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Preface 

This textbook is based on the course “College Algebra and Trigonometry” taught at New 
York City College of Technology, CUNY. It is designed to prepare students for the 
precalculus class at the next level. 
The book is meant to be concise, while at the same time including all the material taught 
at the present time (as of Fall 2018) by mathematics department of NYCCT. Special 
attention is paid to present the material in a motivated and intuitively clear manner. 
The book is divided into three parts and 25 sessions based on the total of 30 sessions in 
one semester, leaving remaining 5 sessions for 3 in-class exams, one review for final 
exam, and one final exam. 
Each session ends with exercises. Most exercises are designed in pairs with consecutive 
odd and even numbers in such a way that exercises are similar in each pair. A 
recommended approach is for instructions to work out the examples in the lecture part of 
the session during class, then allow students to work on even exercises during class and 
assign the odd exercises for homework (or vice versa). The textbook also contains 
answers to almost all exercises. 
Some sessions contain challenge problems. In sessions 8, 14 and 23, challenge problems 
are given in parametric form so they also can be used by instructors to generate additional 
specific exercises and problems for quizzes and exams. 
I would like to thank my brother, Dr. Leonid Rozenblum, for numerous corrections and 
recommendations. 

Alexander Rozenblyum 
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Session 1: Integer Exponents 

Session 1 

Integer Exponents 
Exponents with Positive Integer Powers 

Let’s recall the well-known notation of multiplication. Everybody knows that 3 4 12× = . 
But what does exactly multiplication mean? Why the result is 12? We’ve got this result 
by adding number 3 to itself 4 times: 

3 4 3 3 3 3 12× = + + + = . 
Multiplication means repetition with addition. It allows to write the summation of a 
number with itself in a short, compact form. 
There are cases when we need repetition with multiplication. In other words, we want to 
multiply a number by itself several times. For example, consider the product 3 3 3 3× × × . 
It would be a good idea to invent a special notation, similar to the notation for 
multiplication, that allows to write such a product in a short form, using number 3 only 
one time (which tells us the number we want to multiply by itself) and number 4 (which 
tells us how many time to multiply). We cannot use the notation 43×  because it is 
already taken for multiplication to express repetition with summation. The following 
notation was invented to express repetition with multiplication: 43 . This expression is 
called the exponent. So, by definition 

43 3 3 3 3= × × × . 
Note. In some computer languages and calculators, to keep both numbers on one line, the 
notation 3^4 is used. 
In similar way we can define exponent in general form. 

Definition. For arbitrary number a and arbitrary positive integer n the exponent na  is 
defined by the formula: 

  ...na a a a= × × ×  (multiply n times) 
Number a is called the base, and n is the power of exponent. We can say that we raise a 
to the power n. In particular, 1a a=  (we “repeat” number a one time). Also, 1 1n =  for 
any n. For two special cases, when power n = 2 and n = 3, we also say that 2a  is 
a-square, and 3a  is a-cube. The reason for that is 2a  represents the area of a square, and

3a  represents the volume of a cube with sides a.

Note. Some textbooks define exponent as power n. We define exponent as na . 

The notation of exponents is useful in many situations, in particular, when we work with 
very big numbers (for example, with distances between planets). Bellow we show a way 
in which exponents can also be used for very small numbers (such as, for example, 
distances inside molecules or atoms). 

Let’s consider examples, and study some properties of exponents. 
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Session 1: Integer Exponents 

Example 1.1. Some people believe that one kilobyte (KB) of computer memory is equal 
to 1000 bytes (B). However, 1 KB = 1024 B, not 1000 B. The reason is that the number 
1024 is a power of 2 but the number 1000 is not. Express number 1024 in exponential 
form with the base of 2. 

Solution. Let’s divide 1024 by 2 several times: 1024 2 512, 512 2 256÷ = ÷ = , and so 
on. We will get that 1024 is the product of 10 copies of 2: 1024 2 2 ... 2= × × ×  (multiply 
10 times). Therefore, 101024 2= . 

Example 1.2. It is known that the distance from our Earth to the Sun is about 
150,000,000 km (150 million kilometers). Represent this distance in a short form using 
exponents.  
Solution. We can write this number in the form 150,000,000 1.5 100,000,000= × . 
Number 100,000,000 contains 8 zeros and can be written as 8100,000,000 10= .  

 Therefore, 8150,000,000 1.5 10= × . 

Note. Representation of big numbers such as in the example 1.2 in exponential form with 
the base of 10 is widely used in science. This form is called scientific notation. 

In general, we say that positive number n is in scientific notation, if it is written as 
product of two parts: 

1) Number between 1 and 10.
2) Power of 10.

Example 1.3. Consider three numbers: 815.3 10× , 60.15 10× , and 42.73 10× . Are these 
numbers in scientific notation? 
Solution. It looks like all three numbers are in scientific notation. However, it is not true. 
The first number 815.3 10×  is not in scientific notation, because its first part, number 
15.3, is greater than 10, so it is outside the range from 1 to 10. The second number 

60.15 10×  is also not in scientific notation, because its first part 0.15 < 1, so it is also not 
inside interval from 1 to 10. The third number 42.73 10×  is in scientific notation: its first 
part 2.73 is between 1 and 10. 

Now, how about very small numbers? Consider, for example, the diameter of DNA helix. 
It is known that this diameter is about 0.0000002 cm. Is it possible somehow to represent 
this number also in a short form using exponents? The answer is yes. We will solve this 
problem in example 1.5 below. To come up with the idea how to do this we need to learn 
more about exponents. Let’s start with some basic properties. 

Basic Properties of Exponents 

We will not give proofs here since proofs are very simple and follow directly from the 
definition of exponents (if you wish you can try to proof yourself). 

Product Rule. For any number a, and any positive integers n and m, 
n m n ma a a +× =

3



 
Session 1: Integer Exponents 

Notice that all exponents in this formula have the same base a. This restriction is very 
important. If, for example, you need to multiply 4 53 2× , there is no simple rule to 
represent the answer as exponent. Also notice how product rule works: to multiply 
exponents with the same base, we add powers. A common mistake here is to multiply 
powers instead of adding them. 

Another rule is how to raise exponents into a power. 

Power Rule. For any number a and any positive integers n and m, 

( )mn n ma a ⋅=  

This time, contrary to product rule, we multiply powers. 

Quotient Rule. For any nonzero number a, and any positive integers n and m, such that 
n m> , 

n
n m

m
a a
a

−=  

So, to divide exponents, we subtract powers (we do not divide them). 

Notice that in the above formula power of numerator is greater than power of 
denominator. But what if we need to divide exponents when the power of numerator is 
less than the power of denominator: n m< ? One possible way is just to reduce this 
fraction by dividing numerator and denominator by na , and we get 

    
1n

m m n
a
a a −=  

 
Power of Product Rule. For any two numbers a and b, and any positive integer n, 

( )n n nab a b=  

Power of Quotient Rule. For any number a, any nonzero b, and any positive integer n, 
n n

n
a a
b b

  = 
 

 

As you can see, according to power of product and quotient rules, we can raise a and b to 
the power n separately. 

Exponents with Negative Integer Powers 
 
Let’s reconsider Quotient Rule when the power n of numerator is less than the power m 

of denominator: 
1n

m m n
a
a a −= ,  n m< . It would be a good idea to somehow write it in the 

same exponential form as for the case when n m> : 
n

n m
m

a a
a

−= . In doing this, we come 

up to the exponents with negative powers! For example, we can write that 
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2
2 6 4

6 4

1a a a
a a

− −= = = , or  4
4

1a
a

− = . 

You may say that negative exponent (exponent with negative power) does not make any 
sense. Indeed, by the initial definition of exponent, its power tells us how many times to 
multiply the base by itself. How can we multiply anything “negative number of times”? 
Of course, we cannot. However, there is a way to give a sense to the above formula with 
negative power. 
The idea is to replace the initial definition (which does not make sense for negative 
powers) with the definition based on the above expression for 4a− . 

Definition. For any nonzero number a, and for any positive integer n, we define na−  as 

                                            1n
na

a
− =  

So, exponents with negative powers are reciprocals to exponents with positive powers. 
In particular, 

    
n na b

b a

−
   =   
   

. 

 
Now, let’s try to invent the definition of 0a  (exponent with zero power). 
We can use similar approach as for negative exponents, using Quotient Rule for m = n. 

We will have 0.
n

n n
n

a a a
a

−= =  Because 1
n

n
a
a

= , we get 0 1.a = We come up with the 

Definition. For any nonzero number a, 0 1.a =  
 
Example 1.4. Calculate 
  a) 010 ,     b) 110− ,   c)  210− ,  d)  10 n− . 
 
Solution. By definition, we have 

 a) 010 1= ,         b) 1 110 0.1
10

− = = ,        c)  2
2

1 110 0.01
10 100

− = = = ,   

 d) 110 0.0...01
10

n
n

− = =   (n – 1 zeros after decimal point). 

 
Example 1.5. The diameter of DNA helix is about 0.0000002 cm. Represent this number 
in exponential form. 

Solution. 70.0000002 2 0.0000001 2 10−= × = × . 

This example shows that exponents with negative powers are useful for representation 
small numbers in a compact form. The above representation, as for big numbers, is also 
called scientific notation. 
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In conclusion of this session, consider several examples. It can be shown that all the 
above properties of exponents with positive powers are also true for negative powers. In 
all problems below, it is required to simplify given expression and write the answer using 
positive exponents (meaning positive powers) only. 
 

 Example 1.6.  
n p

m q
a b
a b

−

− .  

Solution. Technically, we can get rid of negative exponent ma−  in denominator, and pb−  
in numerator, by moving them into the opposite part of the fraction: move ma−  up to the 
numerator and move pb−  down to the denominator. Then apply product rule. We will get 

   
n p m n m n

m q p q p q
a b a a a
a b b b b

− +

− += = . 

 
Example 1.7.  ( )( )5 3 1ax y bxy− − . 

Solution. Numbers a and b are not powers, they are coefficients, so we simply multiply 
them (not add). For exponents, we use product rule (note that x can be written as 1x ): 
  ( )( )5 3 1 5 1 3 1 4 2ax y bxy abx y abx y− − − + − −= = . 

Now, to get rid of negative exponent 4x− , similar to Example 1.6, move 4x− down: 
2

4 2
4

abyabx y
x

− = . 

Example 1.8.   
23 8

6 4

45
18

u v
u v

−−

− −

 
 
 

. 

Solution. It is possible to simplify this expression in different ways. As а first step, let’s 
get rid of negative power 2− , by taking reciprocal of given fraction: 

2 23 8 6 4

6 4 3 8

45 18
18 45

u v u v
u v u v

−− − −

− − −

   
=   

   
. 

Next, we simplify fraction inside parentheses by reducing coefficients 18 and 45 by 9, 
and moving both exponents 6u−  and 4v−  down. Then we use product rule: 

  
2 2 2 26 4

3 8 3 6 8 4 3 6 8 4 3 12

18 2 2 2
45 5 5 5

u v
u v u u v v u v u v

− −

− − − + +

       = = =       
      

. 

Finally, we use power of quotient and power rules: 

( ) ( )
2 2

2 23 12 3 2 12 2 6 242 3 12

2 2 4 4
5 25 255u v u v u vu v

⋅ ⋅
  = = = 
 

. 
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Exercises 1 
 

In exercises 1.1 – 1.4, write given numbers in scientific notation. 
   
1.1. The Earth's circumference 
        at the equator is 
       approximately 25,000 mi. 

 1.2. Mount Everest (on the 
         border of Nepal and 
         China) is the highest 
         place on Earth above sea 
         level, at about 29,000 ft. 

 
1.3. A tiny space inside a 
       computer chip has been 
       measured to be 
       0.000256 cm  wide. 

 1.4.  A tiny space inside a 
        computer chip has been 
        measured to be 0.000014 cm 
        long. 

 
In exercises 1.5 – 1.8, write given numbers as ordinary numbers. 
 
1.5. The length of a bacterium is 
        about 54 10−×  in.  

 1.6. The weight of a flea is 
         about 28.75 10−×  g. 

 
1.7. The diameter of the Moon is 
       63.475 10×  m.  

 1.8.   The speed of sound in dry 
         air at is 31.236 10×  km/h. 

   
In Exercises 1.9 and 1.10, numbers are not written in scientific notation (why?). Write 
    these numbers in scientific notation. 
 
1.9.  a)  434.7 10−×  
         b)  30.25 10×  

 1.10   a)  643.8 10−×  
          b)  50.36 10×  

 
In Exercises 1.11 and 1.12, calculate and write the answer without exponents. 
 
1.11.  a)  02 3⋅  
          b)  ( )02 3⋅  

          c)  24−  
          d)  24−−  
          e)  ( ) 24 −−  

 1.12.  a)  03 4⋅  
          b)  ( )03 4⋅  

          c)  25−  
          d)  25−−  
          e)  ( ) 25 −−  

 
In Exercises 1.13 – 1.22, simplify and write the answer using positive powers only 
(assume that all letters represent positive numbers). 
 
1.13.  a)  5 7a a−  

          b)  ( ) 23a
−

 

 1.14.  a)  6 3c c−  

          b)  ( )34d −  
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1.15. a)  
4

8

p
p

−

 

b)  
4

8

p
p−  

c)  
4

8

p
p

−

−  

 
1.16. a)  

9

3

r
r−  

b)  
9

3

r
r

−

−  

          c)  
9

3

r
r

−

 

 

1.17. 
a b

c d
x y
x y

−

−  

 

 
1.18. 

w x

y z
p q
p q

−

−  

 
 

1.19. ( )( )4 2 5 3ma b na b− −  
 

 1.20. ( )( )5 3 7 6xu v yu v− −  
 

   

1.21. 
26 12

2 3

35
42

r s
r s

−−

−

 
− 
 

 

 

 
1.22. 

315 9

5 3

12
30

x y
x y

−−

−

 
− 
 
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Session 2 
 

Rational Expressions and Complex Fractions 
 
Recall that a rational number is a number that can be written as a fraction (having a 
numerator on the top and a denominator on the bottom). Usually, we write a fraction in 

the form m
n

, where m and n are two integers (m is the numerator, and n is the 

denominator). We treat a fraction as a ratio of its numerator to denominator, so, we can 

write 
m m n
n
= ÷ . We will always assume that denominator n is not equal to zero. 

We consider here rational expressions. These are also fractions. However, their 
numerators and denominators are not necessary numbers only. They are expressions that 
are called polynomials. Non-formally speaking, a polynomial is an expression (or a 
function) that can be written in the form that contains a variable, say x, together with the 
operations of addition, subtraction, and multiplication of x by numbers and by itself. 
When x is multiplied by itself, it usually is written as exponent. Here are examples of 
polynomials: 

   3 21 3, 5 3 2, 3 7 4.
2

x x x x x− − + − +  

The last polynomial is called the quadratic trinomial. The expression 
23x x
x
+

 is also a 

polynomial because after reducing by x it can be written as 3 1x + . On the contrary, 
13
x

+  is not a polynomial because it contains a variable x in denominator (so, division by 

variable) and can not be reduced to a polynomial. 
Definition. A rational expression is a ratio of two polynomials (or a fraction whose 
numerator and denominator are polynomials). Here are several examples of rational 
expressions: 

    
2

2 3 2

5 3 2 1 3 3 2, , , .
2 1 1 5

x x x
x x x x x
− + +

−
− − −

 

Below we consider examples on how to add and subtract rational expressions. Mostly, 
these operations can be done in a manner, similar to rational numbers (ordinary 
fractions). Where possible, we will point out the similarity between rational numbers and 
rational expressions. 

Simplification of Rational Expressions 

When adding or subtracting, we will also simplify (if possible) resulting expressions. 
Basic technique to simplify is to factor numerator and denominator, and reduce (cancel 
out) a common factor. Let’s see some examples on simplification. 
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Example 2.1. Simplify   
210 15
20

x x
x
− . 

Solution. Possible mistake here is to reduce x from 15x and 20x and not  from 210x , and 
as a result to get a wrong answer 2(10 15) / 20x − . As we mentioned above, the correct 
way is to factor numerator before reducing. We can factor 5x from the numerator and 
then reduce: 

. 

Example 2.2. Simplify   
216 12

6 10
x x
x
+
−

. 

Solution. Let’s factor both numerator and denominator and then reduce by 2: 
216 12 4 (4 3) 2 (4 3)

6 10 2(3 5) 3 5
x x x x x x
x x x
+ + +

= =
− − −

. 

Example 2.3. Simplify   
2

2

5 30 40
3 3 18
x x
x x
+ +
− −

. 

Solution. As in the previous problem, we start with factoring numerator and 
denominator. We can factor them in two steps. First, factor 5 from numerator and 3 from 
denominator: 

2 2

2 2

5 30 40 5( 6 8)
3 3 18 3( 6)
x x x x
x x x x
+ + + +

=
− − − −

. 

Second step is to factor quadratic trinomials in parentheses. Latter, in session 8 on 
quadratic equations, we will consider factoring quadratic trinomials in more details. For 
now, if you have difficulties to factor, the following method can be used. We may assume 
that both quadratic trinomials inside parentheses have the same factor. In this case this 
factor exists in the difference of the two trinomials. The difference is  

   . 

From here we can guess that  is (probably) the common factor of numerator and 
denominator. It is easy to check that this is really the case: 

2 6 8 ( 2)( 4)x x x x x+ + = + +  and 2 6 ( 2)( 3)x x x x− − = + − . 

We can complete the factorization and then reduce :  

. 
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Adding and Subtraction of Rational Expressions 

Example 2.4. Add   5 3
2 1 2 1

x
x x

+
− −

. 

Solution. Recall that it is very easy to add (or subtract) numerical fractions if they have 
the same denominator: just add (or subtract) numerators, and keep (do not add or 

subtract) their common denominator. For example, 2 3 5 5 7 2, .
7 7 7 9 9 9
+ = − = −  

The same rule applies to the rational expressions: 

           5 3 5 3
2 1 2 1 2 1

x x
x x x

+
+ =

− − −
. 

Example 2.5. Subtract   3 4 2
8 6

a a+ −
− . 

Solution. This time the denominators are different. Recall how we would subtract 

rational numbers (fractions), let’s say  7 5
8 6
− . 

