NEW YORK CITY COLLEGE OF TECHNOLOGY The City University of New York

DEPARTMENT:

Mathematics

COURSE:

TITLE:

MAT 1475

Calculus I

DESCRIPTION: Topics include functions, limits, differentiation, and tangent lines, L'Hôpital's Rule, Fundamental Theorem of Calculus and Applications.

TEXT: Volume 1, openstax.org Calculus,

E. Herman and

G. Strang

CREDITS:

4 (4 class hours)

PREREQUISITES: MAT 1375 or qualifying score on the mathematics placement exam.

Prepared by: Henry Africk and Satyanand Singh

Fall, 2019

A. Testing Guidelines:

The following exams should be scheduled:

- 1. A one session exam at the end of the First Quarter.
- 2. A one session exam at the end of the Second Quarter.
- 3. A one session exam at the end of the Third Quarter.
- 4. A one session Final Examination.

B. A graphing calculator is required.

Course Intended Learning Outcomes/Assessment Methods

Learning Outcomes	Assessment Methods
1. Solve problems related to limits and continuity.	Classroom activities and discussion, homework, exams.
2. Find the derivative of functions using the definition, sum rule, product rule, quotient rule, and the chain rule.	Classroom activities and discussion, homework, exams.
 3. Use the derivative of a function to find an equation for the tangent line at a point. Use L'Hôpital's Rule to evaluate limits. Sketch the graph of functions. Solve optimization problems. Solve related rates problems. 	Classroom activities and discussion, homework, exams.
4. Evaluate definite and indefinite integrals of polynomials, trigonometric and exponential functions.	Classroom activities and discussion, homework, exams.

General Education Learning Outcomes/Assessment Methods

Learning Outcomes	Assessment Methods
1. Understand and employ both quantitative and qualitative analysis to solve problems.	Classroom activities and discussion, homework, exams.
2. Employ scientific reasoning and logical thinking.	Classroom activities and discussion, homework, exams.
3. Communicate effectively using written and oral means.	Classroom activities and discussion, homework, exams.
4. Use creativity to solve problems.	Classroom activities and discussion, homework, exams.

New York City College of Technology Policy on Academic Integrity

Students and all others who work with information, ideas, texts, images, music, inventions, and other intellectual property owe their audience and sources accuracy and honesty in using, crediting, and citing sources. As a community of intellectual and professional workers, the College recognizes its responsibility for providing instruction in information literacy and academic integrity, offering models of good practice, and responding vigilantly and appropriately to infractions of academic integrity. Accordingly, academic dishonesty is prohibited in The City University of New York and at New York City College of Technology and is punishable by penalties, including failing grades, suspension, and expulsion. The complete text of the College policy on Academic Integrity may be found in the catalog.

Session	Calculus I	Homework Exercises
1	2.2 The Limit of a Function (pages 135 – 153)	P. 154 : 30-33 all, 35, 38, 42, 46-49 all
2	2.3 The Limit Laws (pages 160 – 174)	P. 176 : 83-105 odd
3	2.4 Continuity (pages 179 – 188)	P. 191 : 131-135 all, 137-147 odd
4	3.1 Defining the Derivative (pages 213 – 227)	P. 228 : 1, 3, 11-17 odd, 21-25 odd
5	3.2 The Derivative as a Function (pages 232 – 242)	P. 243 : 54-58 all, 61, 62
6	3.3 Differentiation Rules (pages 247 – 260)	P. 263 : 106-113 all, 115-117 all
7	3.4 Derivatives as Rates of Change (pages 266 – 270)	P. 273 : 153, 155, 156, 157
8	First Examination	
9	3.5 Derivatives of Trigonometric Functions (pages 277 – 284)	P. 285 : 175-189 odd
10	3.6 The Chain Rule (pages 287 – 296)	P. 297 : 215-221 odd, 222, 229-237 odd
11	3.7 Derivatives of Inverse Functions (pages 299 – 305)	P. 306 : 265, 267, 279, 280, 281, 283
12	3.8 Implicit Differentiation (pages 309 – 316)	P. 317 : 300-303 all, 309, 313, 315, 319
13	3.9 Derivatives of Exponential and Logarithmic Functions (pages 319 – 330)	P. 331 : 331-333 all, 337, 340, 341, 346-348 all, 351
14	4.1 Related Rates (pages 341 – 349)	P. 350 : 1-9 odd, 10, 17-21 all, 25, 29
15	Midterm Examination	
16	4.2 Linear Approximations and Differentials (pages 354 – 363)	P. 364 : 62, 63, 65, 67, 68, 69,70, 72, 73, 74, 78, 79, 80
17	4.3 Maxima and Minima (pages 366-375)	P. 376 : 101, 103, 108-113 all, 118, 119, 122, 124, 129, 130

18	4.4 The Mean Value Theorem (pages 379-387)	P. 388 : 153, 155, 157, 161, 164, 165, 168, 171, 174, 176, 179, 186, 187, 188
19	4.5 Derivatives and the Shape of a Graph (pages 390-402)	P. 403 : 201, 203, 207, 212, 213, 214, 223, 224, 225, 229
20	4.6 Limits at Infinity and Asymptotes (pages 407-425)	P. 436 : 251, 253, 256, 257-273 odd, 274, 279, 281
21	4.6 (continued) Drawing the Graph of a Function (pages 425-435)	P. 436 : 294, 295, 297, 298, 299, 301, 302
22	4.7 Applied Optimization (pages 439-450)	P. 451 : 315, 316, 318-322 all, 335, 336
23	4.8 L'Hôpital's Rule (pages 454-464)	P. 470 : 356, 359, 362-367, 373, 377, 380, 387, 393, 395
24	Third Examination	
25	4.10 Antiderivatives (pages 485-496)	P. 497 : 465, 468-471 all, 473, 475, 476, 477, 481, 482, 490-493 all, 499, 500, 502
26	5.1 Approximating Areas (pages 507-522)	P. 523 : 2, 12, 14-19 all
27	5.2 The Definite Integral (pages 529-543)	P. 545 : 72, 73, 76, 77, 80, 81, 88, 89, 91, 93
28	5.3 The Fundamental Theorem of Calculus (pages 549-559)	P. 562 : 149, 151, 153, 170, 171, 173, 174, 177, 179-183 all
29	Review	
30	Final Examination	