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Taylor polynomials of second order for functions of two real variables

Recall that if u(t) is a function of one variable, then if u′(c) is defined, that is if u is
differentiable at c, then the first order Taylor polynomial of u at c is:

T1(t) = u(c) + u′(c)(t− c)

which is exactly the tangent line to u at c. This is the unique polynomial of order one whose
value and derivative agree with u at c, because

T1(c) = u(c) + u′(c) · 0 = u(c)

and T ′
1
(t) = u′(c) ⇒ T ′

1
(c) = u′(c)

We obtain the second order Taylor polynomial in a similar way, matching the values of u,
u′, and u′′ at c:

T2(t) = u(c) + u′(c)(t− c) +
1

2
u′′(c)(t− c)2

Then,
T2(c) = u(c) + u′(c) · 0 + 1

2
u′′(c) · 02 ⇒ T2(c) = u(c),

T ′
2
(t) = u′(c) + u′′(c)(t− c) ⇒ T ′

2
(c) = u′(c),

and T ′′
2
(t) = u′′(c) ⇒ T ′′

1
(c) = u′′(c)

Notice that

T2(t) = T1(t) +
1

2
u′′(c)(t− c)2,

One way that we can look at T2(t) is as a correction to T1(t), that is T2(t) gives a closer
approximation to u(t) than T1(t) does when t is close enough to c. Taylor’s inequality can
be used to bound the error in the estimates of Taylor polynomials. In particular,1.

|u(t)− T1(t)| ≤ K1|t− c|2 and |u(t)− T2(t)| ≤ K2|t− c|3

for c− ℓ ≤ t ≤ c+ ℓ where |u′′(t)| ≤ 2K1 and |u′′′(t)| ≤ 6K2 for all t in [c− ℓ, c+ ℓ].

Let’s develop these ideas for functions of two variables. Take U ⊂R
2 and let f :U → R

be a function. We will also assume that all second order partial derivatives of f exist and
are continuous on a disc centered at (a, b). Then, all partial derivatives of f are defined at
(a, b), and

fxy(a, b) = fyx(a, b). (1)

If we set

T1(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b) (2)

1See, for example, Theorem 6.7 in E.Herman and G. Strang,Calculus, Volume 2, OpenStax, Rice Univer-

sity, Houston, Texas 2017. Most single variable calculus textbooks give an estimate of the error for estimating

a function with its nth order Taylor polynomial.
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then it’s easy to see that T1 is equal to the linearization of f at (a, b):

L(x, y) = f(a, b) +Df(a, b)

([

x

y

]

−
[

a

b

])

= f(a, b) + [fx(a, b) fy(a, b)]

[

x− a

y − b

]

= f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

= T1(x, y)

Now let’s choose T2 to be an adjustment of T1 as defined in (2), so that T2 has exactly
the same value, the same first order partial derivatives, and the same second order partial
derivatives as f at (a, b):

T2(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

+
1

2
fxx(a, b)(x− a)2 +

1

2
fyy(a, b)(y − b)2 + fxy(a, b)(x− a)(y − b) (3)

Let’s compare the values of T2, and its first and second order partial derivatives at (a, b) to
those of f and its derivatives.

T2(a, b) = T1(a, b) +
1

2
fxx(a, b)(a− a)2 +

1

2
fyy(a, b)(b− b)2 + fxy(a, b)(a− a)(b− b)

= T1(a, b) = f(a, b)

⇒ T2(a, b) = f(a, b)

∂

∂x
T2(x, y) =

∂

∂x
T1(x, y) + fxx(a, b)(x− a) + fxy(a, b)(y − b)

= fx(a, b) + fxx(a, b)(x− a) + fxy(a, b)(y − b)

⇒ ∂
∂x
T2(a, b) = fx(a, b)

∂2

∂x2
T2(x, y) = 0 + fxx(a, b) + 0

⇒ ∂
∂xx

T2(a, b) = fxx(a, b)

∂

∂y
T2(x, y) =

∂

∂y
T1(x, y) + fyy(a, b)(y − b) + fxy(a, b)(x− a)

= fy(a, b) + fyy(a, b)(y − b) + fxy(a, b)(x− a)

⇒ ∂
∂y
T2(a, b) = fy(a, b)

∂2

∂y2
T2(x, y) = 0 + fyy(a, b) + 0

⇒ ∂
∂yy

T2(a, b) = fyy(a, b)

∂2

∂x∂y
T2(x, y) = 0 + 0 + fxy(a, b) = fxy(a, b)

⇒ ∂
∂xy

T2(a, b) = fxy(a, b)
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Therefore T2(a, b) = f(a, b), and all of their respective first and second order partial deriva-
tives, are equal at (a, b).

