NEW YORK CITY COLLEGE OF TECHNOLOGY The City University of New York

DEPARTMENT:	Mathematics
COURSE:	MAT 1475
TITLE:	Calculus I
DESCRIPTION:	Topics include functions, limits, differentiation, and tangent lines, L'Hôpital's Rule, Fundamental Theorem of Calculus and Applications.
TEXT:	<u>Calculus, Volume 1</u> , openstax.org E. Herman and G. Strang
CREDITS:	4 (4 class hours)
PREREQUISITES:	MAT 1375 OR high school mathematics GPA of at least 94 and a successful completion of a high school math course beyond Algebra 2 OR NYS Regents Trigonometry score of at least 85 (or equivalent on Common Core Algebra 2)
	Prepared by: Henry Africk and Satyanand Singh
	Updated by Henry Africk, Laura Ghezzi, Caner Koca and Lin Zhou, Fall 2020

A. Testing Guidelines:

The following exams should be scheduled:

- 1. A one session exam at the end of the First Quarter.
- 2. A one session exam at the end of the Second Quarter.
- 3. A one session exam at the end of the Third Quarter.
- 4. A one session Final Examination.
- B. A graphing calculator is required.

Course Intended Learning Outcomes/Assessment Methods

Learning Outcomes	Assessment Methods
1. Solve problems related to limits and continuity.	Classroom activities and discussion, homework, exams.
2. Find the derivative of functions using the definition, sum rule, product rule, quotient rule, and the chain rule.	Classroom activities and discussion, homework, exams.
 3. Use the derivative of a function to find an equation for the tangent line at a point. Use L'Hôpital's Rule to evaluate limits. Sketch the graph of functions. Solve optimization problems. Solve related rates problems. 	Classroom activities and discussion, homework, exams.
4. Evaluate definite and indefinite integrals of polynomials, trigonometric and exponential functions.	Classroom activities and discussion, homework, exams.

General Education Learning Outcomes/Assessment Methods

Learning Outcomes	Assessment Methods	
1. Understand and employ both quantitative and qualitative analysis to solve problems.	Classroom activities and discussion, homework, exams.	
2. Employ scientific reasoning and logical thinking.	Classroom activities and discussion, homework, exams.	
3. Communicate effectively using written and oral means.	Classroom activities and discussion, homework, exams.	
4. Use creativity to solve problems.	Classroom activities and discussion, homework, exams.	

New York City College of Technology Policy on Academic Integrity

Students and all others who work with information, ideas, texts, images, music, inventions, and other intellectual property owe their audience and sources accuracy and honesty in using, crediting, and citing sources. As a community of intellectual and professional workers, the College recognizes its responsibility for providing instruction in information literacy and academic integrity, offering models of good practice, and responding vigilantly and appropriately to infractions of academic integrity. Accordingly, academic dishonesty is prohibited in The City University of New York and at New York City College of Technology and is punishable by penalties, including failing grades, suspension, and expulsion. The complete text of the College policy on Academic Integrity may be found in the catalog.

Session	Торіс	Homework (WW = WeBWorK)
1	2.2 The Limit of a Function pp. 135-153	p. 154 # 30-33 all,35,38,42
1	2.2 The Emilt of a Function pp. 155-155	WW Limits-Introduction: 5-8 all
2 2.3 The Limit Laws pp. 160-174		p. 176 # 83-101 odd
	2.3 The Limit Laws np. 160, 174	WW Limits-Analytic: 1,3
	2.5 The Linit Laws pp. 100-174	WW Limits-One Sided: 1,2,3,4
		WW Limits-Limit Properties: 1,2
3	2.4 Continuity pp. 179-188	p. 191 # 131,133,139,143,145,147
5		WW Limits-Continuity: 1,2,3
4	3.1 Defining the Derivative pp. 213-227	p. 228 # 1,3,11-17 odd, 21-25 odd
4		WW Derivatives-Limit Definition: 1,2,4,5,6
5	3.2 The Derivative as a Function pp. 232-242	p. 243 # 54,55,57,58,59,61,62
5	5.2 The Derivative as a Function pp. 252-242	WW Derivatives-Functions 1-6 all
		p. 263 # 107,110,112,115,116,117
6	3.3 Differentiation Rules pp. 247-260	WW Derivatives-Power Rule 1-9 all,11-14 all,16-18, 21
0	5.5 Differentiation Rules pp. 247-200	WW Derivatives-Product Rule 1,2,3,4,6,7,8,9
		WW Derivatives-Quotient Rule 1-7 all,9,12,13
7	3.4 Derivatives as Rates of Change	p. 273 # 153,155,156,157
7	pp. 266-270	WW Derivatives-Rates of Change: 7,8,9
8	First Examination	
0	3.5 Derivatives of Trigonometric Functions pp. 277-284	p. 285 # 177,179,185,187,191,193,195
9		WW Derivatives-Trigonometric: 1-9 all
10	2 C The Chain Date and 297 200	p. 297 # 215,221,222,229-237odd
10	3.6 The Chain Rule pp. 287-296	WW Derivatives-Chain Rule: 1-8 all, 10-14 all, 18-20 all
11	2.7 Derivatives of Inverse Expetience nr. 200, 205	p. 306 # 265,267,279-283 all,287
11	3.7 Derivatives of Inverse Functions pp. 299-305	WW Derivatives-Inverses: 1-8 all, 10
12	3.8 Implicit Differentiation pp. 309-316	p. 317 # 300-303 all, 309,311,315,319
12	5.8 Implicit Differentiation pp. 509-510	WW Derivatives-Implicit: 1-3 all, 6-9 all
	3.9 Derivatives of Exponential and Logarithmic Functions pp. 319-330	p. 331 # 331,334,337,340,341,346,347,351
13		WW Derivatives-Exponential: 1,2,3,4,7,13
15		WW Derivatives-Logarithms: 1-5 all,8
		WW Derivatives-Logarithmic: 1,2,3
14	Review	
15	Midterm Examination	
16	4.1 Poloted Potes pp. 241-240	p. 350 # 1,5,10,17,20,25,29
16	4.1 Related Rates pp. 341-349	WW Application-Related Rates: 4,6,7,11,12,13,14,16,17,18