To subtract, we replace these fractions with equivalent ones having the same 
denominator, which is called LCD (Least Common Denominator). LCD is the smallest 
number that is divisible by both denominators. Technically, we can subtract fractions in 
three steps. 
1) Find LCD. For given denominators 8 and 6, LCD = 24. We put LCD into the 
denominator of the resulting fraction. 
 2) Find complements of each denominator to LCD. A complement is the number such 
that if we multiply it by denominator, we get LCD. To find complements, just divide 
LCD by each denominator. For the denominator 8, the complement is 3 ( 3824 =÷ ), and 
for the denominator 6, the complement is 4 ( 4624 =÷ ). 
3) Calculate the numerator of the resulting fraction: multiply numerator of each fraction 
by complement to its denominator and subtract the results. For given fractions 7/8 and 
5/6 , multiply numerator 7 by 3 (complement to denominator 8), and numerator 5 by 4 
(complement to denominator 6): 

                                        7 5 7 3 5 4 21 20 1
8 6 24 24 24

⋅ − ⋅ −
− = = = . 

To subtract rational expressions, we do the same thing: 

        3 4 2 (3 4)3 ( 2)4 9 12 4 8 5 20
8 6 24 24 24

a a a a a a a+ − + − − + − + +
− = = = . 

Now consider an example when denominators are also different and contain variables. 

11
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Example 2.6. Add   3 4
10 15x y

+ . 

Solution. As before, we construct LCD first. Denominators contain both numbers and 
letters (variables). For numbers 10 and 15, the numerical part of LCD is 30. Letters x and 
y do not have common factors. Therefore, the letter part of LCD is their product xy. The 
entire LCD is the product of numerical and letter parts: 

  LCD = 30xy. 
Next, we find complements of each denominator to LCD by dividing LCD by 
denominators. 
For the denominator 10x, the complement is 30xy/10x = 3y. 
For the denominator 15y, the complement is 30xy/15y = 2x. 
 Finally, we add given fractions: 

                      3 4 3 3 4 2 9 8 .
10 15 30 30

y x y x
x y xy xy

⋅ + ⋅ +
+ = =  

Example 2.7. Combine   2

5 11 9
6 14a a

− + . 

Solution. To construct LCD, similar to previous example, we construct separately its 
numerical and letter parts. 
For numbers 6 and 14, the numerical part of LCD is 42. 
For letters 2a  and a, the letter part of LCD is 2a . 
The entire LCD is the product of both parts: LCD = 242a . 

Next, we find complements for each denominator to LCD: 
For 2a , the complement is 2 242 / 42a a = . 
For 6a,  the complement is 242 / 6 7a a a= . 
For 14,  the complement is 2 242 /14 3a a= . 
From here, 

  
2 2

2 2 2

5 11 9 5 42 11 7 9 3 210 77 27 .
6 14 42 42

a a a a
a a a a

⋅ − ⋅ + ⋅ − +
− + = =  

Note. In general, if denominators contain exponents with the same base and different 
powers, put into LCD exponent with the biggest power. 

Example 2.8. Subtract   4 2
5 3 3 5x x

−
− −

. 

Solution. Denominators 5 3x −  and 3 5x −  do not have common factors, therefore, LCD 
is simply their product: 

                             LCD (5 3)(3 5)x x= − − . 

The denominators 5 3x −  and 3 5x −  are complement to each other, therefore 
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4 2 4(3 5) 2(5 3) 12 20 10 6 2 14
5 3 3 5 (5 3)(3 5) (5 3)(3 5) (5 3)(3 5)

x x x x x
x x x x x x x x

− − − − − + −
− = = =

− − − − − − − −
. 

 

Example 2.9. Subtract   5 5
6 6

y y
y y
− +

−
− −

. 

Solution. Notice that denominators of these fractions “almost” the same. We can make 
them exactly the same by using the following connection between expressions a b−  and 
b a− : 
    ( )a b b a− = − − . 
Therefore, 6 ( 6)y y− = − −  and 

  5 5 5 5 5 5 2
6 6 6 ( 6) 6 6 6

y y y y y y y
y y y y y y y
− + − + − +

− = − = + =
− − − − − − − −

. 

Example 2.10. Add   7 4
3x
+

−
. 

Solution. We can treat the integer 4 as a fraction with the denominator 1: 44 .
1

=  

From here, LCD of the denominators 3x −  and 1 is 3x − , and these denominators are 
complement to each other. Therefore, 

      
7 7 4 7 1 4( 3) 7 4 12 4 54

3 3 1 3 3 3
x x x

x x x x x
⋅ + − + − −

+ = + = = =
− − − − −

. 

 

Example 2.11. Add   2

5 3 .
4 2 4

x
x x

+
− −

 

Solution. At the first glance, it looks like the denominators 2 4x −  and 2 4x −  do not 
have common factors. However, they have. To see that, factor both. It is easy to factor 
the denominator 2 4x −  by factoring number 2: 2 4 2( 2).x x− = −  

This factorization gives a hint, how to factor the denominator 2 4x − : it may contain the 
factor 2x − . It is really so: 2 4 ( 2)( 2).x x x− = − +  We can check that by opening 
parentheses on the right side. Now, compare the denominators in the factoring form: 

     2( 2)x −  and  ( 2)( 2).x x− +  
 We see the common factor 2x − . This is a part of LCD. Also, we put into LCD other 
factors 2 and 2x + . Therefore, the entire LCD 2( 2)( 2)x x= − + . Next, we find the 
complements for each denominator: 

For 2 4 ( 2)( 2),x x x− = − +  the complement is 2. 

For 2 4 2( 2),x x− = −  the complement is 2x + . 
Finally, we add the fractions: 
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2

5 3 5 2 3( 2) 10 3 6 13 6
4 2 4 2( 2)( 2) 2( 2)( 2) 2( 2)( 2)

x x x x x x
x x x x x x x x

⋅ + + + + +
+ = = =

− − − + − + − +
. 

Note. To factor 2 4x − , we can use the general formula 

 
We will use this formula many times further. Try to memorize it. 

Example 2.12. Subtract   
152

3
352

4
22 −+

−
−− xxxx

. 

Solution. Again, as a first step, we factor each denominator. We can use the same idea as 
in example 2.3: if these denominators have a common factor, the same factor should be in 
the difference of the denominators. The difference is 

)5(4204152352)152(352 2222 +−=−−=+−−−−=−+−−− xxxxxxxxxx . 

We can guess that 5x +  is the common factor for the denominators. It is easy to check 
that this is really the case: 

)7)(5(3522 −+=−− xxxx  and )3)(5(1522 −+=−+ xxxx . 

Now we construct LCD by multiplying all factors from both denominators (taking the 
common factor 5x + only one time): 
   LCD = (x + 5)(x – 3)(x – 7). 
Next, using LCD, we find complements for each denominator. 

 For )7)(5(3522 −+=−− xxxx , the complement is x – 3. 

 For )3)(5(1522 −+=−+ xxxx , the complement is x – 7. 
Finally, we subtract given fractions: 

)7)(3)(5(
)7(3)3(4

152
3

352
4

22 −−+
−−−

=
−−

−
−+ xxx

xx
xxxx

 

= 
)7)(3)(5(

9
)7)(3)(5(

213124
−−+

+
=

−−+
+−−

xxx
x

xxx
xx . 

Example 2.13. Combine   
2

2
6

4
124

3
2 +

−
−

+
−− aaaa

. 

Solution. Looking at the denominators, our guess is that the first one is the product of 
two others: 

)2)(6(1242 +−=−− aaaa . 
By opening parentheses on the right, we can check that this is true. So, 

2 2 ( )( )a b a b a b− = − +
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   LCD = (a – 6)(a + 2). 
Because LCD coincides with the first denominator, we need to find complements only for 
the second and third denominators. 
  For a – 6, the complement is a + 2. 
  For a + 2, the complement is a – 6. 
We have  

)2)(6(
)6(2)2(43

2
2

6
4

124
3

2 +−
−−++

=
+

−
−

+
−− aa

aa
aaaa

 

= 
)2)(6(

232
)2)(6(
122843

+−
+

=
+−
+−++

aa
a

aa
aa . 

 
Complex Fractions 
 
Complex fractions are fractions that contain another fractions in their numerators and/or 
denominators. We consider methods how to simplify them. 

Example 2.14. Simplify   
2

7
15

14
27

ab

ab

. 

Solution. We can represent this complex fraction in the form of division of its numerator 

by denominator: 
abab 27

14
15

7
2 ÷ . Now we use the rule for division of fractions: multiply 

the first fraction by the reciprocal of the second: 
14

27
15

7
2

ab
ab

⋅ . After simplification 

(reducing) we get the final answer 
b10

9 . 

Note. Working with complex fractions, it is important not to confuse those that look 
similar, but in reality are different. We need to carefully identify the position of the 
“main” (longest) fraction line. This line shows the place where we divide numerator by 
denominator. For example, compare the following complex fractions (which have 
different “longest” lines): 

 

 

                                       

 
 

As you see, these fractions are different. 

.
b
ac

b
ca

c
ba =⋅=÷=       a    

b
c

a
b
c

.1
bc
a

cb
ac

b
a

=⋅=÷=  
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In the examples below, to simply complex fractions, we use two methods. 

First method: find LCD for all inner fractions, and then multiply the numerator and 
denominator of the complex fraction by this LCD. 

Second method: simplify separately numerator and denominator of a complex fraction, 
and then divide its numerator by denominator. 

Example 2.15. Simplify   

12
7

15
4

6
5

3
2

+

−
. 

Solution.  
First method. The denominators of four inner fractions are 3, 6, 15, and 12. Their LCD 
is 60. Multiply the numerator and denominator of the complex fraction by this LCD: 

51
10

51
10

3516
5040

12
760

15
460

6
560

3
260

12
7

15
460

6
5

3
260

−=
−

=
+
−

=
⋅+⋅

⋅−⋅
=







 +







 −

. 

Second method. Simplify the numerator and denominator separately: 

  
6
1

6
522

6
5

3
2

−=
−⋅

=− ,      
60
51

60
5744

12
7

15
4

=
⋅+⋅

=+ . 

Divide numerator by denominator: 
51
10

51
60

6
1

60
51

6
1

−=⋅−=÷− . 

Example 2.16. Simplify   
22

2

45

23

xxy

xyyx

−

+
. 

Solution. 

First method. The denominators of four inner fractions are 22 ,, xyxyyx , and 2x . 
Their LCD is 22 yx . Multiply numerator and denominator of complex fraction by this 
LCD: 

2

2

22

2

22

22

2

22

22
22

2
22

45
23

45

23

45

23

yx
xyy

x
yx

xy
yx

xy
yx

yx
yx

xxy
yx

xyyx
yx

−
+

=
−

+
=









−









+

. 
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Second method. 

Simplify the numerator: 
yx
x

xyyx 22

2323 +
=+ . 

Simplify the denominator: 22

2

22

4545
yx

yx
xxy

−
=− . 

Divide numerator by denominator:  

222

22

222

2

2 45
23

45
)23(

45
234523

yx
xyy

yx
yx

yx
yx

yx
x

yx
yx

yx
x

−
+

=
−
+

=
−

⋅
+

=
−

÷
+

. 

Example 2.17. Simplify   

2
37

2
56

−
+

−
−

n

n . 

Solution. 
First method. The LCD of inner denominators is n – 2. Multiply top and bottom of the 
complex fraction by n – 2: 

117
176

3147
5126

3)2(7
5)2(6

2
37)2(

2
56)2(

2
37

2
56

−
−

=
+−
−−

=
+−
−−

=








−
+−









−
−−

=

−
+

−
−

n
n

n
n

n
n

n
n

n
n

n

n . 

Second method. 

Simplify the numerator: 
2
176

2
5)2(6

2
56

−
−

=
−

−−
=

−
−

n
n

n
n

n
. 

Simplify the denominator: 
2
117

2
3147

2
3)2(7

2
37

−
−

=
−

+−
=

−
+−

=
−

+
n
n

n
n

n
n

n
. 

Divide numerator by denominator: 

                
117
176

117
2

2
176

2
117

2
176

−
−

=
−
−

⋅
−
−

=
−
−

÷
−
−

n
n

n
n

n
n

n
n

n
n

. 
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Exercises 2 
 
In exercises 2.1 – 2.8, simplify given expression. 
   

2.1.  
218 12
15

y y
y
−  

 
2.2.  

224 16
14
z z

z
−  

 

2.3.  
215 25

10 30
z z
z
+
−

 
 

2.4.  
212 18

9 15
y y
y
+
−

 

 

2.5.  
2

2

4 8 60
6 6 72

x x
x x
+ −
+ −

 
 

2.6.  
2

2

6 24 72
8 40 48

x x
x x
+ −
+ −

 

 

2.7.  
2

2

2 6 56
7 49
x x

x x
− −
−

 
 

2.8.  
2

2

3 3 36
4 16
x x

x x
− −
−

 

 
2.9.  Add and simplify 

      6 4
3 2 3 2

x
x x

+
+ +

 

 2.10.  Add and simplify 

        10 2
5 1 5 1

x
x x

+
+ +

 

 
2.11.  Subtract 

        4 3 3
12 18
m m+ −

−  

 2.12.  Subtract 

         2 5 4
10 12
n n+ −

−  

 
2.13.  Add 

        5 7
8 12x y

+  

 2.14.  Add 

        7 3
6 8x y

+  

 
2.15.Combine 

        2

4 5 7
15 3 6x x

− +  

 2.16.Combine 

        2

5 7 3
12 6 8x x

− +  

 
2.17.  Subtract 

        3 5
4 7 7 4x x

−
− −

 

 2.18.  Subtract 

        6 7
3 4 4 3x x

−
− −

 

 
2.19.  Subtract 

        2 2
4 4

a a
a a
− +

−
− −

 

 2.20.  Subtract 

        4 4
5 5

b b
b b
− +

−
− −
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2.21.  Add 

         6 3
2x
+

−
 

  
2.22.  Add 

          
8 2

4x
+

−
 

 
2.23.  Add and simplify 

         2

2 3 1
5 25 25

x x
x x
− +

+
+ −

 

 2.24.  Add and simplify 

          2

4 2 3
16 4 16

x x
x x

+ −
+

− +
 

 
2.25.  Subtract and simplify 

   2 2

3 1
7 10 5 6x x x x

−
+ + + +

 

 2.26.  Subtract and simplify 

2 2

6 5
4 5 3 4x x x x

−
+ − + −

 

 
2.27.  Combine and simplify 

2

5 3 3
2 8 4 2b b b b

+ −
+ − + −

 

 2.28.  Combine and simplify 

2

7 4 4
2 15 3 5c c c c

− +
+ − − +

 

 

In exercises 2.29 – 2.38, simplify complex fractions. 
 
2.29. 

        3

2

5
12

15
16

c d

cd

 

 2.30. 

        6

3 2

18
5

6
25

m n

m n

 

 
2.31. 

        

2 3
5 4
7 1

10 2

−

+
 

 2.32. 

        

5 7
6 8
3 2
4 3

+

−
 

 
2.33. 

        
2

2 2

4 3

6 2
xy xy

x y y

+

−
 

 2.34. 

        
2

2 2

6 5

4 3
xy x y

x xy

−

+
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2.35. 

        
74

3
56

3

k

k

−
−

+
−

 

 2.36. 

        
85

4
67

4

m

m

+
−

−
−

 

 
2.37. 

        2

2

1 21

6 81

x x

x x

+ −

+ +

 

 2.38. 

        2

2

2 31

5 61

x x

x x

+ −

+ +
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Session 3 
 

Rational Equations 
 
In previous session we worked with rational expressions. In this session we will work 
with rational equations. These two types of mathematical objects may look similar, but 
they are different. Namely, they have different final goal. For expressions, we modify or 
simplify them. In other words, we change the appearance of expressions. For equations, 
we solve them. It means that we want to find numerical values of variables for which 
equations become true statements. Such values are called solutions or roots of equations. 
It is easy to distinguish expression and equations: expressions do not contain equal sign, 
while equations do. For example, 2x + 1 is an expression, and 2x + 1 = 5 is an equation. 
In other words, expressions contain only one part, while equations contain two parts or 
sides: left side and right side, connected with the equal sign. We may also say that an 
equation is the equality of two expressions. 
To some extent, the technique to operate with equations and expressions is similar: each 
side of an equation is an expression, and we can manage them as any expression: open 
(remove) parentheses, combine like terms and so on. However, there are some operations 
that can be done on equations only. Among these operations are moving terms from one 
side of equation to another (with changing the sign of terms), dividing both sides by the 
same expression or number. In particular, we can always write an equation in the form 
when its right side equals to zero (by moving all terms to the left). 
In this session we consider rational (fractional) equations. Both sides of such equations 

are sums or differences of rational expressions. Here is an example: 5 3 7
4 4 6

x x+ −
= − . 

Below we solve this equation by reducing it to an equation with no fractions. As with 
expressions, we will use LCD to do this. However, the main technical difference here is 
that in expression we must keep LCD (and write it in the denominator of the answer), 
while in an equation we can drop LCD. 
The reason to drop denominator is this. If we keep it (as we do with expressions), then 
both sides of the equation become fractions with the same denominator (which is LCD). 
If two fractions are equal and have the same denominator, then their numerators are also 
equal, so we equate numerators and drop denominators. 

Example 3.1. Solve the equation 5 3 7
4 4 6

x x+ −
= − . 

Solution. The first step is the same as for expressions: find LCD. For the denominators 4 
and 6, LCD = 12 (notice that the number 24 is a common denominator but not the least). 
The second step is also the same: find complements for each denominator to LCD. For 
the denominator 4, the complement is 3, and for the denominator 6, the complement is 2. 
The third step is again the same: multiply each numerator by corresponding complement. 
But now, contrary to expressions, we may drop all denominators! As a result, the 
original equations becomes the equation with no fractions: 
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3( 5) 3 3 2( 7)x x+ = ⋅ − − . 
Now it is easy to solve it: 

    3 3 5 3 3 2 2 7 3 15 9 2 14 3 15 23 2x x x x x x+ ⋅ = ⋅ − + ⋅ ⇒ + = − + ⇒ + = − . 
From this point we collect all terms with the variable x on the left side, and all other 
terms (numbers) on the right side: 

 83 2 23 15 5 8
5

x x x x+ = − ⇒ = ⇒ = .  

Note. When collecting terms on one side of the equation, we can freely move terms from 
one side to another and simultaneously change their sign to opposite. This is equivalent to 
adding or subtracting terms to/from both sides of the equation. 

Next we consider equations in which denominators contain a variable. The technique 
here is the same. The only additional (and very important) thing is that we need to check 
that the final answer does not cause any denominator of the original equation to be zero. 
If this happens, we must reject such a solution. 

Example 3.2. Solve the equation 5 7 3
6 6 14x x

+ = . 