Let’s use (3) to find the second order Taylor polynomials for some examples.

Example 1

p(x, y) = x2 + xy + y2

Calculating:

px = 2x+ y py = x+ 2y pxx = 2 pyy = 2 pxy = pyx = 1

Evaluating at (0, 0) we can find the second order Taylor polynomial of p at (0, 0):

T2(x, y) = p(0, 0) + px(0, 0)x+ py(0, 0)y +
1

2
pxx(0, 0)x

2 +
1

2
pyy(0, 0)y

2 + pxy(0, 0)xy

= 0 + 0 + 0 +
1

2
(2)x2 +

1

2
(2)y2 + (1)xy

= x2 + y2 + xy

Notice that this is the same as the given polynomial. Does this depend on the point
of expansion? Let’s find out by expanding at (a, b).

T2(x, y) = p(a, b) + px(a, b)x+ py(a, b)y +
1

2
pxx(a, b)x

2 +
1

2
pyy(a, b)y

2 + pxy(a, b)xy

= a2 + ab+ b2 + (2a+ b)(x− a) + (a+ 2b)(y − b)
1

2
(2)(x− a)2 +

1

2
(2)(y − b)2 + (1)(x− a)(y − b)

= a2 + ab+ b2 + 2ax+ bx− 2a2 − ab+ ay + 2by − ab− 2b2

+x2 − 2ax+ a2 + y2 − 2by + b2 + xy − bx− ay + ab

= x2 + y2 + xy

As is the case for functions of one variable a second order Taylor polynomial of a degree
two polynomial is exactly equal to that polynomial no matter the point of expansion.

Example 2

f(x, y) = sin2(x) + sin(xy) + sin2(y) (4)

Calculating:

fx = 2 sin(x) cos(x) + y cos(xy) fy = x cos(xy) + 2 sin(y) cos(y)
fxx = 2 cos2(x)− 2 sin2(x)− y2 sin(xy) fyy = −x2 sin(xy) + 2 cos2(y)− 2 sin2(y)

fxy = fyx = cos(xy)− xy sin(xy)
(5)

Evaluating at (0, 0) we can find the second order Taylor polynomial of f at (0, 0):

T2(x, y) = f(0, 0) + fx(0, 0)x+ fy(0, 0)y +
1

2
fxx(0, 0)x

2 +
1

2
fyy(0, 0)y

2 + fxy(0, 0)xy

= 0 + 0 + 0 +
1

2
(2)x2 +

1

2
(2)y2 + (1)xy

= x2 + y2 + xy
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It turns out that this function has the same Taylor polynomial at (0, 0) as Example 1.
Figure 1 is a graph of this example with its Taylor polynomial.

Figure 1: The graph of z = f(x, y) in yellow and z = T2(x, y) in gray.2

Example 3 Let’s repeat the calculation for the function used in Example 2, but at a different point:
(1
2
, π). Using the calculations we did for Example 2, but evaluating instead at (1

2
, π):

T2(x, y) = f(1
2
, π) + fx(

1

2
, π)(x− 1

2
) + fy(

1

2
, π)(y − π)

+
1

2
fxx(

1

2
, π)(x− 1

2
)
2
+

1

2
fyy(

1

2
, π)(y − π)2

+ fxy(
1

2
, π)(x− 1

2
)(y − π)

= sin2(1
2
) + 1 + 2 sin (1

2
) cos(1

2
)(x− 1

2
) + 0(y − π)

+
1

2
(2 cos2(1

2
)− 2 sin2(1

2
)− π2)(x− 1

2
)
2
+

1

2
(−1

4
+ 2)(y − π)2

+ (−π
2
)(x− 1

2
)(y − π)

= sin2(1
2
) + 1 + sin(1)(x− 1

2
) +

(

cos(1)− π2

2

)

(x− 1

2
)
2

+ 7

8
(y − π)2 − π

2
(x− 1

2
)(y − π)

In the last step we used the identity called the double angle formulas for sine:

sin(2θ) = 2 sin(θ) cos(θ),

2All figures were kindly provided by Prof. C.Koca.
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and for cosine:
cos(2θ) = cos2(θ)− sin2(θ).

Note that unlike in Example 2, this polynomial has constant terms, so the Taylor
polynomial changes depending on the point of expansion. This is a more typical case.
The case of a degree two polynomial discussed as part of Example 1 is an exception to
this rule.