MAT 1475 Calculus I Text: E. Herman, G. Strang, <u>Calculus, Volume 1</u>, openstax.org

174.2 Linear Approximations and Differentials pp. 354-363	p. 364 # 62,63,67,68,69,70,72,73,74	
	4.2 Linear Approximations and Differentials pp. 354-363	WW Application-Linearization: 3,4,5,6,8,9,10,12
	WW Application-Differentials: 3,4,5,6	
18 4.3 Maxima and M	4.3 Maxima and Minima pp. 366-375	p. 376 # 108,110,113,119,122,124
10	4.5 Waxina and Winnia pp. 500-575	WW Application-Extrema: 1,4,5,6
19	9 4.4 The Mean Value Theorem pp. 379-387	p. 388 # 161,164,168,171,174,186,188
17	4.4 The Weah Value Theorem pp. 379-387	WW Application-Mean Value Theorem: 4,5,6,7,11
	20 4.5 Derivatives and the Shape of a Graph pp. 390-402	p. 405 # 223,224,225,226,229
20		WW Monotonicity: 1-6 all,8
		WW Application-Shape of Polynomials: 4-7 all
		p. 436 # 271,273,274,279,281,298
21	4.6 Limits at Infinity and Asymptotes pp. 407-435	WW Shape of Graphs: 1-7 all
		WW Limits-Infinite: 1-5 all
22	47 Aprilia 1 Optimization and 120, 150	p. 451 # 315,316,318-321 all, 335,336
	4.7 Applied Optimization pp. 439-450	WW Application-Optimization: 1,2,3,5-11 all
23	Third Examination	
24		p. 470 # 356,362,370,371,367,377,387, (393,395 Optional)
24	4.8 L'Hopital's Rule pp. 454-464	WW Application-LHopitalsRule: 2,3,4,6,7,8,10
	4.10 Antiderivatives pp. 485-496	p. 497 # 465,468,469,470,471,473,476,477,
25		
25	4.10 Antiderivatives pp. 485-496	481,482,490,491,492,493,499,500,502
25	4.10 Antiderivatives pp. 485-496	· · · · · · · · · · · · · · · · · · ·
		481,482,490,491,492,493,499,500,502
25 26	4.10 Antiderivatives pp. 485-4965.1 Approximating Areas pp. 507-522	481,482,490,491,492,493,499,500,502 WW Application-Antiderivatives: 2-12 all
26	5.1 Approximating Areas pp. 507-522	481,482,490,491,492,493,499,500,502 WW Application-Antiderivatives: 2-12 all p. 523 # 2,12,14-17 all WW Integration-Riemann Sums: 2,3,4,7
		481,482,490,491,492,493,499,500,502 WW Application-Antiderivatives: 2-12 all p. 523 # 2,12,14-17 all
26 27	5.1 Approximating Areas pp. 507-522 5.2 The Definite Integral pp. 529-543	481,482,490,491,492,493,499,500,502 WW Application-Antiderivatives: 2-12 all p. 523 # 2,12,14-17 all WW Integration-Riemann Sums: 2,3,4,7 p. 545 # 72,73,76,77,80,81,88,89,91,93
26	5.1 Approximating Areas pp. 507-522	481,482,490,491,492,493,499,500,502 WW Application-Antiderivatives: 2-12 all p. 523 # 2,12,14-17 all WW Integration-Riemann Sums: 2,3,4,7 p. 545 # 72,73,76,77,80,81,88,89,91,93 WW Integration-Definite: 1-8 all,11
26 27	5.1 Approximating Areas pp. 507-522 5.2 The Definite Integral pp. 529-543	481,482,490,491,492,493,499,500,502 WW Application-Antiderivatives: 2-12 all p. 523 # 2,12,14-17 all WW Integration-Riemann Sums: 2,3,4,7 p. 545 # 72,73,76,77,80,81,88,89,91,93 WW Integration-Definite: 1-8 all,11 p. 562 # 170,171, 177,182,183
26 27 28	 5.1 Approximating Areas pp. 507-522 5.2 The Definite Integral pp. 529-543 5.3 The Fundamental Theorem of Calculus pp. 549-559 	481,482,490,491,492,493,499,500,502 WW Application-Antiderivatives: 2-12 all p. 523 # 2,12,14-17 all WW Integration-Riemann Sums: 2,3,4,7 p. 545 # 72,73,76,77,80,81,88,89,91,93 WW Integration-Definite: 1-8 all,11 p. 562 # 170,171, 177,182,183