Solution. For the denominators 6x, 6 and 14x, LCD = 42x. Next we find complements for 
each denominator to LCD: 

  For 6x, the complement is 7. 
  For 6, the complement is 7x. 
  For 14x, the complement is 3. 

We multiply each numerator by corresponding complement and drop LCD. The equation 
becomes free of fractions: 

5 7 7 7 3 3x⋅ + ⋅ = ⋅  
Now we solve it: 

        2635 49 9 49 9 35 49 26
49

x x x x+ = ⇒ = − ⇒ = − ⇒ = − . 

None of the denominators of the original equation is zero for this value of x, so this is the 
final answer. 
Example 3.3. Solve the equation 3 5

4 5 5
x

x x
+ =

− −
. 

Solution. For the denominators 4 and x – 5, LCD = 4(x – 5). 
Complements for denominators to LCD are: 

  For 4, the complement is x – 5. 
  For x – 5, the complement is 4. 

The equation becomes 
3( 5) 5 4 4x x− + ⋅ = . 
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We solve it: 
   3 15 20 4 3 5 4 3 4 5x x x x x x− + = ⇒ + = ⇒ − = − , 
   5 5x x− = − ⇒ = . 

For x = 5, the denominator x – 5 becomes zero, so we reject solution x = 5. Because this 
is the only possible solution, the original equation does not have solutions at all. 

Example 3.4. Solve the equation 2

3 4 3
2 16 2 8

x
x x

+ =
− −

. 
Solution.  
1) To find LCD, factor the second and third denominators. 

Second denominator: 
   2 16 ( 4)( 4)x x x− = − + . 

Third denominator: 
2 8 2( 4)x x− = − . 

LCD of all three denominators is  2( 4)( 4)x x− + . 

2) Find complement for each denominator to LCD: 

For 2, the complement is 2( 4)( 4) 16x x x− + = − . 
For 2 16 ( 4)( 4)x x x− = − + , the complement is 2. 
For  2 8 2( 4)x x− = − , the complement is  4x + . 

3) Multiply each numerator of the original equation by corresponding complement, and 
drop denominator. The equation becomes 

23( 16) 4 2 3 ( 4)x x x− + ⋅ = + . 
4) Solve the above equation: 

2 2 2 23 3 16 4 2 3 3 4 3 48 8 3 12x x x x x x− ⋅ + ⋅ = + ⋅ ⇒ − + = + , 

2 2 40 103 3 12 48 8 12 40
12 3

x x x x x− − = − ⇒ − = ⇒ = − = − . 

5) None of the denominators of the original equation is zero if 10
3

x = − , so this is the 

solution. 

Example 3.5. Solve the equation 2

1 18
3 2 6

x x
x x x x

−
+ =

− + − −
. 

Solution.  
1) To find LCD, factor the third denominator. First denominator x – 3 and second  

x + 2, may give a hint on how to factor the third denominator and get LCD: 
2LCD 6 ( 3)( 2)x x x x= − − = − + . 

2) Find complement for each denominator to LCD: 
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For x – 3, the complement is x + 2. 
For x + 2, the complement is x – 3. 

For 2 6x x− −  the complement is 1. 
3) Multiply each numerator of the original equation by corresponding complement, and 

drop denominator. The equation becomes 

( 2) 1 ( 3) 18x x x x+ + ⋅ − = − . 
4) Solve the above equation: 

       2 22 3 18 3 3 18x x x x x x x+ + − = − ⇒ + − = − , 
2 23 3 18 0 4 21 0x x x x x+ − − + = ⇒ + − = . 

 The last equation is the quadratic equation. We can solve it by factoring: 

    ( 7)( 3) 0 7x x x+ − = ⇒ = −  and 3x = . 
Note. Later in session 8 we consider quadratic equations in more details. 
5) Let’s check solutions of the above quadratic equation (numbers –7 and 3) with the 

original equation. As we mentioned above, we need to check whether these numbers 
make any of denominators zero. Number  –7 does not make, but 3 does, so we must 
reject number 3. 
Final answer: original equation has only one solution x = –7.  

Example 3.6. Solve the equation 2

3 2 6
4 20 3 2 15n n n n

− =
+ − + −

. 
Solution.  
1) To find LCD, first we factor denominators that are factorable. It is possible to factor 

first and third denominators: 

4 20 4( 5)n n+ = + and  2 2 15 ( 5)( 3)n n n n+ − = + − . 

2) Now we construct LCD, by multiplying all of the above factors (taking common 
factor n + 5 only one time): 

LCD 4( 5)( 3)n n= + − . 
3) Find complement for each denominator to LCD: 

For 4 20 4( 5)n n+ = + , the complement is n – 3. 
For  n – 3, the complement is 4( 5) 4 20n n+ = + . 

For 2 2 15 ( 5)( 3)n n n n+ − = + − , the complement is 4. 
4) Multiply each numerator of the original equation by corresponding complement, and 

drop denominator. The equation becomes 

3( 3) 2(4 20) 6 4n n− − + = ⋅ . 
 

5) Solve the above equation: 
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3 9 8 40 24 5 49 24 5 24 49n n n n− − − = ⇒ − − = ⇒ − = + , 
735 73
5

n n− = ⇒ = − . 
6) None of the denominators of original equation is zero for this value of n; so, it is the 

solution. 

In conclusion of this session consider an equation that has the form of equality of two 
fractions. Such an equation is called the proportion. Of course, it can be solved in the 
same way as before, using LCD. Another way is to use the important property of 
proportion: cross-multiplication rule. 
This rule means the following: 

if 
a c
b d
=  then  ad bc= . 

In words: product along one diagonal (a times d) is equal to the product along another 
diagonal (b times c). 

Example 3.7. Solve the equation 5 2
2 4 3 5x x

=
− +

. 

Solution. The equation is written in the form of proportion, and we can use cross-
multiplication rule. We have 

5(3 5) 2(2 4)x x+ = − , 
15 25 4 8 15 4 8 25 11 33 3x x x x x x+ = − ⇒ − = − − ⇒ = − ⇒ = − . 

None of the denominators of the original equation is zero for this value of x, so the final 
answer is x = – 3. 
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Exercises 3 
In exercises 3.1 – 3.14,  solve given equations. 
 

3.1.  2 5 3
8 8 6

x x− +
= −  

 
3.2.  2 7 5

6 6 9
x x+ −

= −  

 

3.3.  2 3 5
4 4 6x x

+ =  
 

3.4.  7 5 3
8 12 8x x

+ =  

 

3.5.  
8 33

4 4x x
− =

− −
 

 
3.6.  

9 54
6 6x x
− =

− −
 

 

3.7.  2

4 7 4
5 9 5 15

x
x x

+ =
− −

 
 

3.8.  2

5 6 5
7 4 7 14

x
x x

+ =
− +

 

 
3.9.   

    2

1 40
4 5 20

x x
x x x x

−
+ =

− + + −
 

 3.10.   

    2

1 30
6 2 8 12

x x
x x x x

−
+ =

− − − +
 

 
3.11. 

2

9 4 7
5 15 2 6m m m m

− =
+ − + −

 

 3.12. 

2

8 5 7
3 12 3 12m m m m

− =
+ − + −

 

 

3.13.  
2 3

7 9 4 6x x
=

− +
 

 
3.14.  

4 7
5 3 8 3x x

=
+ −

 

 
 

Challenge Problems 
 

Hint: m grams of a% solution contains 
100
ma  grams of pure substance. 

3.15.  A solution of antifreeze contains 20% alcohol. How much pure alcohol must be 
added to 6 gallons of the solution to make a 40% solution? 

 
3.16.  How many gallons of a 15% sugar solution must be mixed with 6 gallons of a 40% 

sugar solution to make a 30% sugar solution? 
 
3.17.  A chemist mixed 4 liters of 18% acid solution with 8 liters of 45% acid solution. 

What percent of acid is in the mixture? 
 
3.18.  Nick mixed 9 oz of apple drink with  8 oz of 48% carrot drink. Find the percent of 

pure apple juice in apple drink if the mixture contained 30% fruit juice. 
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Session 4 
 

Radicals and Fractional Exponents 
 
Definition of Radicals 

Suppose we want to construct a box in the shape of a cube having the volume of 8 3cm . 
The problem is to find its size (i.e. the length of its edges). If we denote this size by x, 
then the volume is 3x . So, to find x, we need to solve the equation 83 =x . It is not 
difficult to see that x = 2 cm. Equations like 83 =x  may appear in different problems, and 
it would be a good idea to invent a special notation for their solutions. Let’s consider 
more general equation axn = , in which a and n are given, and we need to find x. The 
following symbol was invented for the solution of this equation: n . This symbol is 
called the radical or n-th root or root of the n-th degree. Using it, the solution of the 

equation axn =  can be written as n ax = , so ( )n
n a a= . We may say that to find x, we 

take thn  root of a. Number n is called the degree or order of the root.  For example, we 
can read 3 8  as “root of the 3rd order of 8”, or “3rd root of 8”, or “cube root of 8” (based 
on the above example with the volume of a cube). 

The case when degree  n = 2 is of special interest as it appears most often. For example, 
assume that we want to construct a square with the area of 9, and we are interested in its 
side. If we denote this side by x, then the area is 2x . To find x, we need to solve the 
equation 92 =x . And the solution is 392 ==x . It was the agreement to drop number 2 
in the radical 2 , and we simply write . So, 39 = . We read the expression 9  as 
“radical 9” or “square root of 9” (based on the example with the area of a square). 

Note. Formally speaking, the equation 92 =x  has two solutions: 3=x  and 3−=x  since 
the square of both numbers is 9. However, the radical  always means a nonnegative 

number, so 39 = , not –3. Both solutions of the equation 92 =x  can be written as 
39 ==x  and .39 −=−=x  Similar, if a is nonnegative number, by n a  we always 

mean a nonnegative number.  

Now, let’s give the formal definition of the thn  root. 

Definition. Let a be a nonnegative number, and n be a positive integer. Then the thn  root 
of a, denoted as n a , is a nonnegative solution of the equation axn = . 

As we mentioned above, this definition says that ( )n
n a a= . 

Note. We defined n a  only for nonnegative a. But what if a is a negative? In this case, 
we can also define n a  but only if degree n is an odd number. For example, 283 −=− , 
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since 8)2( 3 −=− . If n is even and a is negative, then thn  root n a  does not exist. For 
example, 9−  does not exist because there is no (real) number x such that 92 −=x . 

Note. You may think that even for some positive numbers, thn  root does not exist. What 
would you say about 8 ? It seems that we cannot find a number x such that 82 =x . 
However, this is true only if we think about integers. Actually, number 8  exists, but it 
is neither an integer nor a fraction (rational number). The existence of such a number is 
clearly seeing if we want to find a side for a square with the area of 8. Numbers like 8  
are called irrational numbers. If we want to find this number as a decimal, we can get 
only its approximation with certain number of digits after decimal point. For example, 
using a calculator, we can find that 8.28 ≈  or 83.28 ≈  and so on. 

If square root of a number is integer, we call such number a perfect square. For 
example, 9 is a perfect square, but 8 is not. To get a list of all perfect squares, we can take 
a list of integers 0, 1, 2, 3, …., and square these numbers. We will get the list of perfect 
squares:  0, 1, 4, 9, …  
 
Properties of Radicals 

As with exponents, we can multiply and divide radicals of the same order very easily. We 
will assume in this session that a and b are any nonnegative numbers, and n is any 
positive integer. 

Product Rule:     nnn abba =× . 

So, to multiply radicals of the same order, just combine them in one single radical. 

Example 4.1. Simplify 2 18× . 

Solution.  2 18 2 18 36 6.× = × = =  

Of course, we can re-write the product rule from right to left: nnn baab ×= . In this 
way we may split one radical into a product of two. We will see below that this property 
may help in simplification of more complicated radicals. 

Quotient Rule:   n
n

n

b
a

b
a
= . 

As for product rule, we can combine two radicals of the same order in one. 

Example 4.2. Simplify 50
2

. 

Solution.  50 50 25 5.
22

= = =  

Below we will show how to combine radicals with different orders. 
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Power Rule: ( )m n mn a a=  for positive integer m. 

In particular, ( )n n nn a a a= = . 

Example 4.3. Simplify ( )4
2 . 

Solution.  ( ) ( )
4 42 2 16 4.= = =  

 

Exponents with Fractional Powers 

So far we multiply and divide radicals of the same order only. But what if we need to 
operate with different orders?  For example, is it possible somehow to represent the 
product 3 22 ×  as one single radical? Here we develop the technique to do this. The 
idea is to set up connection between radicals and exponents. In this way, we could apply 
product, quotient and power rules of exponents to radicals. 

Let’s try to represent radical n a  as exponent with the base a and some power m: 
mn aa = . If we raise this equation (meaning both sides of the equation) into thn  power, 

we will have  

  ( ) ( ) nmnmnn aaa ⋅== . But  ( ) 1aaa
nn == . Therefore, nmaa ⋅=1 . 

From here we can equate powers: 1 = mn, and 
n

m 1
= . Now , the expression mn aa =  can 

be written as nn aa
1

= . We’ve got the representation of thn  root as an exponent with the 

fractional power 
n
1 !  We use this representation as definition. 

Definition. Let a be any nonnegative number, and n be any positive integer. Then 

    nn aa =
1

. 

For example, 
1
2a a= . 

We can easily generalize this definition to exponents with arbitrary fractional power  
n
m . 

To do this, just raise the equation nn aa =
1

 into thm power and use power rules for 
exponents and radicals: 

( )
1 m mm n mnn na a a a

 
= ⇒ = 

 
. We come up to the following 
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Definition. Let a be any non-negative number, and 
n
m  be any positive fraction. Then 

n mn
m

aa = . 

Note. Be careful to put m and n in the radical in correct places: numerator m goes into the 
power of a, and n goes into degree of radical. 
Representation of radicals as exponents with fractional powers extends our ability to 
manipulate with radicals. Here is an example on how it may help to simplify radical 
expressions of different orders. 
Example 4.4. Simplify the expression 32 2×  (combine into one radical). 

Solution.  
1 1 1 3 2 51

6 53 63 2 3 6 622 2 2 2 2 2 2 2 32
+

+
× = × = = = = = . 

 
In session 1 on integer exponents, we considered exponents with negative integer powers 
and in this session we dealt with positive fractional exponents. Now we can combine both 
together using the corresponding formulas 

1k
ka

a
− =   and  n mn

m

aa = . 

From here we get connection between negative fractional exponents and radicals: 

  1 1m
n

m n m
n

a
aa

−
= = . 

Example 4.5. Simplify the expression 
5

10 7

3
3

. 

Solution.  

1
1 7 2 7 5 15 5
5 10 10 10 2

7 110 7
10 2

3 3 1 13 3 3 3
33 33

−
− − −

= = = = = = = . 

Simplification of Square Roots 

Here we focus on square roots only, but similar technique can also be used for general 
exponents. The simplification means to leave a smallest possible expression inside the 
radicals. 

1. Simplification of numerical expression a  (a is a number). 

The idea is to split number a as a product of two factors, one of which is a perfect square, 
and then use the product rule. 

Example 4.6. Simplify 12 . 

Solution. We split 12 as  4 3× . Then 12 4 3 4 3 2 3= × = × = . 
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Note. We can split 12 in different way: 12 2 6= × . However, this way will not lead to 
simplification since both factors, 2 and 6, are not perfect squares. 

Example 4.7. Simplify 48 . 

Solution. It is possible to split number 48 as a product of two factors, one of which is a 
perfect square, in two ways: 12448 ×=  and 31648 ×= . If we use the first way, we need 
to continue splitting 12 as 34× . So, even the first way works, it’s better to go the second 
way. In general, try to split given number in such a way that a factor which is not a 
perfect square can not be split further to contain another perfect square. So, we choose 
the factorization 31648 ×= . Using this, we get 3431648 =×= . 

2. Simplification of nx for even n. 

We can represent square root as exponent with power 1
2

, and then use power rules: 

( )
1

22
n

n nx x x= = . 

We come up to the following method how to simplify square root from exponent with 
even power: divide power by 2 and remove radical. 

Example 4.8. Simplify 16x . 

Solution. According to the above rule, 
16

16 82x x x= = . 

Note. Do not be mislead that in the above example power 16 is a perfect square, and you 
may think to take square root of 16. Do not take square root from the power, instead, 
divide power by two. 

3. Simplification of nx for odd n. 

Any odd number can be written as 2m + 1, where m is an integer, so we can write nx  as 
2 1mx + . To simplify this radical, we represent 2 1mx +  as 2mx x⋅  (separate even power and 

single x). Then 
2 1 2 2m m m mx x x x x x x+ = ⋅ = ⋅ = . 

We come up to the following rule how to simplify square root from exponent with odd 
power: detach (separate) variable x from 2 1mx + , leave it inside the radical, and take square 
root from 2mx  which is mx . 

Example 4.9. Simplify 25x . 

Solution. Using the above rule, 25 24 24 12x x x x x x x= ⋅ = ⋅ = . 

As you can see, even after simplification, we still have radical. Similar to the above note 
for even power, do not take square root from 25. 
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In conclusion consider an example that combines all three types of radicals: numbers, and 
exponents with variables that have even and odd powers. 

Example 4.10. Simplify the radical 12 74 150x y⋅ . 

Solution. 
1st way. (Process each item separately). Inside the radical, we have three items: number 
150, and two exponents: 12x  and 7y . We can process each of them separately: 

65625150 =×= , 

   612 xx = , 

yyyyy 367 =⋅= . 

From here, 12 7 12 7 6 3 6 34 150 4 150 4 5 6 20 6x y x y x y y x y y⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ = . 

2nd way. (Process the entire expression). 

12 7 12 6 6 3 6 34 150 4 25 6 4 5 6 20 6x y x y y x y y x y y⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ = . 
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Exercises 4 
 
In exercises 4.1 and 4.2,  evaluate given expressions without using calculator. 
 
4.1. a)  2 8×  

b)  27
3

 

c)  ( )4
5  

d)  
1
216  

e)  
1
38

−
 

f)  
3
225  

g)  
2
327

−
 

h)  3 64 4×  

 4.2. a)  3 27×  

        b)  80
5

 

        c)  ( )4
6  

         d)  
1
327  

          e)  
1
236

−
 

          f)  
2
38  

          g)  
3
24

−
 

          h)  6 1281 81×  
 
In exercises 4.3 and 4.4, combine into one radical and simplify. 
 