Example 4

P (x, y) = (x− y)3

Calculating:

Px = 3(x− y)2 Py = −3(x− y)2

Pxx = 6(x− y) Pxy = Pyx = −6(x− y) Pyy = 6(x− y)

Evaluating at (0, 0) we can find the second order Taylor polynomial of p at (0, 0):

T2(x, y) = P (0, 0) + Px(0, 0)x+ Py(0, 0)y

+
1

2
Pxx(0, 0)x

2 +
1

2
Pyy(0, 0)y

2 + Pxy(0, 0)xy

= 0

Notice that since all the terms are zero, T2 = T1 = 0, so the second order Taylor
polynomial offers no correction to the first order Taylor polynomial. Neither is equal
to the original function P except on the line x = y. Let’s expand at (−1, 0) to see a
case where the first and second order Taylor polynomials are different.

T2(x, y) = P (−1, 0) + Px(−1, 0)(x+ 1) + Py(−1, 0)y

+
1

2
Pxx(−1, 0)(x+ 1)2 +

1

2
Pyy(−1, 0)y2 + fxy(−1, 0)(x+ 1)y

= −1 + 3(x+ 1)− 3y − 3(x+ 1)2 − 3y2 + 6(x+ 1)y

We can get the first order Taylor polynomial by including just the terms up to order
one:

T1(x, y) = −1 + 3(x+ 1)− 3y

Example 5

q(x, y) =
1

1 + x− y
= (1 + x− y)−1

Calculating:

qx = −(1 + x− y)−2 qy = (1 + x− y)−2

qxx = 2(1 + x− y)−3 qyy = 2(1 + x− y)−3

qxy = −2(1 + x− y)−3 = qyx = −2(1 + x− y)−3
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Evaluating at (−1, 1) we can find the second order Taylor polynomial of q at (−1, 1):

T2(x, y) = q(−1, 1) + qx(−1, 1)(x+ 1) + qy(−1, 1)(y − 1)

+
1

2
qxx(−1, 1)(x+ 1)2 +

1

2
qyy(−1, 1)(y − 1)2 + qxy(−1, 1)(x+ 1)(y − 1)

= −1− (x+ 1) + (y − 1)− (x+ 1)2 − (y − 1)2 + 2(x+ 1)(y − 1)

Now we will focus on the error in the estimates f ≈ Tj for j = 1, 2. Taylor’s inequality for
functions of one variable is something covered in Calculus II. Here we give only the special
case for first and second order Taylor polynomials.3 This theorem gives us an upper bound
on the error in the approximations f ≈ T1 and f ≈ T2.

Theorem 1 (Taylor’s Theorem in degree 1 and 2 for functions of 2 variables.)
If all second order partial derivatives of f are continuous on a disk of radius r > 0

centered at (a, b), and for some M ≥ 0 all second order partial derivatives of f have values

between M and −M on that disk, then

|f(x, y)− T1(x, y)| ≤ 2M‖(x, y)− (a, b)‖2 (6)

where T1 is the first order Taylor polynomial of f expanded at (a, b).

If all third order partial derivatives of f are continuous on a disk of radius r > 0 centered

at (a, b), and for some N ≥ 0 all third order partial derivatives of f have values between N

and −N on that disk, then

|f(x, y)− T2(x, y)| ≤
4

3
N‖(x, y)− (a, b)‖3 (7)

where T2 is the second order Taylor polynomial of f expanded at (a, b).

Let’s apply Taylor’s Theorem to estimate error in Taylor polynomial approximations by
continuing to examine one of the examples we have already considered. We will use the
methods that we studied to find absolute minima and absolute maxima to obtain values for
M and N .

Example 6 Let’s look at the error in the approximation by the first and second order Taylor
polynomials we found in Example 1 centered at (0, 0). We have:

p(x, y) = x2 + xy + y2, T1(x, y) = 0, and T2(x, y) = x2 + y2 + xy

To estimate the error in the approximation p ≈ T1 on the disk of radius r > 0 centered
at (0, 0) using (6) we use the second derivatives of p found in Example 1:

pxx = 2, pyy = 2, pxy = pyx = 1

3The estimates given here are proved in J.E.Marsden and M.J.Hoffman Elementary Classical Analysis,

