quadratic, radical, rational, or trigonometric expressions with full detailed explanations.	QL: Communication: Be able to express quantitative evidence in support of the argument or purpose of the work.	Be able to effectively communicate quantitative analysis or solutions to mathematical problems in written or oral form.
Be able to recognize errors in proposed solutions and explain in written or oral form the nature of such an error as well as be able to correct it. Be able to estimate solutions of equations using graphs.	FS: Initiative: Complete required work and identifies and pursues additional expansion or knowledge or skills. QL: Assumption. Be able to make and evaluate important assumptions in estimation and modeling.	Be able to evaluate solutions to problems for reasonableness using a variety of means, including informed estimation.

Textbooks: McGraw-Hill Custom Textbook containing material from:

1) Intermediate Algebra by Miller, O'Neill, and Hyde, $5^{\text {th }}$ edition (Classes 1-16 and 26-29)
2) Trigonometry by Coburn, $2^{\text {nd }}$ edition (Classes 18-25).

WeBWorK: WeBWorK for MAT1275 uses the OpenLab Q\&A site: https://openlab.citytech.cuny.edu/ol-webwork/Students will need an OpenLab account in order to post new questions.

Class	Lesson	Section	Homework	WeBWorK Set
1	Properties of Integer Exponents Addition and Subtraction of Rational Expressions	$\begin{aligned} & \hline \hline 4.1, \text { p. } 320-323 \\ & 5.3, \text { p. } 437-444 \end{aligned}$	$\begin{aligned} & \hline \text { p.327: } 11-29 \text { odd, } 33,35,41,47,63,67,75 \\ & \text { p. } 445: \\ & 7-23,27-49 \text { odd } \end{aligned}$	IntegerExponents ReducingRationalExpressions AddRationalExpressions AddRationalExpressions2
2	Complex Fractions	5.4, p.447-452	p.452: 9-15, 17-23 odd, 31, 33	ComplexFractions-Method1 ComplexFractions-Method2
3	Solving Rational Equations	5.5, p.454-460	p.460: 9-33 odd, 49, 53	FractionalEquations
4	Roots Rational Exponents	$\begin{aligned} & 6.1, \text { p.496-502 } \\ & 6.2, \text { p. } 508-511 \end{aligned}$	p. $505: 9-37$ odd, $59,65,67,79,81$ p. $513: 9,13,17,19,25,29,33,41,45,53,65$, $73,81,93$	HigherRoots HigherRoots-Algebraic RationalExponents
5	Simplifying Radical Expressions Addition and Subtraction of Radicals	$\begin{aligned} & \text { 6.3, p.515-519 (skip Ex. 2, 5) } \\ & \text { 6.4, p.522-525 } \end{aligned}$	$\begin{aligned} & \text { p. } 520: \\ & \text { p. } 526: \\ & \text { : } \\ & \hline 15,19,17,21,25,33,55,59,63,79 \\ & \hline \end{aligned}$	SimplifyingRadicals AddSubtractRadicals
6	Multiplication of Radicals	$\begin{aligned} & \text { 6.5, p. } 528-532 \\ & \text { (skip Ex. 1c, 5b, 5c, 8) } \end{aligned}$	$\begin{aligned} & \text { p. } 534: ~ 11,17,19,21,23,25,29,31,35,37, \\ & 55,57,61,63,67,77,79,87 \end{aligned}$	MultiplyRadicals
7	Division of Radicals and Rationalization	6.6, p.536-543 (skip Ex. 1b, 2, 3b, 3c, 4, 6)	$\begin{aligned} & \text { p.544: } 11,13,17,21,31,35,39,53,57,63, \\ & 67,71,77,81 \end{aligned}$	RationalizeDenominators
8	Solving Radical Equations	6.7, p.546-549 (skip Ex. 2, 3, 5)	p.554: 13-18, 25-28, 41-46	RadicalEquations
9	Exam 1 Complex Numbers	6.8, p.556-563	p.564: 15-27, 31-35, 53-57, 61-69, 81-89 odd	ComplexNumbers
10	Solving Equations by Using the Zero Product Rule	$\begin{aligned} & \text { 4.8, p. } 394-397 \\ & \text { (skip Ex. } 5 \text {) } \end{aligned}$	p.404: 21-40	
11	Square Root Property and Completing the Square Quadratic Formula	7.1, p.582-587 7.2, p.592-594, p.596-602, derive the quadratic formula	p.589: $3-19,27-33,37-53$ odd $\frac{\text { p.603: }}{81,85} 9-25,49-55$ odd, $63-67$ odd, $69,73,77$,	SquareRootProperty QuadraticFormula
12	Applications of Quadratic Equations	$\begin{aligned} & \hline 4.8, \text { p.398-400 } \\ & 7.2, \text { p. } 594-596 \end{aligned}$	$\begin{aligned} & \text { p. } 405: 65,69,71,73,75 \\ & \text { p.603: } 39-47 \text { odd } \end{aligned}$	
13	Graphs of Quadratic Functions Vertex of a Parabola	$\begin{aligned} & 7.4, \text { p.612-620 } \\ & 7.5, \text { p.626-631 (skip Ex. 5) } \end{aligned}$	p.621: $11-15,19-23,29-35,45,47,51-61$ odd p. $633: 17-23$ odd, $29,31,37,41,43,55,57$	ShiftingParabolas ParabolaLab ParabolaVertices-CtS ParabolaVertices- VertexFormula

$\left.\begin{array}{|l|l|l|l|l|}\hline \text { Class } & \text { Lesson } & \text { Section } & \text { Homework } \\ \hline \hline 14 & \begin{array}{l}\text { Distance Formula, Midpoint Formula, and } \\ \text { Circles } \\ \text { Perpendicular Bisector }\end{array} & 9.1, \text { p.754-759 } & \begin{array}{l}\text { p. } 760: 5,9,11,13,23-31 \text { odd, 39, 41, 45, 61, } \\ 63,65,69,75 \\ \text { Supplemental problems on perpendicular bi- } \\ \text { sectors }\end{array} \\ \hline 15 & \text { Systems of Linear Equations in Three Variables } \\ \text { CircleLab } \\ \text { Circles }\end{array}\right\}$