4.3.  
7

914

a
a

 
 

4.4.  
6 5

3

b
b

 

 
In exercises 4.5 –  4.14, simplify given expressions. 
4.5.  50   4.6.  54  
 
4.7.  32   4.8.  72  
 
4.9.  a)  8x  

        b)  7x  

 4.10.  a)  6x  

          b)  5x  

 

4.11.  a)  3636y  

b)  99y  

 4.12.  a)  4949z  

          b)  6464z  
   

4.13.  10 5 163 75x y z⋅   4.14.  14 9 135 75x y z⋅  

 

33



 
Session 5: Multiplication, Addition and Subtraction Radicals 

Session 5 
 

Multiplication, Addition and Subtraction Radicals 
 
Multiplication Radicals 
 
In previous session we considered product rule for radicals of the same degree n: 

nnn abba =× . This rule allows to combine a product of two (or more) radicals in one 
radical. Here we consider more examples for multiplication of radicals. We restrict 
ourselves to square roots only. Also we assume that all letters represent nonnegative 
numbers. 

Let’s recall that a a a⋅ = . This simple formula allows to avoid tedious calculations in 
some cases: if you notice inside the radical a product of a number by itself, do not 
multiply, just take this number out of radical. 

Example 5.1. Multiply and simplify 23 46⋅ . 

Solution. One way is to directly multiply numbers inside radicals: 

    23 46 23 46 1058⋅ = ⋅ = . 

Now you need to simplify 1058 . Even it is possible, this is not the best way: it may be 
not clear what to do with 1058. Notice, however, that 46 23 2= ⋅ , and it is much easier to 
process like this: 
    23 46 23 23 2 23 23 2 23 2⋅ = ⋅ ⋅ = ⋅ ⋅ = . 

Example 5.2. Multiply and simplify ( )( )5 3 45 7 3 14x y x y  

Solution. We multiply separately numbers outside the radicals (5 times 3) and 
expressions inside radicals (we also represent 14 as 7 2⋅ ): 

    ( )( ) ( ) ( ) ( )5 3 4 5 3 4

8 4 4 2 4 2

5 7 3 14 5 3 7 7 2

15 7 7 2 15 7 2 105 2

x y x y x y x y

x yy x y y x y y

= ⋅ ⋅ ⋅

= ⋅ ⋅ = ⋅ =
 

 
Addition and Subtraction Radicals 
 
Contrary to multiplication rule a b ab⋅ = , there is no so simply rule to add or 
subtract radical: in general, a b a b+ ≠ + . Here is an example: 

 9 16 3 4 7+ = + = , but 9 16 25 5+ = = . 
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We can add or subtract radicals directly only if inside radicals we have exactly the same 
expressions. This procedure is similar to combining like terms. 

Example 5.3. Add 5 7 3 7+ . 

Solution. Similar to combining like terms: 5 3 8x x x+ = , we have 5 7 3 7 8 7+ = . 

Example 5.4. Simplify the expression 2 3 5 4 2 5x y z y x z+ − − . 

Solution. This expression contains four terms. As we indicated above, we can combine 
only those terms that have the same expressions inside radicals. We can combine first 
term with third, and second with fourth: 

( ) ( )2 3 5 4 2 5 4 2 3 5x y z y x z x y x z+ − − = − + − . 

Note. As you can see, the final answer contains two radicals. We cannot combine them in 
one radical because they have different expressions inside, so it is not possible to process 
further. 
There are cases when even the original expression contains different radicals, it is 
possible to combine them. It can be done by simplifying of individual radicals before 
combining. 

Example 5.5. Simplify the expression 6 8 5 27 4 32 2 75+ − − . 

Solution. There are four radicals here and all of them are different, so we cannot combine 
them initially. Let’s simplify them first (we will process the entire expression): 

6 8 5 27 4 32 2 75 6 4 2 5 9 3 4 16 2 2 25 3

6 2 2 5 3 3 4 4 2 2 5 3 12 2 15 3 16 2 10 3.

+ − − = ⋅ + ⋅ − ⋅ − ⋅

= ⋅ + ⋅ − ⋅ − ⋅ = + − −
 

Now, the first and the third terms have the same 2 , and the second and fourth – the 
same 3 . Therefore, we can combine them: 

( ) ( )12 2 15 3 16 2 10 3 12 16 2 15 10 3 4 2 5 3+ − − = − + − = − + . 

It is not possible to combine further. 
 

 Mixed Problems 
 
Example 5.6. Multiply and simplify ( )30415253 − . 

Solution. We can open parentheses using the usual distributive property: 

( ) 304531525330415253 ⋅−⋅=− . 

Next, we can process each term separately: 

330356355615561552315253 =⋅=⋅⋅=⋅=⋅⋅⋅=⋅ , 
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660651265512305123054330453 =⋅=⋅⋅=⋅=⋅⋅=⋅ . 

Finally, we subtract the last expression from the previous and get the answer 

( ) 66033030415253 −=− . 

Example 5.7. Multiply and simplify ( )( )635423 +− . 

Solution. As in Example 5.6, we start with distributive property: 

( )( ) 643546233523635423 ⋅−⋅−⋅+⋅=+− . 

Again, we can process each term separately (if you want, you may process them 
simultaneously): 

3 2 5 3 3 5 2 3 15 6⋅ = ⋅ ⋅ = , 

3 2 6 3 2 6 3 2 2 3 3 2 3 6 3⋅ = ⋅ = ⋅ ⋅ = ⋅ = . 

320354 =⋅ . 

From here, 

( )( ) 6432036615635423 −−+=+−  

= (15 4) 6 (6 20) 3 11 6 14 3= − + − = − . 

Below, we consider an example that can be easily solved using the following simple but 
useful formula, that we already mentioned in session 2 about rational expressions (see 
note after example 2.11 from session 2): 

      22))(( bababa −=+− . 

Example 5.8. Multiply and simplify ( )( )73527352 +− . 

Solution. We can solve this problem in the same way as in Example 5.7, using the 
distributive property. Notice, however, that in both pairs of parentheses we have 
difference and sum of the same expressions 2 5  and 3 7 . Therefore, we can use the 
above formula with 52=a  and 73=b . We have 

  ( ) ( ) 20545252
2222 =⋅=⋅==a , 

( ) ( ) 63797373
2222 =⋅=⋅==b . 

Now, subtract and get the answer 

( )( )2 5 3 7 2 5 3 7 20 63 43− + = − = − . 
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In the following example we will solve a problem similar to Example 5.8 in more general 
form. 

Example 5.9. Multiply and simplify ( )( )yxnmyxnm +− . 

Solution.  

   
( )( ) ( ) ( )

( ) ( )

2 2

2 22 2 2 2 .

m n x y m n x y m n x y

m n x y m n x y

− + = −

= − = −
 

Note. The expressions yxnm −  and yxnm +  are called conjugate to each other. 
Example 5.9 shows that the product of conjugate expressions does not contain radicals. In 
the next session we will use this property to “rationalize” denominators. 
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Exercises 5 
 

In exercises 5.1 – 5.6,  multiply and simplify given expressions. 
 
5.1. 2018 2018⋅   5.2. 2019 2019⋅  
 
5.3.  47 94⋅   5.4.  26 78⋅  
 
5.5.  3 2 74 24 6 72a b a b⋅     5.6.  9 6 32 21 7 42u v u v⋅  
 
In exercises 5.7 and 5.8, add given expressions. 
 
5.7.  3 6 8 6+   5.8.  7 5 2 5+  
 
In exercises 5.9 – 5.12, simplify given expressions. 
 
5.9. 

3 6 2 7 4 7 5 6m n k k m n− + +  

 5.10. 

7 3 2 6 4 6 5 3p q r r p q− + +  
 
5.11. 

8 24 4 20 2 54 6 45+ − −  

 5.12. 

6 63 7 48 5 28 2 108− + −  
 
In exercises 5.13 – 5.22, multiply and simplify given expressions. 
 
5.13.  ( )5 7 4 63 3 7−   5.14.  ( )4 3 6 3 2 12−  

 
5.15.  ( )( )3 6 2 3 3 6 2 3− +   5.16.  ( )( )4 7 3 5 4 7 3 5+ −  

 
5.17.  ( )( )5 5 2 2 5 5 2 2+ −   5.18.  ( )( )6 6 3 3 6 6 3 3− +  

 
5.19.  ( )2

3 7 2 5+   5.20.  ( )2
2 6 4 3+  

 
5.21.  ( )2

3 7 2 5−   5.22.  ( )2
2 6 4 3−  
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Session 6 
 

Rationalizing the Denominators and Solving Radical 
Equations 

 
Rationalizing the Denominators 
 
Similar to product rule, we can use the following quotient rule to divide radicals (again, 

without loss of generality, we consider square roots only): a a
bb

= . As with product 

rule, this rule allows to replace two “umbrellas” (two radicals) for a and b, with one 

“umbrella” that covers both. For example, 10 10 5
6 36

= = . In some cases, it is 

desirable to modify expressions like this further to get rid of radical in the denominator. 
The procedure to do this is called rationalization the denominator. 
The general idea to rationalize the denominator is to use the main property of fraction: if 
we multiply both sides of a fraction by the same nonnegative expression, the value of the 
fraction remains the same (even if the fraction will look differently). We consider here 
two types of fractions: one with a single term with the radical in denominator, and 
another with two terms (where at least one of them contains radical). 

Fractions with a single radical term in denominator. 

Such fractions have the following general form exp r
m n

, where expr means some 

expression. To rationalize the denominator here, we multiply both numerator and 
denominator by radical n  located in the denominator, using the property n n n⋅ = . 
Then we will get a fraction with no radical in the denominator (so, we rationalize the 
denominator): 

exp exp expr r n r n
mnm n m n n

= = . 

Example 6.1. Rationalize the denominator: 5
3

. 

Solution. We have 5 5
3 3
= . To continue (to get rid of 3  in the denominator), we 

multiply both sides by this 3 : 

    5 5 3 15
33 3 3

⋅
= =

⋅
. 
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Example 6.2. Rationalize the denominator: 6
5 8

. 

Solution. Following the same method, we multiply top and bottom by 8  (it is not 
needed to multiply also by 5): 

      6 6 8 6 8 6 4 2 6 2 2 3 2
5 8 5 8 5 8 105 8 5 8 8

⋅ ⋅ ⋅
= = = = =

⋅ ⋅ ⋅⋅
. 

Here we also simplified 8 . If you compare initial fraction 6
5 8

 with the final answer 

3 2
10

, you see that they look completely different. However they have exactly the same 

numerical values (you can check this using calculator). 
 
Fractions with two terms in denominator. 
 
Such fractions have the following general form 

   exp r
m n x y−

   or   exp r
m n x y+

, 

where expr, as before, means some expression. The denominators in these two fractions 
are conjugate to each other. As we already saw in example 5.9 from the previous session, 
their product is the rational expression (i.e. expression with no radicals): 

( )( ) 2 2m n x y m n x y m n x y− + = −  

This property allows to rationalize denominators: multiply both sides of given fraction by 
expression which is conjugate to the denominator. 

Note. If you try to multiply both sides of the above fractions only by one of the radicals, 
you will still have radicals in denominator. So, do not confuse two cases: single term in 
the denominator (when we multiply both sides of the fraction by radical in the 
denominator) and two terms (when we multiply both sides by expression conjugate to the 
entire denominator). 

Example 6.3. Rationalize the denominator: 1
2 3−

. 

Solution. Here we have two terms in the denominator: 2 and 3 . Therefore, we multiply 
both sides of the fraction by the expression conjugate to denominator. This expression is 
2 3+ .  

  
( )

( )( ) ( )22

1 2 31 2 3 2 3 2 3
4 32 3 2 3 2 3 2 3

⋅ + + +
= = = = +

−− − + −
. 

40



 
Session 6: Rationalizing the Denominators and Solving Radical Equations 

Notice that we’ve came up to a pretty nice equality 1 2 3
2 3

= +
−

. 

Example 6.4. Rationalize the denominator: 
yx

x
23
3

+
− . 

Solution. The expression conjugate to the denominator is 3 2x y− . We multiply both 
sides of the fraction by it: 

 

( )( )
( )( ) ( ) ( )2 22 2

3 3 2 3 2 3 3 3 23
3 2 3 2 3 2 3 2

3 2 9 6
.

9 4

x x y x x x y x yx
x y x y x y x y

x xy x y
x y

− − ⋅ − ⋅ − ⋅ + ⋅−
= =

+ + − −

− − +
=

−

 

Solving Radical Equations 
 
We consider here equations that contain radicals. They can be transformed to equations 
with no radicals by making two simple steps: isolate radical (i.e. leave it along on one 
side of the equation), and then square both sides of the equation. 
Note. When you square both sides, it is possible to get answers that are not roots of the 
original equation. Here is simple example: 1 2x + = . Obvious, this equation has only one 
solution 1x = . Now, let’s square both sides of this equation: ( )2 21 2x + = , or  

( )( )2 22 1 4 2 3 0 1 3 0x x x x x x+ + = ⇒ + − = ⇒ − + = . 

The last equation has two solutions: 1x =  and 3x = − . However, the value 3x = −  is not 
a root of the original equation 1 2x + = . The conclusion from this note is this: check your 
final answer with the original equation. 
 
Example 6.5. Solve the equation 2 1 7x − = . 

Solution. Here radical is already isolated and the first step is not needed. We just square 
both sides: 

( )2 22 1 7 2 1 49 2 49 1 2 50 25x x x x x− = ⇒ − = ⇒ = + ⇒ = ⇒ = . 

It is easy to verify that number 25 is really a root of the original equation: 

2 25 1 49 7⋅ − = = . Final answer: x = 25. 
 
Example 6.6. Solve the equation 6 5 7 6x − + = . 

Solution. Here the radical is not isolated, and we isolate it by moving number 7 to the 
right side (this is the same as subtracting 7 from both sides): 
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    6 5 6 7x − = −  or 156 −=−x . 

 Now, radical is isolated and we square both sides: 

   ( ) ( )
2 26 5 1 6 5 1 6 1 5 6 6 1x x x x x− = − ⇒ − = ⇒ = + ⇒ = ⇒ = . 

So, it looks like the answer is x = 1. Let’s check it with the original equation: 

  6 1 5 7 1 7 1 7 8⋅ − + = + = + = . 

 But right side of the original equation is 6, not 8, so 1x =  is not a solution and we reject 
it. The original equation doesn’t have roots at all. 

 Note. It is easy to see at the very beginning without doing anything that original equation 
doesn’t have roots. Indeed, square root on the left side is never negative, and by adding to 
it number 7, we cannot get number 6. 
 
Example 6.7. Solve the equation 24 14 3 2 3 0x x x+ + − − = . 

Solution. Here again the radical is not isolated, and we isolate it by moving terms 2x and 
3 to the right side: 

24 14 3 2 3x x x+ + = + . 
Now square both sides: 

( ) ( )
2 22 2 24 14 3 2 3 4 14 3 4 12 9x x x x x x x+ + = + ⇒ + + = + + . 

Reducing (cancel out) 24x  from both sides, we get 

14 3 12 9 2 6 3.x x x x+ = + ⇒ = ⇒ =  

Finally, we check x = 3 with the original equation:  

       24 3 14 3 3 2 3 3 36 42 3 6 3 81 9 9 9 0⋅ + ⋅ + − ⋅ − = + + − − = − = − = .  

So, x = 3 is a solution. 

Further, in the session 8 on quadratic equations (example 8.7) we will consider more 
complicated example. 
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Exercises 6 
 
In exercises 6.1 – 6.14,  rationalize the denominator and simplify. 
 

6.1.   3
5

 
 

6.2.   6
7

 

 

6.3.   2
3 20

 
 

6.4.   3
5 27

 

 

6.5.   4
5 3

 
 

6.6.   2
3 5

 

 

6.7.   4
5 3+

 
 

6.8.   2
3 5+

 

 

6.9.   1
2 3−

 
 

6.10.  1
5 6+

 

 

6.11.  1
6 3+

 
 

6.12.  1
6 5−

 

 
6.13. 

         2
4 3

u
u v

+
−

 

 6.14. 

         
2 5

a b
a b
+
+

 

 
In exercises 6.15 – 6.24, solve given equation. 
 
6.15.  3 4 5x + =   6.16.  4 3 7x − =  
 
6.17.  5 4 2 8x − + =   6.18.  7 1 4 2x + − =  
   
6.19.  6 8 5 3x − + =   6.20.  8 9 7 2x + + =  
   
6.21. 

         216 70 7 4 7 0x x x+ − − − =  

 61.22. 

         225 12 28 5 2 0x x x− + − + =  
 
6.23. 

         29 7 18 4 3x x x+ − − =  

 6.24. 

         236 19 25 3 6x x x− − + =  
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Session 7 
 

Complex Numbers 
 
When we solve linear equation ax + b = 0, 0≠a , it always has a unique solution 

a
bx −= . In some problems, more complicated equations may appear. 

Example 7.1. Suppose that you need to measure a piece of land in the shape of rectangle, 
having given area A and given perimeter P. What are the sides of this rectangle? 

Solution (equation only). Let’s denote the sides of the rectangle by letters x and y. Then 
Ayx =⋅  (area), and Pyx =+ 22  (perimeter). We can solve the last equation for y: 

2y = P – 2x, and 
2

2xPy −
= . If we substitute this expression for y into the first equation 

Ayx =⋅ , we will get 

( ) 2 22 2 2 2 2 2 2 0
2

P xx y x A x P x A xP x A x Px A−
⋅ = ⋅ = ⇒ − = ⇒ − = ⇒ − + = . 

We come up with the equation that contains 2x . Such equations are called the quadratic 
equations (as opposite to linear equations: ax + b = 0). We already considered simple 
cases when quadratic equation can be solved by factoring. We will discuss non-factorable 
cases in the next session. 
Contrary to linear equations, quadratic equations not always have (real) solutions. A 
simple example is the equation 012 =+x . It can be written as 12 −=x . Obvious, this 
equation does not have solutions because square of a real number cannot be negative. 
However, it is possible to introduce a special symbol that can be treated as a solution of 
the equation 012 =+x . Usually, this symbol is denoted by the letter i and is called the 
imaginary unit (that’s why the letter i). Of course, i is not a real number. It has the 
property that 12 −=i . Also, we can write 1−=i . 

Note. You may be disappointed with such “definition” of number i. Indeed, it looks like 
we introduce an object that does not exist: the equation 012 =+x  does not have real 
solutions, and we use letter i for non-existing solution. If you have such feelings, you are 
not along. For more than two hundred years similar feelings had many mathematicians. 
Only in 18th century the exact theory of so-called complex numbers was created which 
includes symbol i as well as other related to it “magic” numbers. In short, a complex 
number is the same as ordered pair of two real numbers. 