2nd Ed., W.H. Freeman, New York, 1993.
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It’s clear that these functions all take values between −2 and 2, so we can let M = 2
and we get

|p(x, y)− T1(x, y)| ≤ 2(2)‖(x, y)− (0, 0)‖2 = 4‖(x, y)‖2

Next we’ll examine the error in the approximation p ≈ T2, again on the disk of radius
r > 0 centered at (0, 0). To do this we have to calculate the third order partial
derivatives of p, which it turns out are all the same:

pxxx = pyyy = pxxy = pyyx = 0

It’s easy to see that all the mixed partial derivatives are the same. Again finding the
maximum value is simple, we can let N = 0. Applying (7) we get:

|p(x, y)− T2(x, y)| ≤
4

3
(0)‖(x, y)− (0, 0)‖3 = 0

so there is no error and indeed we found that p(x, y) = T2(x, y) for all (x, y) no matter
what the point of expansion is.

Example 7 Let’s now consider the estimates P ≈ T1 and P ≈ T2 on the disk of radius 1√
2
centered

at (−1, 0), where

P (x, y) = (x− y)3, T1(x, y) = −1 + 3(x+ 1)− 3y,
T2(x, y) = −1 + 3(x+ 1)− 3y − 3(x+ 1)2 − 3y2 + 6(x+ 1)y

as in Example 4.

First, to use (6) we need to find the maximum of all the second order partial derivatives
on the disk of radius 1√

2
centered at (−1, 0). We calculated these in Example 4:

Pxx = −Pxy = −Pyx = Pyy = 6(x− y)

The function
m(x, y) = 6(x− y)

has gradient ∇m = (6,−6) which is never zero, so there are no critical points. This
means that the maximum and minimum of m on the disk of radius 1√

2
centered at

(−1, 0) each occur on the boundary of that disk, in other words the circle whose points
satisfy the equation

g(x, y) = (x+ 1)2 + y2 = 1

2

We can use Lagrange multipliers to find the maximum and minimum under this con-
straint. There are two systems of equations to solve:

{

∇m(x, y) = λ∇g(x, y)
g(x, y) = 1

2

and

{

∇g(x, y) = (0, 0)
g(x, y) = 1

2

Looking at the second system first,

∇g(x, y) = (2(x+ 1), 2y) = (0, 0) ⇒ x = −1 and y = 0 but g(−1, 0) = 0 6= 1
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so there are no possible maxima or minima from the second systems. Next we’ll solve
the first system of equations. Using ∇m = (6,−6),

{

6 = 2λ(x+ 1)
−6 = 2λy

⇒ −(x+ 1) = − 6

2λ
= y (8)

Note that λ = 0 has no solution because ±6 6= 0. If we substitute (8) into the constraint
g(x, y) = 1

2
we get

(x+ 1)2 + (−(x+ 1))2 = 1

2
⇒ (x+ 1)2 = 1

4
⇒ x = −1± 1

2

Substituting these values of x into (8) gives two candidates for maximum/minimum
points:

(−1

2
,−1

2
) and (−3

2
, 1
2
) (9)

Evaluating m at these two points gives:

m(−1

2
,−1

2
) = 6(−1

2
+ 1

2
) = 0

m(−3

2
, 1
2
) = 6(−3

2
− 1

2
) = −12

So m has a maximum of 0 and a minimum of −12 on the disk in question, which means
we can take M = 12 and applying (6):

|P (x, y)− T1(x, y)| ≤ 24‖(x, y)− (−1, 0)‖2 (10)

Now we’ll apply (7) to find the error in the estimate P ≈ T2. Calculating the third
order partial derivatives of P we get:

Pxxx = −Pxxy = Pyyx = −Pyyy = 6

It’s clear that these functions are all between−6 and 6, so we can takeN = 6. Applying
(7):

|P (x, y)− T2(x, y)| ≤ 8‖(x, y)− (−1, 0)‖3 (11)

If we compare (10) and (11) we can see that the error estimate for T2 is less than a
third of that of T1.