Definition. Any complex number z has the form z = a + bi. Here a and b are two real 
numbers, and i is a symbol with the property 12 −==⋅ iii . Actually, we are saying that 

ii ⋅  is equal to –1 by definition. Symbol i is called the imaginary unit, number a is the 
real part, and number b is the imaginary part of complex number z. The form a + bi is 
called the standard form of complex number. 
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a a i− = ⋅  

Using the symbol i, a square root of any negative number can be written as a complex 
number: if a is a non-negative number, then  1a a a i− = ⋅ − = ⋅ , so  

             , 0a ≥ .  

Example 7.2. Express 48−  in terms of i and simplify. 

Solution. 48 48 16 3 4 3i i i− = ⋅ = ⋅ ⋅ = ⋅ . 

We can operate with complex numbers in the same way as with polynomials or rational 
expressions: we can make all arithmetic operations with them, open parentheses, combine 
like terms. The only specific property is that if we multiply i by i, the result is –1. In 
particular, two complex numbers ibaz 111 +=  and ibaz 222 +=  are equal, if separately 
equal their real and imaginary parts: 21 aa =  and 21 bb = . 

Example 7.3. Show that any real number can be considered as a complex number. 

Solution. If a is a real number, then it can be written as a complex one: a = a + 0i. 

So, we can treat the set of complex numbers as an extension of the set of real numbers. 
Let’s consider arithmetic operations with complex numbers. 

Example 7.4. 
1) Add (3 + 2i) + (1 + 5i). 
2) Subtract (6 + 3i) – (4 – 7i). 
3) Multiply (1 + i)(2 + 3i). 
4) Multiply  (3 + 4i)(3 – 4i). 

Solution. As we mentioned above, we can perform these operations as with ordinary 
algebraic expressions just keeping in mind that 12 −=i . 

1) (3 + 2i) + (1 + 5i) = (3 + 1) + (2 + 5)i = 4 + 7i. 
2) (6 + 3i) – (4 – 7i) = (6 – 4) + (3 – (–7))i = 2 + 10i. 

3) iiiiiiiiii 513232)1(32323232)32)(1( 2 +−=−++=−⋅+++=+++=++ . 

4) We can proceed the same way as in part 3) or use as a shortcut formula that we 
already used in sessions 2 (see note after example 2.11) and in session 5 (see example 
5.8): 22))(( bababa −=+− . Using this formula we have 

  ( ) ( ) ( )223 4 (3 4 ) 3 4 9 16 1 9 16 25i i i+ − = − = − ⋅ − = + =  

Notice that the result of multiplication here is a real number. We will use similar result in 
general form below. 

Now, consider division of complex numbers. At the first glance, the quotient of two 
complex numbers does not look as a complex number. For example, does the quotient 
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i
i

23
45

+
+  can be represented as one single complex number? The answer is yes. The method 

to do that is similar to that we used to rationalize the denominator of radical expressions 
with two terms in denominators: we multiplied both sides of a fraction by expression 
conjugate to the denominator. In similar way, consider the following pair of complex 
numbers 1z  and 2z : 

biaz +=1 ,  biaz −=2 . 

These numbers have the same real parts, while imaginary parts are differed only by sign. 
Such complex numbers are called complex conjugate to each other. The important 
property is that if we multiply them, the result is real number: 

 22222
21 ))(( baibabiabiabiabiazz +=−+−=−+=⋅ . 

This property allows to represent the quotient 
bia
dic

+
+  as a single complex number by 

multiplying both sides of this fraction by a bi−  which is conjugate to the denominator: 

2

2 2 2 2

( )( ) ( ) ( )
( )( )

c di c di a bi ac bci adi bdi ac bd ad bc i
a bi a bi a bi a b a b
+ + − − + − + + −

= = =
+ + − + +

 

  So,  

               i
ba
bcad

ba
bdac

bia
dic

2222 +
−

+
+
+

=
+
+ . 

As you see, the result is written as the sum of two parts: real and imaginary. Therefore, 
this result is a complex number in standard form. We got a general formula for division 
of two complex numbers. 

Note. The above formula looks rather complicated. Don’t worry: you do not need to 
memorize it. Just keep in mind the method for division complex numbers: multiply top 
and bottom by the number conjugate to the denominator. 

Example 7.5. Divide (5 + 4i) by (3 –  2i). 

Solution. 
 

25 4 (5 4 )(3 2 ) 15 10 12 8 (15 8) (10 12) 7 22 7 22
3 2 (3 2 )(3 2 ) 9 4 13 13 13 13

i i i i i i i i i
i i i

+ + + + + + − + + +
= = = = = +

− − + +
. 

If denominator of a fraction contains only imaginary part of complex number (so, real 
part is equal to zero), to divide, simply multiply top and bottom by i. 

Example 7.6. Divide 1 by i. 

Solution. 1 1
1

i i i
i i i

⋅
= = = −

⋅ −
. This result can also be written as 1i i− = − . 
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In conclusion consider how to raise imaginary unit i to positive integer power. 

Example 7.7. Calculate 

1) 3i  2)  4i   3)  5i   4)  6i  
Solution.  

1) iiiii −=⋅−=⋅= )1(23 . 

2) 1)1()( 234 =−−=−=⋅−=⋅= iiiiii . 

3) iiiii =⋅=⋅= 145 . 

4) 156 −=⋅=⋅= iiiii . 

Note. Similar to part 2) of the above example, 1ni =  if power n is divisible by 4. Indeed, 

we can write n = 4k where k is an integer, and ( )4 4 1 1
kn k ki i i= = = = . Based on this 

property, we can calculate ni  for any positive integer n. 

Example 7.8. Calculate 

1) 100i  2)  101i   3)  102i   4)  103i  

Solution. Notice that 100 is divisible by 4, and 101 = 100 + 1, 102 = 100 + 2,  
103 = 100 + 3. Therefore, 

100 101 100 102 100 2 103 100 31, , 1,i i i i i i i i i i i i= = ⋅ = = ⋅ = − = ⋅ = − . 
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Exercises 7 
 
In exercises 7.1 and 7.2,  represent given expression in terms of i and simplify. 
 
7.1. a)  25−  

b)  32−  

 7.2. a)  16−  

b)  27−  
 
In exercises 7.3 and 7.4,  add or subtract. 
 
7.3. a)  (7 3 ) (2 5 )i i+ + −  

b)  (4 6 ) (8 2 )i i− − +  

 7.4. a)  (9 4 ) (3 )i i− + −  

        b)  (6 3 ) (2 8 )i i− − −  
 
In exercises 7.5 and 7.6,  multiply complex numbers. 
 
7.5.  a)  3(2 4 )i−  

b)  (6 3 )(2 8 )i i− −  

c)  (5 3 )(6 5 )i i+ −  

d)  (3 2 )(3 2 )i i+ −  

 7.6.  a)  4(3 5 )i+  

b)  7 (6 3 )i i−  

c)  (4 6 )(7 )i i− +  

        d)  (2 4 )(2 4 )i i− +  
 
In exercises 7.7 and 7.8, divide. Write the answer in standard form for comples numbers. 
 
7.7.  a)  (8 2 ) 5i+ ÷  

b)  3 (2 )i÷  

c)  (9 6 ) ( 4 )i i− ÷ −  

        d)  ( 4 3 ) (5 6 )i i− + ÷ +  

        e)  (3 2 ) (4 5 )i i− ÷ −  

 7.8 . a)  ( 6 7 ) 2i− + ÷  

 b)  2 ( 3 )i÷ −  

 c)  (4 3 ) (6 )i i+ ÷  

         d)  (5 6 ) (4 3 )i i− ÷ −  

         e)  (4 5 ) ( 3 2 )i i+ ÷ − +  
 
In exercises 7.9 and 7.10,  calculate 
 
7.9.  a)  2018i  

b)  2019i  

c)  2020i  

d)  2021i  

 7.10. a)  2023i  

 b)  2024i  

 c)  2025i  

         d)  2026i  
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Session 8 
 

Quadratic Equations: Factoring and Square Forms 
 
In previous session we mentioned about quadratic equations. These are polynomial 
equations in which the highest degree of a variable is 2. In general, equation is called the 
quadratic, if it can be written in the form 

    0,02 ≠=++ acbxax . 

This form is called the standard form. Here a, b, and c are given constant numbers 
which are called the coefficients: a is the leading, b is the middle, and c is the last (or 
free) coefficient. 

Note. If we omit the restriction 0≠a , the above equation will not be necessary a 
quadratic: for a = 0, the equation becomes linear 0bx c+ = . Therefore, we will always 
assume that the leading coefficient 0≠a . Coefficients b and c may be any real numbers, 
including 0. Also notice that in the standard form the right side of the equation is equal to 
zero. 

Of course, a quadratic equation may be given in different forms. 

Example 8.1. Write the following equations as quadratic equations in standard form. 
Identify the coefficients a, b, and c. 

1) (2x – 1)(x + 5) = 0. 

2) 5)23( 2 =+x . 

Solution. In both equations we just need to open parentheses, combine like terms, and 
bring all terms from the right side to the left (if needed). 

1)  5925102)5)(12( 22 −+=−−+=+− xxxxxxx . 

     We’ve got the standard form 

5,9,2;0592 2 −====−+ cbaxx . 

2)  2 2 2 2(3 2) 5 9 12 4 5 9 12 4 5 0 9 12 1 0x x x x x x x+ = ⇒ + + = ⇒ + + − = ⇒ + − = . 

     We’ve got the standard form 

1,12,9;01129 2 −====−+ cbaxx . 
Notes.  

1) In Example 8.1, 1), we call the equation to be written in the factoring form. 
2) In Example 8.1, 2), we call the equation to be written in the square form. 
3) In solving Example 8.1, 2), we used the following formula (square of the sum) 

    222 2)( bababa ++=+ . 

Another useful formula is the square of the difference: 
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222 2)( bababa +−=− . 
 

When solving a quadratic equation, it is not needed to always represent it in standard 
form. In some cases, it is even more preferable another forms like in Example 8.1: 
factoring form or square form. These are the forms in which the quadratic equation can 
be solved very easily. Let’s consider both forms separately. 

Factoring Form of the Quadratic Equation 

Before, we already solved some quadratic equations by factoring. Here, we consider this 
method in more details.  
In general, factoring form of quadratic equation looks like this 
    (mx + n)(px + q) = 0. 
Method to solve this equation is based on the following simple observation: if the product 
of two values A and B is zero, i.e. 0=⋅BA , then at least one of them is zero: 
A = 0 or B = 0. Therefore, the equation (mx + n)(px + q) = 0 can be split into two linear 
equations: 
      mx + n = 0 and  px + q = 0, 
which can be easily solved. 

Example 8.2. Solve the equation from Example 8.1, 1):  (2x – 1)(x + 5) = 0. 

Solution. Since this equation is written in factoring form, it can be immediately split into 

two equations: 2x – 1 = 0 and x + 5 = 0. From the first equation, 
2
1

=x , and from the 

second, x = – 5. So, the original equation has two solutions: 

2
1

=x  and  x = – 5. 

Many quadratic equations (but not all) can be easily solved by factoring. Using this 
method, we first represent given equation in factoring form, and then split it into two 
linear equations like in Example 8.2. The main part of this method is to factor the 
equation. Let’s consider two cases of factoring: when leading coefficient 1a =  and 1a ≠ . 

Case to factor: leading coefficient 1a = . 
In this case the standard form of the equation is 

  02 =++ cbxx . 
Such equation (when leading coefficient is 1) is called the reduced equation. To factor, 
we need to represent the left side as a product of two linear expressions (two pairs of 
parentheses): ( )( ) 0x p x q+ + = . Let’s open parentheses here: 

02 =+++ pqqxpxx  or 0)(2 =+++ pqxqpx . 

If we compare the last equation with the original 02 =++ cbxx , we conclude that 
 p + q = b, and cqp =⋅ . This conclusion gives us an idea: to factor, we need to find two 
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numbers p and q such that their sum is the middle coefficient b and the product is the last 
coefficient c. 
Technically, to factor we can start with the template (skeleton) for the equation: 

    (x + __)(x  + __) = 0. 

Then to fill in blanks, consider possible ways to factor the last coefficient c, and select 
such factors that their sum is b. Replace blanks with these numbers. 

Example 8.3. Solve the quadratic equation 0652 =++ xx  by factoring. 

Solution. Start with the template (x + __)(x  + __) = 0. For last coefficient 6, there are 
two ways to factor: 6 2 3= ×  and 6 1 6= × . We select 2 and 3 since their sum is the 
middle coefficient 5. Replacing blanks with these numbers, we get the factoring form 
     (x + 2)(x  + 3) = 0. 
Now split it into two equations: 2 0x + =  and 3 0x + = . Solve them and get two 
solutions: 

 x = – 2 and  x = – 3. 
Note. Keep in mind that in factoring form, the right side of given equation must be zero. 
For example, the equation (x – 1)(x + 2) = 4 is NOT written in factoring form and cannot 
be split immediately into two liner equations. 

Example 8.4. Solve the above equation (x – 1)(x + 2) = 4 by factoring. 

Solution. To write this equation in factoring form, we first represent it in standard form 
by opening parentheses and combining like terms 

4222 =−−+ xxx , or 062 =−+ xx . 
Now to factor, we write the template (x + __)(x  + __) = 0, and try to find two numbers 
such that the product is – 6 and the sum is 1 (which is coefficient for x). By guessing and 
checking we find 3 and – 2. Substitute these numbers for blanks and get the factoring 
form (x + 3)(x – 2) = 0. Solving the equations x + 3 = 0 and x  – 2 = 0, we get two 
solutions: 

x = – 3 and  x = 2. 

Example 8.5. Solve the quadratic equation 072 =+ xx  by factoring. 

Solution. Here coefficient c = 0. Such an equation is easy to factor just by taking x out of 
parentheses: x(x + 7) = 0. From here, x = 0 and   7 0 7x x+ = ⇒ = − . Final answer: 

x = 0 and x = – 7. 

Example 8.6. Solve the quadratic equation 23 48 0x − =  by factoring. 
Solution. Here the leading coefficient is not 1 (it is 3). Notice, however, that both 
coefficients divisible by 3, and we can factor out this 3: ( )23 16 0x − = . From here we 
conclude that expression inside parentheses must be zero, so we just drop factor 3 and get 
equation with leading coefficient 1: 2 16 0x − = . Another way to get this equation is just 
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to divide coefficients of the original equation by 3. Now to factor the left side of this 
equation, we use the formula for factoring the difference of two squares (we already used 
this formula several times, see, for example, note after example 2.11 from section 2): 

( )( )2 2a b a b a b− = − + . Using this formula, we factor the last equation as 

( )( )4 4 0x x− + = , then solve two equations 4 0x − =  and 4 0x + = , and get final 
answer: x = 4 and  x = – 4. Final answer can also be written as 4x = ± , meaning that we 
combined both roots in one formula. 

Some equations are not quadratic, but can be reduced for such. Let’s solve the following 
radical equation, using the technique that we used in session 6 for solving radical 
equations: isolate radical and square both sides.  

Example 8.7. Solve the equation 2 11 4x x+ − = . 

Solution. Here the radical is not isolated, and we isolate it by moving x to the right side 
(or adding x to both sides): 2 11 4x x+ = + . Now we square both sides: 

( ) ( )
2 2 22 11 4 2 11 16 8x x x x x+ = + ⇒ + = + + . 

We’ve got a quadratic equation. Let’s write it in standard form 2 0ax bx c+ + = . For this, 
we first switch left and right sides: 216 8 2 11x x x+ + = + , and then move 2 11x +  to the 
right: 

  216 8 2 11 0x x x+ + − − =  or 2 6 5 0x x+ + = . 

The last equation can be solved by factoring: ( )( )1 5 0x x+ + = . We’ve got two solutions 
of the quadratic equation: 1x = −  and 5x = − . Let’s check them with the original 
equation. 

1x = − :  2 11 2 ( 1) 11 ( 1) 9 1 3 1 4x x+ − = ⋅ − + − − = + = + = . So, 1x = −  is a solution. 

5x = −  :  2 11 2 ( 5) 11 ( 5) 1 5 1 5 6 4x x+ − = ⋅ − + − − = + = + = ≠ . So, 5x = −  is not a 
solution and we reject it. 
Final answer: original equation has only one solution 1x = − . 

Note. As we see in the above example, and as we mentioned in session 6 on solving 
radical equations, it is important to check final answer with the original equation to 
exclude possible wrong solutions. 

Case to factor: leading coefficient 1a ≠ . 

This is more complicated case for factoring of the equation 02 =++ cbxax . We will 
show a method how to reduce it to the case 1a = . The method includes three steps. 

1) Construct (temporary) a new reduced equation 02 =++ acbxx . In words: take away 
coefficient a from 2x  and multiply it by c. 

2) Factor this new equation: (x + p)(x  + q) = 0. 
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3) Divide both numbers p and q by a: 0=





 +





 +

a
qx

a
px . This is the factoring form of 

the original equation. 

Example 8.8. Solve the equation 0456 2 =−+ xx  by factoring. 

Solution. Let’s use the above method. 

1) Construct the reduced equation 2 5 6 4 0x x+ − ⋅ =  or 02452 =−+ xx . 
2) To factor it, find two numbers such that the product is – 24 and the sum is 5. These 

numbers are 8 and – 3. The above equation is factorized: (x + 8)(x – 3) = 0. 

3) Divide both numbers 8 and  – 3 by 6 (the coefficient for 2x ) and get the factoring 
form of the original equation: 

0
6
3

6
8

=





 −





 + xx  or   0

2
1

3
4

=





 −





 + xx . 

Now split this equation into two: 0
3
4
=+x  and 0

2
1
=−x . By solving, we get two 

solutions of the original equation: 
3
4

−=x  and 
2
1

=x . 

Square Form of the Quadratic Equation 

Not every quadratic equation can be solved by factoring (using rational numbers). We 
will consider here another form of quadratic equation that also can be solved very easily 
but not by factoring. This is the square form such as in Example 8.1, 2). 
In general, the square form can be written as 

      rqpx =+ 2)( . 

 To solve this equation, just take square root from both sides. However, we need to be 
careful with the square root of number r. There are two numbers such that their squares 
are r: r  and r− . Both numbers must be taken into account. Therefore, after taking 
square root from both sides of the equation rqpx =+ 2)( , we split it into two linear 
equations: rqpx =+  and rqpx −=+ . It is a very common to write both equations in 
just one using the symbol “± ”: rqpx ±=+ . From here, rqpx ±−= , and 

p
rqx ±−

= . This is the final answer for the solutions of the equation rqpx =+ 2)( . 