Example 8 Here we continue with Example 5 where we expanded the function

q(x, y) =
1

1 + x− y
= (1 + x− y)−1

at (−1, 1) and found the second order Taylor polynomial to be:

T2(x, y) = −1− (x+ 1) + (y − 1)− (x+ 1)2 − (y − 1)2 + 2(x+ 1)(y − 1)

and so the first order Taylor polynomial consists of the first order terms of T2:

T1(x, y) = −1− (x+ 1) + (y − 1)
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Let’s estimate the error in the approximation q ≈ T1 on the disk of radius 1√
32

centered

at (−1, 1) using (6). To do this we must find the maximum and minimum values of all
second order partial derivatives of q. These were found in Example 5 to be:

qxx = qyy = −qxy = −qyx =
2

(1 + x− y)3

Since all these derivatives are either the same or differ by a factor of −1, we only need
to find the absolute maximum and absolute minimum of one function

m(x, y) = 2(1 + x− y)−3

over the disk of radius 1√
32

centered at (−1, 1). To do this we seek all critical points
inside the disk. Finding that there are none, we apply the Lagrange multiplier method
on the boundary of the disk, which is given by all (x, y) such that

(x+ 1)2 + (y − 1)2 = 1

32

For the critical points of m we have ∇m = (0, 0), so

−6(1 + x− y)−4(1) = 0 and −6(1 + x− y)−4(−1) = 0

⇒ −6

(1 + x− y)4
= 0 and

6

(1 + x− y)4
= 0

which has no solution, so m has no critical points inside the disk. Now we apply the
Lagrange multiplier method to find the maximum and minimum of m(x, y) with the
constraint g(x, y) = (x+ 1)2 + (y − 1)2 = 1

32
. So we solve the two systems:

{

∇m(x, y) = λ∇g(x, y)
g(x, y) = 1

32

and

{

∇g(x, y) = (0, 0)
g(x, y) = 1

32

The system of equations on the right has no solutions because

∇g(x, y) = (0, 0) ⇒ (2(x+ 1), 2(y − 1)) = (0, 0) ⇒ x = −1, y = 1

This point does not satisfy the constraint because 02 + 02 = 0 6= 1

32
, so there are no

solutions from the second system.

To solve the first system, we calculate ∇m = (−6(1+ x− y)−4, 6(1+ x− y)−4), and so
{

−6(1 + x− y)−4 = 2λ(x+ 1)
6(1 + x− y)−4 = 2λ(y − 1)

⇒ −(x+ 1) =
6

2λ(1 + x− y)4
= y − 1 (12)

Note that λ = 0 has no solution because ±6(1 + x − y)−4 is never zero. Plugging
−(x+ 1) = y − 1 into the constraint g(x, y) = 1

32
gives:

(x+ 1)2 + (−(x+ 1))2 = 1

32
⇒ (x+ 1)2 = 1

64
⇒ x = −1± 1√

64
= −8±1

8

From (12) we get that y = −x, so there are two points that are possible max-
ima/minima:

(−7

8
, 7
8
) and (−9

8
, 9
8
) (13)
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Therefore, the absolute minimum and absolute maximum of m on the disk of radius
1√
32

centered at (−1, 1) are:

m(−7

8
, 7
8
) = 2

(

1− 7

8
− 7

8

)−3

= 2
(

−3

4

)−3

= −2
7

33

m(−9

8
, 9
8
) = 2

(

1− 9

8
− 9

8

)−3

= 2
(

−5

4

)−3

= −2
7

53

These are both negative, so the most negative, the minimum, is what we can take for
−M , which means that M = 2

7

33
. Applying (6) we have that if (x, y) is in the disc of

radius 1√
32

centered at (−1, 1), then

|q(x, y)− T1(x, y)| ≤
28

33
‖(x, y)− (−1, 1)‖2 (14)

Now let’s use (7) to estimate the error in the approximation q ≈ T2 on the same disk.
First calculating the third order partial derivatives of q gives us:

qxxy = qyyy = −qxxx = −qyyx =
6

(1 + x− y)4

It’s easy to see that the order of the mixed partial derivatives doesn’t change the result,
so qxxy = qxyx = qyxx, and qyyx = qyxy = qxyy. As with the first order case we only have
to find the extrema of a single function, which cuts down on our work considerably!
(Note that we can’t expect this to be the case for most problems.) So we are now
looking for the absolute maximum and absolute minimum of the function

n(x, y) = 6(1 + x− y)−4

on that same disk. Using a quick calculation similar to the first order case, it’s simple
to see that there are no critical points of n in this disk. We are left to use the Lagrange
multiplier with the same constraint as before:

g(x, y) = (x+ 1)2 + (y − 1)2 = 1

8
.