Note. Keep in mind that the formula 
p

rqx ±−
=  means combination of two formulas: 

p
rqx +−

=  and 
p

rqx −−
= . 
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Example 8.9. Solve the quadratic equation from Example 8.1, 2): 5)23( 2 =+x . 
Solution. Take square root from both sides using the symbol “± ”: 523 ±=+x . From 

here, 523 ±−=x  and 
3

52±−
=x . 

Note. The final answer 
3

52±−
=x  may look strange. It represents two exact solutions 

written in radical form: 
3

52+−
=x  and 

3
52−−

=x . If we want to get solutions as 

usual decimal numbers, we can do this only approximately. Using a calculator to 
approximate 5  as 2.236, we can get the following approximations for the solutions: 

    079.0
3

236.22
3

52
≈

+−
≈

+−
=x    and    412.1

3
236.22

3
52

−=
−−

≈
−−

=x . 

Example 8.9 shows also that not any quadratic equation may be solved by factoring in 
terms of rational numbers. 

Example 8.10. Solve the quadratic equation 07)34( 2 =+−x . 

Solution. Write the equation in square form: 7)34( 2 −=−x . Next, we want to take 
square root from both sides. Let’s recall from the session 7 “Complex Numbers” that a 
square root of negative number can be written in terms of imaginary unit i: 7 7 i− = ⋅ . 
Therefore, taking square root from both sides of the equation 7)34( 2 −=−x , we get 

4 3 7x i− = ± ⋅ . From here, 4 3 7x i= ± ⋅ ,  and 3 7
4

ix ± ⋅
= . So, the final answer 

represents two complex conjugate numbers: 

1
3 7 3 7

4 4 4
ix i+ ⋅

= = +  and 2
3 7 3 7

4 4 4
ix i− ⋅

= = − . 

Example 8.11. Solve the quadratic equation 2 5 0x + = . 

Solution. Let’s write it in square form 2 5x = − . From here, 5 5x i= ± − = ± ⋅ . 

Example 8.12. Solve the quadratic equation 0)25( 2 =−x . 

Solution. By taking square root from both sides, we get the only linear equation 

5 2 0x − = . From here, 
5
2

=x . So, given quadratic equation has only one (unique) 

solution 
5
2

=x . 

In the next session we will discuss how to transform any quadratic equation from general 
form to square form. 
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Exercises 8 
 
In exercises 8.1 and 8.2,  write given equations as quadratic equations in standard form. 
Identify the coefficients a, b, and c. 
 
8.1.  a)  (3 7)( 2) 0x x+ − =  

b)  2(4 3) 6x − =  
 8.2.  a)  (4 3)(2 1) 0x x− + =  

        b)  2(5 2) 3x + =  
 
In exercises 8.3 and 8.4,  solve given equations. 
 
8.3.  a)  (3 7)( 2) 0x x+ − =  

  b)  2(6 5) 0x − =  
 8.4.  a)  (4 3)(2 1) 0x x− + =  

         b)  2(7 4) 0x + =  
 
In exercises 8.5 and 8.6,  solve given equations by factoring. 
 
8.5.  a)  23 5 0x x+ =  

  b)  22 32 0x − =  

  c)  2 12 0x x+ − =  
  d)  ( 4)( 3) 8x x+ − =  

 8.6.  a)  26 7 0x x− =  

  b)  25 45 0x − =  

  c)  2 2 15 0x x− − =  
        d)  ( 3)( 5) 9x x+ − =  

 
In exercises 8.7 and 8.8,  solve given equations. 
 
8.7.  a)  3 10 2x x+ − =  

  b)  3 7 3x x+ − =  

 8.8.  a)  4 13 4x x+ − =  

        b)  4 21 4x x+ − =  
 
In exercises 8.9 and 8.10, solve given equations by factoring. 
 
8.9.  a)  28 2 3 0x x− − =  

        b)  25 12 9x x+ =  

 8.10. a)  26 13 5 0x x+ − =  

         b)  27 3 4x x+ =  
 
In exercises 8.11 and 8.12, solve given equations. 
 
8.11 a)  2(4 3) 6x − =  

b)  2 7 0x + =  

c)  2(6 4) 3 0x + + =  

 8.12 a)  2(5 2) 3x + =  

         b)  2 3 0x + =  

         c)  2(7 5) 6 0x − + =  
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Challenge Problems 
 
8.13.  Consider the equation 2 , 0, 0.ax b x b a b+ − = > >  
          Prove the following statements: 
 

    1)  If a < b, then the equation has the only solution x = 0. 
    2)  If  a b≥ , then the equation has two solutions x = 0 and x = a – 2b. 

 

8.14.  Consider the equation 2 , 0ax b ar x b r a+ − − = − > . 
          Prove the following statements: 
 

    1)  If b < 0, then the equation has only one solution x = a + r – 2b. 
2)  If b > a, then the equation has only one solution x = r. 
3)  If  0 b a≤ ≤ , then the equation has both the above solutions. 

Hints: 1)  Check that quadratic equation ( )22ax b ar x b r+ − = + −  has both solutions 
                 x = r and x = a + r – 2b. 

2)  Use the property 2 , if 0,
, if 0.

u u
u u

u u
≥

= = − <
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Session 9 
 

Completing the Square and Quadratic Formula 
 
In previous session we saw that if a quadratic equation is written in factoring or square 
forms, it can be solved very easily. Also, we saw that not any quadratic equation can be 
written in factoring form (using rational numbers). However, it turns out that any 
quadratic equation can be written in the square form. In this way, we also get the 
quadratic formula, i.e. formula that allows to solve any quadratic equation by simply 
substituting its coefficients into the formula. 

Completing the Square 
The procedure for converting quadratic equation from the standard form 02 =++ cbxax  
into the square form rqpx =+ 2)(  is called the Completing the Square. This procedure 
is based on the following two formulas that we already mentioned in the previous session 
– square of the sum and square of the difference: 

   2 2 2( ) 2x p x px p+ = + +  (Square of the Sum). 
2 2 2( ) 2x p x px p− = − +  (Square of the Difference). 

Let’s start with the special case: consider how to complete the square for the equation 

   2 2 0x px c+ + =   (a = 1, b = 2p). 

We can re-write it like this (bring c to the right): 

   2 2x px c+ = − . 

Compare the left side of this equation with the square of the sum formula (written from 
right to left) 
   2 2 22 ( )x px p x p+ + = + . 

We see that the left side of the equation 2 2x px c+ = −  is not complete to be the square 
2( )x p+  because the term 2p  is missing. To compensate this deficit (to complete the 

square), we add 2p  to both sides of the equation 2 2x px c+ = − , and it becomes 

 2 2 22x px p c p+ + = − + , or ( )2 2x p c p+ = − + . 

 We have completed the square and presented the equation in the square form. 

Now consider the general case of the equation 02 =++ cbxax  with arbitrary 0≠a . We 
describe the procedure to complete the square step-by-step. 

Procedure to Complete the Square 

1) Divide both sides of the equation 02 =++ cbxax  by the leading coefficient a. We get 

the reduced equation with the leading coefficient 1: 02 =++
a
cx

a
bx . 
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2) Bring the last term 
a
c  to the right: 

a
cx

a
bx −=+2 . 

3) Divide middle coefficient 
a
b  by 2 and square it. We get 

2 2

22 4
b b
a a

  = 
 

. 

4) Add the above expression 
2

24
b
a

 to both sides of the equation 
a
cx

a
bx −=+2 : 

2 2
2

2 24 4
b b c bx x
a a a a

+ + = − + . 

5) Complete the square: 
2 2

22 4
b c bx
a a a

 + = − + 
 

. 

Note. The most important (and possible most complicated) part of this procedure is step 
3): divide middle coefficient by 2 and square it. 

Example 9.1. Solve the quadratic equation 0562 =++ xx  by completing the square. 

Solution. Here the leading coefficient is 1, and step 1) is not needed. Bring the last term 5 
to the right: 562 −=+ xx . Now, according to step 3), divide middle coefficient 6 by 2 and 

square it: 
2

26 3 9
2

  = = 
 

. Add this 9 to both sides of the equation: 

2 26 3 5 9 4x x+ + = − + = . Complete the square: ( )23 4x + = . 

We can finish with the solution by taking square root from both sides: 243 ±=±=+x . 
From here, 23±−=x , and we get two solutions: 123 −=+−=x , and 523 −=−−=x . 
Final answer: x = – 1 and x = – 5. 

Example 9.2. Solve the quadratic equation 01832 =−+ xx  by completing the square. 

Solution. Again, step 1) is not needed. Bring 18 to the right: 1832 =+ xx . According to 

step 3), divide 3 by 2 and square: 
23 9

2 4
  = 
 

. Add 9
4

 to both sides of the equation: 

2
2 3 9 813 18

2 4 4
x x  + + = + = 

 
. Complete the square: 

4
81

2
3 2

=





 +x . 

From here, 
2
9

4
81

2
3

±=±=+x , or 
2
9

2
3
±−=x . We get two solutions: 

3
2
6

2
9

2
3

==+−=x  and 6
2

12
2
9

2
3

−=−=−−=x . 

Final answer: x = 3 and x = – 6. 
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Example 9.3. Solve quadratic equation 0352 =+− xx  by completing the square. 

Solution. Bring 3 to the right: 352 −=− xx . Make steps 3) and 4): 

2 25 5 25
2 2 4

   − = =   
   

  and  
2

2 5 255 3
2 4

x x  − + = − + 
 

. 

Complete the square 
4

13
2
5 2

=





 −x . From here 

    
2
13

4
13

2
5

±=±=−x ,   
2

135
2
13

2
5 ±

=±=x . 

The answer is represented in radical form that combines two solutions 

    
2

135+
=x   and  

2
135−

=x  

in one formula. 

Example 9.4. Solve quadratic equation 0253 2 =++ xx  by completing the square. 

Solution. Here leading coefficient is not 1 (it is 3) and step 1) is needed. 

1) Divide both sides by leading coefficient 3: 0
3
2

3
52 =++ xx . 

2) Bring 
3
2  to the right: 

3
2

3
52 −=+ xx . 

3) Divide middle coefficient 
3
5  by 2 and square it: 

36
25

6
5 2

=





 : 

4) Add the last number to both sides: 

           
2

2 5 5 2 25 .
3 6 3 36

x x  + + = − + 
 

. 

5) Complete the square: 
36
1

6
5 2

=





 +x . 

To get solutions, take square root from both sides: 
6
1

36
1

6
5

±=±=+x . 

Finally, solve for x: 
6
1

6
5
±−=x . We come up with two solutions: 

3
2

6
4

6
1

6
5

−=−=+−=x  

and 1
6
6

6
1

6
5

−=−=−−=x . Final answer: 
3
2

−=x  and 1−=x . 

Note. Probably, it would be easier to solve the equations in examples 9.1, 9.2, and 9.4 by 
factoring. However, we used the method of completing the square to demonstrate its 
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universal character: any quadratic equation can be solved by this method, contrary to the 
method of factoring that does not work in all cases as we can see from Example 9.3. 
 
Quadratic Formula 

To get this formula, we will use the result from step 5) above for completing the square. 
Starting with the equation 02 =++ cbxax , 0≠a , we already represented it in step 5) in 
the square form 

   
2 2

22 4
b c bx
a a a

 + = − + 
 

. 

 Let’s combine fractions on the right side: 

2

2

2

2

2

2

22

2

4
4

4
4

44
4

4 a
acb

a
bac

a
b

a
ac

a
b

a
c −

=
+−

=+−=+−  

Now we can write 
2 2

2

4
2 4
b b acx
a a

− + = 
 

 

Take square roots from both sides: 

a
acb

a
acb

a
bx

2
4

4
4

2

2

2

2 −
±=

−
±=+  

To solve for x, bring the term 
a

b
2

 to the right: 

              
a

acbb
a

acb
a

bx
2

4
2

4
2

22 −±−
=

−
±−=  

Finally, we obtain the quadratic formula 
    
 
 
 
This formula gives the solution of quadratic equation written in standard form 

 02 =++ cbxax , 0≠a . 
Quadratic formula also allows to get an idea about possible solutions of quadratic 
equation. Let’s analyze it. First of all, this formula represents two solutions 1x  and 2x : 

  
2

1
4

2
b b acx

a
− + −

=  and 
2

2
4

2
b b acx

a
− − −

= , 

written in one, using " "±  operation. 

2 4
2

b b acx
a

− ± −
=
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Also notice that the most complicated part of these formulas is the expression inside 
square root: 2 4b ac− . This expression is important and it is given a special name. 

Definition. The expression 2 4b ac−  is called the discriminant of the quadratic equation 
02 =++ cbxax , and denoted by letter D: 2 4D b ac= − . 

Using discriminant, quadratic formula can be written in slightly more simple form 

  
2

b Dx
a

− ±
=  or  1 2

b Dx
a

− +
=  and  2 2

b Dx
a

− −
= . 

Note. For the reduced quadratic equation 2 0x bx c+ + =  (when a = 1), D , when 
D > 0, has the following geometric interpretation: it is the distance between roots 1x  and 

2x  on number line: 1 2D x x= − . 

As any real number, discriminant D may be positive, negative or zero. Let’s see how the 
sign of discriminant affects the roots 1x  and 2x . 

1) Discriminant is positive: 0D > . In this case, as you can see from the quadratic 
formula, the quadratic equation has two roots 1x  and 2x  which are real numbers and 
distinct. Roots 1x  and 2x  may be rational or irrational numbers. 

2) Discriminant is zero: 0D = . In this case, roots 1x  and 2x  coincide and the equation 

has only one real root 
2
bx
a

= − . 

3) Discriminant is negative: 0D < . In this case, equation has two complex roots 1x  and 

2x  which are conjugate to each other. 

As you can see, there are only three options regarding the nature of solutions of quadratic 
equation: it may have one real solution, two (distinct) real solutions, and two complex 
conjugate solutions. The sign of discriminant allows to distinguish these three cases. 

Let’s consider some examples of using quadratic formula. You can use either form: with 
discriminant or without it. We will use discriminant form 

 2, 4
2

b Dx D b ac
a

− ±
= = − . 

Note. When using quadratic formula, make sure that the quadratic equation is written in 
the standard form 02 =++ cbxax  (the right side must be zero) to be able to identify 
coefficients a, b, and c correctly. 

Example 9.5. Solve quadratic equation 23 6 2x x+ =  by quadratic formula. 

Solution. The equation is not in standard form. To get standard form, bring 2 from right 
side to the left: 23 6 2 0x x+ − = . Now identify coefficients and calculate the discriminant: 

 2 23, 6, 2, 4 6 4 3 ( 2) 36 24 60a b c D b ac= = = − = − = − ⋅ ⋅ − = + = . 
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By quadratic formula, we get two real solutions 

6 60 6 4 15 6 2 15 3 15
2 2 3 6 6 3

b Dx
a

− ± − ± − ± ⋅ − ± − ±
= = = = =

⋅
. 

Both of them are irrational numbers. 
 

Example 9.6. Solve quadratic equation 24 20 25 0x x− + =  by quadratic formula. 

Solution. The equation is already in standard form. We have 

 2 24, 20, 25, 4 ( 20) 4 4 25 400 400 0a b c D b ac= = − = = − = − − ⋅ ⋅ = − = . 

Discriminant is zero, and the equation has only one real solution 

( 20) 0 20 5
2 2 4 8 2

b Dx
a

− ± − − ±
= = = =

⋅
. 

Example 9.7. Solve quadratic equation 26 5 2 0x x− + =  by quadratic formula. 

Solution. The equation is already in standard form. We have 

 2 26, 5, 2, 4 ( 5) 4 6 2 25 48 23a b c D b ac= = − = = − = − − ⋅ ⋅ = − = − . 

Discriminant is negative, and the equation has two complex conjugate solutions 

( 5) 23 5 23 5 23
2 2 6 12 12 12

b D ix i
a

− ± − − ± − ± ⋅
= = = = ±

⋅
. 
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Exercises 9 
 
In exercises 9.1 and 9.2, solve given quadratic equation by completing the square. 
 
9.1. a)  2 4 5 0x x− − =  

b)  2 5 6 0x x+ + =  

c)  2 7 8 0x x− + =  

d)  22 3 9 0x x+ − =  

 9.2. a)  2 2 8 0x x+ − =  

b)  2 9 14 0x x− + =  

c)  2 3 5 0x x+ − =  

        d)  23 7 2 0x x+ + =  
 
In exercises 9.3 and 9.4, solve given quadratic equation by quadratic formula. 
 
9.3. a)  25 8 1x x− =  

b) 216 24 9 0x x+ + =  

c)  24 7 5 0x x− + =  

d)  26 17 12 0x x− + − =  

 9.4. a)  27 6 3x x− =  

b) 29 42 49 0x x− + =  

c)  26 5 3 0x x+ + =  

        d)  212 28 15 0x x− + − =  
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Session 10 
Parabolas 

 
Here we will relate the quadratic equation 02 =++ cbxax  to quadratic function 

cbxaxy ++= 2 . The graph of this function (and the function itself) is called the 
parabola. Recall that for quadratic equation there are three cases of real solutions: it may 
have one solution, two solutions, or no solutions at all. As a graph, parabola allows to 
visualize all three cases as well as some other properties of quadratic function. 

Let’s start with the simplest (or basic) parabola 2xy = . Notice, first of all, that this 
function takes the same values for x and  –x since ( ) 22 xx =− . In general, if some 
function )(xfy =  has the property )()( xfxf =− , then such a function is called the even 
function. Because both points (x, f(x)) and (– x, f(x)) are on the graph of the function f(x), 
and they are symmetric to each other over the y-axis, the graph of any even function is 
also symmetric over the y-axis. In particular, this property holds for the parabola 2xy = . 
Therefore, if we draw this parabola only for positive x, then we can reflect this graph over 
the y-axis to get the entire picture. 

Another simple property is that for positive x, the bigger x, the bigger 2x . We say that 
parabola 2xy =  increases (for positive x). However, this function is not linear. It means 
that its graph is not a straight line. Instead, the graph is a curve. To picture this curve, we 
can calculate several values of parabola for some values of x. The following table 
represents one of the possible calculations. 
 

x 0 1 2 3 
2xy =  0 1 4 9 

(x, y) (0, 0) (1, 1) (2, 4) (3, 9) 
 
If we plot points (x, y) and connect them with a smooth curve, we will get the picture: 
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To get the entire parabola (to include negative x), we reflect this graph over the 
y-axis. Here is the final picture. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let’s observe this graph. Notice that for negative x parabola decreases (going down from 
left to right), and for positive x parabola increases. We say that this parabola opens up (or 
upward). Also, it has minimum (lowest) point (0, 0). This point is called the vertex of 
parabola. 

Now consider the second basic parabola 2xy −= . We do not need any special analysis to 
graph this function. Just notice the relation between graphs of functions )(xfy =  and 

)(xfy −= . Because points (x, f(x)) and (x, –f(x)) are symmetric to each other with 
respect  to x-axis, we can simply reflect the graph of 2xy =  over the x-axis and get the 
graph of 2xy −= . We say that parabola 2xy −=  opens down (downward). Here is its 
graph: 
 
 
 
 
 
 
 
 
 
 
 
 
 

Now consider the general quadratic function cbxaxy ++= 2 . It turns out that the shape 
of its graph is similar to one of the above graphs of 2xy =  and 2xy −=  (depending on 
whether the leading coefficient a is positive or negative). To understand why, let’s 
consider three types of transformations (deformations) of graphs of functions. Namely, 

2xy =
 

2xy −=  
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assume that we know the graph of )(xfy = , and consider how we can construct graphs 
of functions )(xafy = , ( )y f x k= + , and )( hxfy += . 
1) Consider the graph of )(xafy =  for positive a. If a > 1, this graph is obtained from the 

graph of )(xfy =  by its shrinking towards y-axis (i.e. graph becomes like narrow 
apple tree), and if a < 1, by its stretching away from y-axis (i.e. graph becomes like 
wide apple tree). So, the shape of the graph of )(xaf resembles the graph of )(xf . 
Graph of ( )y af x= −  is obtained from the graph of )(xafy =  by reflection over the 
x-axis, so the shape of the graph of ( )y af x= − resembles the graph of ( )y f x= − . 
Back to parabola, we conclude that for positive a, the graph of 2axy =  resembles the 
parabola 2xy =  and the graph of 2axy −=  resembles the parabola 2xy −= . We need 
just to stretch or shrink the graphs of 2xy =  and 2xy −=  with respect to y-axis 
depending on whether a < 1 or a > 1. The vertices of parabolas remain at the origin 

(0, 0). In the picture below, you can see graphs of 2 21,
2

y x y x= =  and 22y x= : 

 
 
 
 
 
 
 
 
 
 
2) The graph of ( )y f x k= +  is obtained from the graph )(xfy =  by its shifting along 

y-axis k units. If k > 0, the graph is shifted up, and if k < 0  – down. So, the 
transformation ( ) ( )f x f x k→ +  does not change the shape of the graph of )(xf , it 
only changes the position of the graph. 

3) Finally, consider the graph of )( hxfy += . This graph is obtained from the graph of 
)(xfy =  by its horizontal shifting along x-axis by h units. It is important not to 

confuse the direction of shifting: to the left or to the right. It may seem that for 
positive h the graph is shifted to the right, and for negative h – to the left.  However, 
this is wrong. The correct answer is just the opposite: if h > 0, graph is shifted to the 
left, and if h < 0, to the right. Here is the reason. For positive h, consider two points 

0x  and 1 0x x h= − . Point 1x  lies on the left of 0x . At point 1x , function )( hxf +  
takes the value 1 0 0( ) ( ) ( )f x h f x h h f x+ = − + = , which is the same as the value of 

)(xf  at point 0x . Since 1 0x x< , we have shift to the left. Similar reasoning is true 

when h is negative. We conclude that the shape of the parabola ( )2hxy +=  is exactly 

x 

y 

22y x=  

21
2

y x=  

2y x=  
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the same as the shape of 2xy = , and only the location is different: if h > 0, 
( )2hxy +=  is located h units to the left of 2xy = , and if h < 0, h units to the right. 

The same thing is true for functions ( )2hxy +−=  and 2xy −= . The vertex of both 
parabolas ( )2hxy +=  and ( )2hxy +−=  has the coordinates (–h, 0). 

If we combine together the above three transformations, we see that if quadratic 
function is written in the square form ( )2y a x h k= + + , then its graph resembles the 

basic parabolas 2xy =  or 2xy −= . In particular, the vertex of the parabola 

( )2y a x h k= + +  (i.e. its lowest or highest point) has the coordinates (– h, k). The 

graph of this parabola can be obtained from the graph of 2y ax=  by shifting in 
vertical direction by k  units (up or down) and in horizontal direction by h  units 
(left or right) as described above. The graph is symmetric over the vertical line that 
passes through its vertex (– h, k), so the line x = – h is the line of symmetry of the 
parabola. The parabola opens up if a > 0, and opens down if a < 0. 

To graph parabola, which is in the square form ( )2y a x h k= + + , we can use the 
following steps. 

1) Plot the vertex (– h, k). 
2) Draw dotted vertical line through the vertex. This is the line of symmetry of the 

parabola. 
3) Identify whether the parabola opens up or down by looking at the sign of the leading 

coefficient a. If  a > 0, it opens up, if a < 0, it opens down. 
4) Draw the parabola. To be more accurate, you may calculate several values of the 

parabola and plot corresponding points. In particular, you may put x = 0 to find 
 y-intercept. 
 

Example 10.1. Graph the parabola ( ) 432 2 ++= xy . 

Solution. Let’s follow the above steps. We have a = 2, h = 3, k = 4. 
1) Plot the vertex (– h, k) = (–3, 4): 
 
 
 
 
 
 
 

 
 
 
 
 

67



 
Session 10: Parabolas 

2) Draw dotted vertical line of symmetry through the vertex (–3, 4): 
 
 
 
 
 
 
 
 
 
 
 
 
3) Identify how parabola opens (up or down) looking at the leading coefficient a = 2. It 

is positive, so parabola opens up. 
4) To draw parabola more accurate, calculate several values: 

( ) 124312)1( 2 =++−=−y , so the graph contains the point ( – 1, 12). 
( ) 64322)2( 2 =++−=−y , so the graph contains the point ( – 2, 6). 

      The parabola looks like this 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note. It is not needed to always show dotted line for the line of symmetry. Final picture 
may look like this: 
 
 
 
 
 
 
 
 
 
 
 

( ) 432 2 ++= xy  
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Notice that any quadratic function cbxaxy ++= 2  can be represented in the square form 

( )2y a x h k= + +  (and, therefore, its graph has the same shape as above). Actually, we 
already did it in the previous session when we discussed the method of the completing 
the square for quadratic equation. Let’s repeat this procedure one more time (with small 
modification). We can use these steps. 

1) On the right side of cbxaxy ++= 2 , factor out the coefficient a from the first two 
terms: 

cx
a
bxay +






 += 2 . 

2) Divide coefficient 
a
b  by 2 and square it: 2

22

42 a
b

a
b

=





 . 

3) Inside parentheses (in step 1), add and subtract the above expression: 

2

22
22

422
2

a
b

a
bx

a
bxx

a
bx −






+⋅+=+ . 

4) The first three terms on the right side of the above expression can be written as 
2

2






 +

a
bx , therefore 

2

22
2

42 a
b

a
bxx

a
bx −






 +=+ . 

5) Write the expression for y as 

c
a

b
a

bxacx
a
bxay +












−






 +=+






 += 2

22
2

42
 

   
a

bac
a

bxac
a

b
a

bxa
4

4
242

2222 −
+






 +=+−






 += . 

 
We’ve got the square form ( )2y a x h k= + +  of the parabola cbxaxy ++= 2 : 

a
bac

a
bxay

4
4

2

22 −
+






 += , 

where 

    
a

bh
2

= ,  
24

4
ac bk

a
−

= . 

Actually, to draw the graph of the parabola cbxaxy ++= 2 , you do not need to go 
through the above steps every time. Just memorize the most important formula for 
the x-coordinate of the vertex of parabola, which we denote as vx : 
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This is the first coordinate  –h for the vertex (– h, k). The second coordinate k is the value 

24
4v

ac bk y
a
−

= = . This formula is more complicated and you do not need to memorize it. 

This coordinate can be calculated by substitution the value of vx  for x in the original 
parabola cbxaxy ++= 2 . 
Here are possible steps to graph the general parabola cbxaxy ++= 2 . 

1) Identify coefficients a, b, and c. 

2) Calculate the x-coordinate vx  of the vertex of the parabola: 
a

bxv 2
−= . 

3) Calculate the y-coordinate vy  of the vertex by substituting vx  in the original equation. 

4) Follow the above steps for graphing the parabola ( )2y a x h k= + + , where  
,v vh x k y= − = . 

Example 10.2. Graph the parabola 582 2 −+−= xxy . 
Solution. 
1) Identify the coefficients a, b, and c: a = –2, b = 8, c = –5. 

2) Calculate the x-coordinate of the vertex: 2
)2(2

8
2

=
−⋅

−=−=
a

bxv . 

3) Calculate the y-coordinate of the vertex by substitution 2=vx  in the original 
equation: 352822 2 =−⋅+⋅−=vy . 
So, the vertex of the parabola has the coordinates (2, 3). 

4) Draw the parabola according to the steps described for the square form 
( )2y a x h k= + + . In particular, parabola opens down (because a = –2 < 0) and has a 

vertical line of symmetry that passes through the vertex (2, 3). Also (for more 
accuracy), we can calculate the values y(0) = –5, and y(1) = 1. Here is the picture.  

 
 
 
 
 
 
 
 
 
 
 

582 2 −+−= xxy  

a
bxv 2

−=  
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Note. To graph the parabola more accurate, you may want to find x- and y-intercepts. It is 
very easy to find y-intercept. Indeed, any point on y-axis has the first coordinate zero, so 
just put x = 0 into the function cbxaxy ++= 2 , and you will get 
that y-intercept is equal to c. To find x-intercepts, put y = 0 and solve the quadratic 
equation 2 0ax bx c+ + = . 
 
Consider in more details how parabola shows possible cases about the number of real 
solutions (roots) of the equation 02 =++ cbxax . In general, solving the equation 

0)( =xf  means to find all values of x for which the function )(xfy =  takes the value of 
zero: y = 0. Geometrically, points (x, 0) lie on the x-axis. Therefore, roots of the equation 

0)( =xf  are x-coordinates of points of intersection of the graph of )(xfy =  with the x-
axis. So, to solve the equation f(x) = 0 we just need to find all x-intercepts of the graph of 
the function )(xfy = . 
In particular, to solve the quadratic equation 02 =++ cbxax , we need to find all 
x-intercepts of the parabola cbxaxy ++= 2 . We consider the case a > 0 (parabola opens 
up). The case a < 0 is similar. Obvious there are only three possible positions of the 
parabola with respect to x-axis: 

1) Vertex of the parabola is located below x-axis. In this case there are two 
x-intercepts, so there are two roots of the quadratic equation. 

2) Parabola touches the x-axis at one point (at the vertex), so there is only one root. 

3) Parabola is located above x-axis. In this case, no x-intercepts, so no roots. 

Here are the corresponding pictures: 
 
 
 
 
 
 

 
 
 
 

         Two roots   One root   No roots 
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Exercises 10 
 
In exercises 10.1 and 10.2, 

1) Identify coordinates of the vertex of given parabola. 
2) Determine whether the parabola opens up or down 

 
10.1  a)  23( 4) 5y x= + −  

 b)  24( 2) 6y x= − − +  

 c)  27( 5) 4y x= − −  

 10.2  a)  25( 3) 7y x= − − +  

 b)  26( 7) 3y x= + −  

         c)  22( 1) 8y x= − + +  
 
In exercises 10.3 and 10.4,  the given graphs are shifted graphs of the parabola 23y x= . 
Write the equations of the drawn parabolas 

1) In square form 2( )y a x h k= + + . 

2) In general form 2y ax bx c= + + . 

 
10.3. 
                     a)              b) 
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10.4.  
                                 a)                       b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In exercises 10.5 and 10.6,  the given graphs are shifted graphs of the parabola 22y x= − . 
Write the equations of the drawn parabolas 

1) In square form 2( )y a x h k= + + . 

2) In general form 2y ax bx c= + + . 

 
10.5. 

                 a)                 b) 
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10.6. 
             a)                                         b) 

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
In exercises 10.7 and 10.8,  for each of the quadratic functions 

1) Find the vertex of parabola. 
2) Find the y- intercept. 
3) Find the x- intercepts. 
4) Write the equation of the line of symmetry. 
5) Graph the parabola. 
6) Label the vertex and x- and y- intercepts with numbers or coordinates. 

 
10.7. a)  2 2 3y x x= − −  

b)  2 4 5y x x= − − +  

 10.8. a)  2 2 8y x x= − − +  

          b)  2 6 5y x x= − +  
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Session 11 
 

Distance Formula, Midpoint Formula, and Circles 
 
When we say that a point is given we mean that coordinates of the point are given. If A is 
a point in the plane and (x, y) are its coordinates in the system of coordinates, we will also 
denote this point as ( , )A x y . 

Distance Formula 
Assume two points 1 1( , )A x y  and 2 2( , )B x y  are given. The problem is to find distance 
between them (i.e. to get a formula for this distance). 

Recall that if we plot a point 0 0( , )C x y  in the system of coordinates, then 0x  is a 
horizontal coordinate (along x-axis), and 0y  is a vertical coordinate (along y-axis):    

 
 
 
 
  
Now consider two points 1 1( , )A x y  and 2 2( , )B x y : 

 
 
 
 
 
 
 
 
 
We denote ( , )d A B  to be distance between points A and B (i.e. the length of the segment 
AB). To find this distance, we may draw a right triangle with the hypotenuse AB and 
horizontal and vertical legs:  
 
 
 
 
 
 
 
 
 
We can see that leg 2 1AC x x= −  and  leg 2 1BC y y= − . By Pythagorean Theorem, 

y 

x 

• 

0x  

0y  

0 0( , )C x y  

 

x 

y 

1x  

1y  

1 1( , )A x y  

2 2( , )B x y  

2y  
 

2x  

x 

y 

2 1x x−  
1y  

2 1y y−  

2x  1x  

A 

B 
2y  

C 
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( ) ( )2 22 2 2 2
2 1 2 1( , )d A B AB AC BC x x y y= = + = − + − . 

By taking square root from both sides, we get Distance Formula: 
 

                                         ( ) ( )2 2
2 1 2 1( , )d A B x x y y= − + −  

 
Here 1 1( , )x y  and 2 2( , )x y  are coordinates of the points A and B respectively. 

Note. Distance formula will not change, if we switch (exchange) 1x  and 2x , and/or 1y  
and 2y . The reason is that if a and b are two numbers, then 2 2( ) ( )a b b a− = − . Also, the 
distance formula is valid for points located in any quadrants (not only in the 1st one). 

Example 11.1. Calculate the distance between points (2, 3)A −  and ( 5, 7)B − − . 

Solution. By distance formula we get: 

( ) ( ) ( ) ( )2 2 2 2 2 2( , ) 2 ( 5) 3 ( 7) 2 5 3 7 7 4 49 16 65d A B = − − + − − − = + + − + = + = + =

 
Later, in Session 19 “Solving Oblique Triangles – Law of Cosines”, in Example 19.4 we 
will justify the following method to check whether a triangle with given sides a, b, and c 
is acute, obtuse or right triangle: 
Let c be the biggest side of the triangle. Calculate the value 222 cbaE −+= . 
 If E > 0, the triangle is acute. 
 If E < 0, the triangle is obtuse. 
 If E = 0, the triangle is right. 
 
Example 11.2. Let three vertices of triangle ABC be (2, 3), ( 5, 7)A B− − −  and ( 2, 6)C − . 
Determine what kind of triangle it is: acute, obtuse, or right triangle. Also, determine 
which angle in the triangle ABC is the biggest angle, and which angle is the smallest one. 

Solution. First, we calculate squares of all three sides of triangle ABC (there is no need to 
calculate the sides themselves because the above expression for E contains squares of 
sides only). Side AB we already calculated in Example 11.1, so 2 65.AB =  Using distance 
formula for sides AC and BC we have: 

( ) ( ) ( ) ( )2 2 2 22 2 ( 2) 3 6 2 2 9 16 81 97AC = − − + − − = + + − = + = , 

( ) ( ) ( ) ( )2 2 2 22 5 ( 2) 7 6 5 2 13 9 169 178BC = − − − + − − = − + + − = + = . 

We see that side BC is the biggest one. Now we can construct the above expression for E:  

  2 2 2 65 97 178 16E AB AC BC= + − = + − = − . 
Since E is negative, we conclude that triangle ABC is obtuse. In any triangle, the bigger 
side, the bigger opposite angle. In our case, the biggest side is BC, and the smallest side is 
AB. Therefore, the biggest angle is A, and the smallest one is C. 
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Midpoint Formula 
 
Let A and B be two points. Midpoint formula gives coordinates of the point C located in 
the middle of the line segment AB. To get this formula, consider first the simplest case 
when points A and B lie on the number line (i.e. on horizontal x-axis): 
 
 

Here point C is the midpoint of the segment AB. Any point on number line is defined by 
its coordinate (a number). Let a, b, c be coordinates of points A, B, C correspondingly. 
Distance between points A and B (i.e. length of the segment AB) is AB b a= − . It is easy 
to show that coordinate c of the midpoint C is the average of coordinates a and b: 

2
a bc +

= . Indeed, with this coordinate, distance AC is half of the distance AB: 

          
2

2 2 2 2
a b a b a b a ABAC c a a+ + − −

= − = − = = = . 

Now, let points A, B and midpoint C lie in the plane and has coordinates 1 1 2 2( , ), ( , )x y x y  
and ( , )m mx y  respectively: 

 
 
 
 
 
 
 
 
We can see that mx  is midpoint of the segment 1 2[ , ]x x  on x-axis, and my  is midpoint of 
the segment 1 2[ , ]y y  on y-axis. Therefore, mx  is average of 1x  and 2x , and my  is average 
of 1y  and 2y . We come up to the Midpoint Formula: 
Coordinates ( , )m mx y  of the midpoint C of the line segment AB are averages of the 
corresponding coordinates of endpoints 1 1( , )A x y  and 2 2( , )B x y : 
 

1 2 1 2,
2 2m m

x x y yx y+ +
= =  

 
Example 11.3. Calculate the coordinates of the midpoint of the line segment with 
endpoints ( 3, 4)−  and ( 7,10)− . 
Solution. Let ( , )m mx y  be coordinates of the midpoint. By the midpoint formula 

        3 ( 7) 10 5
2 2mx − + − −

= = = −  and 4 10 14 7
2 2my +

= = = . 

A C B 
x 

x 

y 

A 

1x  2x  

1y  

2y  
 

B 

C 
my

 
 

mx  
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Answer: midpoint has coordinates ( 5,7)− . 