Again there is no solution to ∇g = (0, 0) that satisfies the constraint, so we are left
with solving ∇n = λ∇g with g(x, y) = 1

8
. This gives the system of equations

{

−24(1 + x− y)−5 = 2λ(x+ 1)
24(1 + x− y)−5 = 2λ(y − 1)

⇒ −(x+ 1) =
24

2λ(1 + x− y)5
= y − 1 (15)

This is the same result as (12), and the constraint is the same, so the critical points
are also the same, given by (13). Using similar simplifications as before we get that
the absolute maximum and absolute minimum of n on the disk of radius 1√

32
centered

at (−1, 1) are:

n(−7

8
, 7
8
) = 6

(

1− 7

8
− 7

8

)−4

= 6
(

−3

4

)−4

= 2
9

33

n(−9

8
, 9
8
) = 6

(

1− 9

8
− 9

8

)−4

= 6
(

−5

4

)−4

= 3·29
54
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These are both positive and the first is larger, so we can take N = 2
9

33
. Applying (7)

gives:

|q(x, y)− T2(x, y)| ≤
211

34
‖(x, y)− (−1, 1)‖3 (16)

Now since we know that ‖(x, y) − (−1, 1)‖ < 1√
32

for (x, y) in the disk of radius 1√
32

centered at (−1, 1), equation (16) gives that,

|q(x, y)− T2(x, y)| ≤
29

33
‖(x− y)− (−1, 1)‖2 · 1√

32
=

27

33
√
2
‖(x− y)− (−1, 1)‖2.

Comparing this to (14) we see that the error estimate error in the approximation using
the second order Taylor polynomial is less than half that of the first order Taylor
polynomial on that whole disk. The advantage of T2 over T1 will only improve as (x, y)
gets closer to (−1, 1).

Exercises

1. Find the second degree Taylor polynomial for the given function expanded at the given
point.

(a) p(x, y) = 4(x+ y)2 + 3x− 2y + 1 expanded at (0, 0).

(b) p(x, y) = 4(x+ y)2 + 3x− 2y + 1 expanded at (−1, 1).

(c) q(x, y) =
1

1+x−y
expanded at (0, 2).

(d) f(x, y) = xy expanded at (1, 0).

(e) f(x, y) = xy expanded at (e, 2).

(f) g(r, θ) = (r + θ) sin( θ
r
) expanded at (6, π).

(g) h(x, y) = arctan ( y
x
) expanded at (1, 1).

(h) k(x, y) = (ex + e−x) cos(y) expanded at (0, π).

2. For each of the functions in Exercise 1 use the Taylor polynomial you found to estimate
that function at the given point (a, b). Also find the estimate using the first degree
Taylor polynomial T1(a, b) a.k.a. the linearization. Calculate the exact value of the
function at (a, b) and compare the error in T2(a, b) and T1(a, b).

(a) Compare the error in T2(0.1, 0.1), and T1(0.1, 0.1), as estimates for p(0.1, 0.1),
where p(x, y) = 4(x+ y)2+3x− 2y+1, and the Taylor polynomials are expanded
at (0, 0).

(b) Compare the error in T2(0.1, 0.1), and T1(0.1, 0.1), as estimates for p(0.1, 0.1),
where p(x, y) = 4(x+ y)2+3x− 2y+1, and the Taylor polynomials are expanded
at (−1, 1).
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(c) Compare the error in T2(0.1, 1.8), and T1(0.1, 1.8), as estimates for q(0.1, 1.8),

where q(x, y) =
1

1+x−y
, and the Taylor polynomials are expanded at (0, 2).

(d) Compare the error in T2(0.9, 0.1), and T1(0.9, 0.1), where f(x, y) = xy, and the
Taylor polynomials are expanded at (1, 0).

(e) Compare the error in T2(3, 2.1), and T1(3, 2.1), where f(x, y) = xy, and the Taylor
polynomials are expanded at (e, 2).

(f) Compare the error in T2(5.5, 3), and T1(5.5, 3), where g(r, θ) = (r + θ) sin( θ
r
) is

expanded at (6, π).

(g) Compare the error in T2(1.2, 0.8), and T1(1.2, 0.8), where h(x, y) = arctan ( y
x
), is

expanded at (1, 1).

(h) Compare the error in T2(−0.1, 3), and T1(−0.1, 3), where

k(x, y) =
(

ex + e−x
)

cos(y)

is expanded at (0, π).

3. Consider the function,
p(x, y) = (2x+ y + 1)3

Find T1 and T2 centered at (0, 0). Using Example 7 as a guide, compare the error in
the estimates p ≈ T1 to p ≈ T2 on the disk of radius 1√

6
centered at (0, 0).

4. Using Example 8 as a guide, compare the error in the estimates q ≈ T1 to q ≈ T2 on
the disk of radius 1√

50
centered at (0, 2). Here T1 and T2 are as in exercise 1(c).