Example 11.4. Let (4, 7)A −  be endpoint of a line segment, and ( 6, 9)C −  be its 
midpoint. Find the coordinates of another endpoint of the line segment. 
Solution. Denote another endpoint as ( , )B x y . We will use midpoint formula with given 
midpoint ( 6, 9)C − , so 6mx = −  and 9my = . We have 

46 12 4 16,
2m

xx x x+
= − = ⇒ − = + ⇒ = −  

79 18 7 25.
2m

yy y y− +
= = ⇒ = − + ⇒ =  

Answer: endpoint B has coordinates ( 16, 25).−  
 
Circle 

By definition, circle is a set of points in the plane equidistant (having the same distance) 
from a fixed point on this plane. This fixed point is called the center of the circle, and the 
distance from any point on the circle to the center is called the radius. 
Equation of a circle can be easily derived directly from the distance formula. Let ( , )C a b  
be a center of a circle, and ( , )A x y  be any point on the circle. If r is the radius of the 
circle, then, by definition, ( , ) .d A C r=  

By distance formula, ( ) ( )2 2( , )d A C x a y b r= − + − = . Square both sides, and we get 
Equation of the Circle: 
 

     ( ) ( )2 2 2x a y b r− + − =  

This equation is called the equation of circle in standard form. Here ( , )a b  are 
coordinates of the center of the circle, and r is its radius. 
 
Example 11.5. Identify center and radius of the circle ( ) ( )2 23 5 15x y− + + = . 

Solution. This equation in given in standard form, and we get answer immediately: 
center has coordinates (3, 5)− , and radius is 15 . 

Note. Notice that in the above example, the second coordinate of the center is 5− , not 5. 
This is because according to the equation of circle, we represent 5y b y− = +  as 

( 5)y − − , so 5b = − . Also, radius is equal to 15 , but not 15, since number 15 is the 
square of the radius. 
 
Equation of a circle may be given not in the standard form. In this case, to identify center 
and radius, represent the equation of circle in standard form first. Useful technique to do 
this is the completing the square. For review, you may take a look at Session 9 
“Completing the Square and Quadratic Formula”. 
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Example 11.6. Identify center and radius of the circle given by the equation 

    2 2 8 10 32 0x y x y+ + − + = . 
 
Solution. We reorganize terms and write the equation like this 

   ( ) ( )2 28 10 32 0x x y y+ + − + = . 

 Now complete the square for both x and y. According to procedure for completing the 
square that we described in Session 9, in each pair of parenthesis we divide coefficients 
for x and y by 2 and square them: 2 2(8 / 2) 16, ( 10 / 2) 25.= − =  Then we add 16 and 25 to 
both sides of the equation: 

( ) ( ) ( ) ( )2 22 28 16 10 25 32 16 25 4 5 32 41,x x y y x y+ + + − + + = + ⇒ + + − + =

( ) ( ) ( ) ( )2 2 2 24 5 41 32 4 5 9.x y x y+ + − = − ⇒ + + − =  
 
We’ve got equation of circle in standard form. From here, coordinates of the center are 
( 4, 5)−  and radius is 3. 
 
Example 11.7. Graph the circle from example 11.6 and label four points on the circle. 
 
Solution. In example 11.6, we calculated that the center is ( 4, 5)−  and radius is 3. We 
use this info to graph the circle by the following steps: 

1) Plot center ( 4, 5)− . 

2) From the center, draw dotted horizontal and vertical lines. 
3) Along these lines, count 3 units (which is radius) starting from the center in all 

four directions: up, down, left and right. Mark four corresponding points as A, B, 
C, and D. These points are on the circle. 

4) Draw the circle through the points A, B, C, and D. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Points A, B, C, D has coordinates ( 4, 8), ( 4, 2), ( 7, 5), ( 1, 5).A B C D− − − −  

y 

x 
–1  –2 –3 –4 –5 –6 –7 

1  
2  
3  
4  
5  
6  
7  
8  

0  

A  

B  

D C 
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Exercises 11 
 
In exercises 11.1 and 11.2, calculate the distance between given points. 
 
11.1.  (5, 4)  and ( 1, 2)−   11.2.  ( 2, 5)−  and ( 3, 12)−  
 
In exercises 11.3 and 11.4,  three vertices A, B and C of triangle ABC are given. 

1) Determine what kind of triangle it is: acute, obtuse, or right triangle. 
2) Determine which angle in the triangle ABC is the biggest angle, and which angle is the 

smallest one. 
(You may want to review Example 11.2) 
 
11.3.  ( 2, 3), (5, 2), (6, 5)A B C− − −   11.4.  ( 2, 4), ( 7, 1), (4, 2)A B C− − − −  
 
In exercises 11.5 and 11.6, calculate the coordinates of the midpoint of the line segment with 
given endpoints. 
 
11.5.  (3, 4)−  and ( 5, 6)− −   11.6.  (4, 5)−  and (2, 7)  
 
In exercises 11.7 and 11.8,  C is midpoint of line segment AB. Coordinates of points A and C 
are given. Find the coordinates of point B. 
 
11.7.  ( 9, 7), ( 4, 5)A C− −   11.8.  (5, 8), ( 1, 3)A C −  
 
In exercises 11.9 and 11.10, identify center and radius of the given circle. 
 
11.9.  a)  ( ) ( )2 22 4 36x y+ + + =  

          b)  ( ) ( )2 25 2 20x y+ + − =  

 11.10.  a)  ( ) ( )2 26 3 32x y− + − =  

          b)  ( ) ( )2 27 8 50x y− + + =  
   

In exercises 11.11 and 11.12, points A and B are given endpoints of the diameter of a circle. 
Find the equation of the circle in standard form ( ) ( )2 2 2x a y b r− + − = . 
 
11.11.  (2, 8), ( 8, 16)A B − −   11.12.  (20, 25), (4, 5)A B −  
 
In exercises 11.13 and 11.14, equations of circles are given. For each circle 

1) Find the coordinated of the center and radius. 
2) Graph the circle. 
3) Label four endpoints of vertical and horizontal diameters with coordinates. 

 
11.13.  a)  2 2 4 2 11 0x y x y+ + − − =  

            b)  2 2 10 8 32 0x y x y+ − − + =  

 11.14.  a)  2 2 8 2 8 0x y x y+ − + + =  

          b)  2 2 6 4 12 0x y x y+ + + − =   
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Session 12 
 

Systems of Three Linear Equations in Three Variables 
 
The general form of such systems is this 









=++
=++
=++

3333

2222

1111

dzcybxa
dzcybxa

dzcybxa
. 

Here x, y, and z are variables (unknown values). All other letters are given numbers. 
Numbers that are written next to variables  (labeled with letters a, b and c) are called the 
coefficients of the system. The above system has 9 coefficients. A solution of the system 
is a triple (x, y, z) that satisfies the system (makes each equation a true statement after 
substitution numerical values of variables). 
Note. Keep in mind that a triple (x, y, z) represents one solution, not three. 
There are different methods of solving systems of linear equations with any number of 
equations and any number of variables. Here we consider the elimination method. This 
method suggests to eliminate one of the variables from two equations of the system using 
the third equation. After elimination of one variable, we get two equations with two other 
variables. We can solve this system using elimination method again. As a result, we will 
find the values of two unknowns. Finally, we substitute these values into one of the 
equations of the original system and solve it for the third unknown. To eliminate a 
variable, we multiply equations by appropriate numbers and then add them up. For this 
reason, this method is also called addition-elimination method. 
Theoretically, there are three possibilities regarding the number of solutions of the linear 
system: it may have 
1) One solution (so, one triple). We also say that the system has unique solution. 
2) No solutions at all. Such system is called inconsistent. 
3) Infinite many solutions. Such system is called dependent. 

Let’s consider corresponding examples. 

Example 12.1. Solve the system 

3 2 3
2 4 5 1

8 3 3 17

x y z
x y z

x y z

− + = −
 + − =
− + + =

. 

Solution. We have many options to eliminate variables. Actually, we can eliminate either 
one. Let’s eliminate y from the second and third equations using the first equation (in 
which the coefficient for y is  –1). 
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1) Consider together first and second equations: 





=−+
−=+−
1542
323

zyx
zyx

 

To eliminate y, we want coefficients for y in both equations to be equal by absolute 
values but have the opposite signs. In this case, if we add the equations, variable y will be 
cancelled (eliminated). To get this case, it’s enough to multiply the first equation by 4. 
Note.  Multiplication the equation by a number means multiplication all terms of the 
equation by this number. We get 





=−+
−=+−
1542

128412
zyx
zyx

 

Now we add these equations and  y is eliminated: 

  12x + 2x + 8z – 5z = – 12 + 1, or 14x + 3z = –11. 

2) To eliminate y from the third equation, consider first and third equations together: 

  




=++−
−=+−
17338

323
zyx
zyx

 

Number 3 outside the braces means that we intend to multiply the first equation by 3: 





=++−
−=+−
17338

9639
zyx
zyx

 

Add these equations to eliminate y: 9x –8x + 6z +3z = –9 + 17, or x + 9z = 8. 

3) Combine the resulting equations from steps 1 and 2 into one system: 





=+
−=+
89

11314
zx
zx

. 

4) Solve the above system (using the elimination method again): 

   




=+
−=+
89

11314
zx
zx

    ⇒   




−=−−
−=+

11212614
11314

zx
zx

  

  3z – 126z  = –11 – 112   ⇒    –123z = – 123   ⇒    z = 1. 

5) At this point we found variable z = 1. Now we move back in the above steps. 
Substitute z = 1 into the second equation in step 3) and solve for x: 

    9 1 8 1.x x+ ⋅ = ⇒ = −  

3 

–14 
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6) Substitute the values x = – 1 and z = 1 into the first equations of the original system, 
and solve it for y: 

312)1(3 −=⋅+−−⋅ y ,   –3 –y + 2 = –3,   –y = – 3 + 3 –2,   –y = –2,   y = 2. 

Final answer: the system has one (unique) solution 

x = –1,  y = 2,  z = 1, or as a triple (–1, 2, 1). 
 
Example 12.2. Solve the system 

2 4 5
2 3 1
4 7 7

x y z
x y z
x y z

− + =
 + − =
 − + =

. 

Solution. Let’s eliminate z from the first and third equations using the second equation 
(which has coefficient –1 for z). Of course, you may eliminate any other variable. 

1) Consider the first and second equations: 

  
2 4 5

2 3 1
x y z
x y z
− + =

 + − =
  ⇒  

2 4 5
8 12 4 4

x y z
x y z
− + =

 + − =
     

Add the last equations to eliminate z: x + 8x – 2y + 12y = 5 + 4,   9x + 10y = 9.  

2) Consider the second and third equations: 

  




=+−
=−+

774
132

zyx
zyx

  ⇒  
14 21 7 7
4 7 7

x y z
x y z
+ − =

 − + =
 

Add the last equations: 14x + 4x +21y – y  = 7 + 7,  18x + 20y = 14,  9x + 10y = 7. 

3) Combine the resulting equations from steps 1 and 2 into one system: 

9 10 9
9 10 7

x y
x y
+ =

 + =
 

4) Solve the above system. Notice that the left sides of both equations are the same but 
the right sides are different. Therefore, this system does not have solutions, so the 
system is inconsistent. 
Final answer: the system does not have solutions, or, in other words, the solution set 
is empty set (the symbol for empty set is ∅ ). 

Example 12.3. Solve the system 









−=−+
=+−
=+−

423
7568
5342

zyx
zyx
zyx

. 

4 

7 
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Solution. Let’s eliminate x from the first and second equations using the third equation 
(which has coefficient 1 for x). 
1) Consider the first and third equations: 

  




−=−+
=+−

423
5342

zyx
zyx

  ⇒  




=+−−
=+−

8462
5342

zyx
zyx

 

Add the last equations to eliminate x:   – 4y – 6y + 3z + 4z = 5 + 8,   –10y + 7z = 13. 

2) Consider the second and third equations: 

  




−=−+
=+−

423
7568

zyx
zyx

  ⇒  




=+−−
=+−

3216248
7568

zyx
zyx

 

Add the last equations: – 6y – 24y + 5z + 16z = 7 + 32,  – 30y + 21z = 39, 
–10y + 7z = 13. 

3) Combine the resulting equations from steps 1 and 2 into one system: 





=+−
=+−

13710
13710

zy
zy

. 

4) Solve the above system. Notice that both equations coincide. So, actually, we have 
only one equation. In this case we cannot find the values of y and z uniquely. Indeed, 
we can assign any numerical value to one of the variables y or z, say to z. Then we 
can solve the above equation for y. Because there are infinite values of z to select, we 
get infinite number of pairs ),( zy  which are solutions of the above equation. It 
means that the system has infinite many solutions. By substitution y and z in any of 
the original equations, we can find x. Finally, we will get infinite many triples 
(x, y, z). So, the system is dependent. 

We come up to an interesting question how to describe the infinite set of all solutions of 
the system. Of course, we cannot create an infinite list of them. Instead, we can use the 
parametric form to describe the solution set. It means the following. Let’s solve the 
above equation –10y + 7z = 13 for y in terms of z: 

 –10y = 13 – 7z,  .
10
7

10
13 zy +−=  

Here the variable z may take any values, and we call it the free parameter. Let’s denote 

this parameter by the letter t: z = t. Then, ty
10
7

10
13

+−= . Now, we can express the 

variables x in terms of the parameter t by substituting expressions for y and z into any 
equation of the original system. Let’s substitute expressions for y and z into the thirds 
equation (in which coefficient for x is 1) and solve for x: 

13 7 39 213 2 4 2 4
10 10 10 10

x t t x t t + − + − = − ⇒ − + − = − 
 

 

–2  

–8  
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39 21 39 21 20 40 12 4
10 10 10 10

t t tx t t − + − − −
= − + − = =  

We can also write x as tx
10
1

10
1
−−= . Now we have described all unknowns in the 

parametric form: 
1 1 13 7, , .

10 10 10 10
x t y t z t= − − = − − =  

Here t is a parameter that takes any numerical value. 

Note. We can get the specific (particular) numerical solutions of the original system from 
the above parametric representation by assigning any specific number to the parameter t. 

For example, if we put t = 0, we get the particular solution 0,
10
13,

10
1

=−=−= zyx .  
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Exercises 12 
 
In exercises 12.1 and 12.2, solve the system of equations. 
If the system is inconsistent, state that. 
If the system is dependent, state that. 
 
12.1. 

     a)   

2 3 10
5 2 3 1

3 4 5 5

x y z
x y z

x y z

− + = −
 + − =
− + + = −

 

 

     b)   

3 2 1
11 10 9 5

2 3 1

x y z
x y z

x y z

+ + =
 + + =
 + + =

 

 

     c)   

5 3 8 6
2 1

3 2 5 4

x y z
x y z
x y z

+ − =
 + − =
 + − =

 

 12.2. 

    a)     

4 2 3 10
2 5 21

8 7 5 6

x y z
x y z
x y z

+ − =
− + + = −
 + − =

 

 

    b)     

3 4
3 2 3
6 4 2 1

x y z
x y z
x y z

− + =
 + + =
 + + = −

 

 

    c)     

3 2 4
2 3

4 3 7

x y z
x y z

x y z

+ + =
 − + =
 + + =

 

 

Challenge Problem 
 
For the systems in exercises 12.1 and 12.2, that are dependent,  

1)  Describe solutions in parametric form. 
2)  Find a particular solution. 

(Answers may vary). 

86



 
Session 13: Determinants and Cramer’s Rule 

Session 13 
 

Determinants and Cramer’s Rule 
 
In previous session we considered solving systems of three linear equations by using 
elimination method. This method requires some specific operations upon the equations of 
given systems. Here we consider formulas that allow to calculate solutions explicitly by 
direct substitution of coefficients of equations into these formulas, rather than 
manipulating with equations. Such formulas are called the Cramer’s rule named after 
Gabriel Cramer (1704 – 1752), a Swiss mathematician. Cramer’s rule is not efficient for 
systems with many equations, and it is not used in practical calculations. However, it is 
easy to use for systems with two and three equations that we consider here. Cramer’s rule 
is especially convenient if coefficients of systems are integers, but the solutions are 
fractions. Also, it has a theoretical importance. 
 
Case of the system with two equations 
Let’s derive Cramer’s rule for the system 





=+
=+

feydx
cbyax

 

First, we solve this system by elimination method. Let’s eliminate variable y by 
multiplying the first equation by e, the second equation by –b, and adding the resulting 
equations: 

               




=+
=+

feydx
cbyax

    ⇒   




−=−−
=+

bfbeybdx
cebeyaex

 

Add the last equations, and solve for x: aex – bdx = ce – bf   ⇒    (ae – bd)x = ce – bf, 

          
bdae
fbcex

−
−

= . 

In similar way we can find y by eliminating x: 
 

   




=+
=+

feydx
cbyax

   ⇒     




=+
−=−−
afaeyadx
cdbdyadx

 

Add the last equations, and solve for y:  – bdy + aey = –cd + af  ⇒   (ae – bd)y = af – cd, 

   
bdae
cdafy

−
−

= . 

We come up to the following general formulas for the solutions of the system of two 
linear equations with two variables: 

-b 
             e 
 

 – d 
a 
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bdae
fbcex

−
−

= , 
bdae
cdafy

−
−

= . 

Observe these formulas. Notice that the denominators of both fractions are the same, and 
structure of numerators looks similar to denominators. Cramer’s rule represents these 
formulas in terms of a special number that is called the determinant. For the system of 
two equations, determinant is defined by four numbers, say k, l, m, and  n. Here is the 
notation and the definition of the determinant: 

mlkn
nm
lk

−= . 

We call it 22×  determinant. As you can see, to calculate it, we take the product along 
the main diagonal (from left top corner to right bottom corner, so we multiply k by n) 
minus the product along the minor diagonal (from left bottom corner to right top corner, 
so we multiply m by l). 
If you return back to the formulas for x and y, you may notice that their numerators and 
denominators can be written in terms of determinants. We come up to the following 
Cramer’s rule. Solution of the system 





=+
=+

feydx
cbyax

 

includes three steps: 

1) Calculate the following determinant D which is called the determinant of the system: 

bdae
ed
ba

D −== . 

 Notice that “free” coefficients c and f from the right side of the system are not used in 
the determinant D. It consists of the coefficients for x and y only. 

2) Calculate another two determinants, xD  and yD : 

       bfce
ef
bc

Dx −== ,  cdaf
fd
ca

Dy −== . 

 Notice that determinant xD  is obtained from D by replacing its first column with the 
column of “free” coefficients c and f. Similar, determinant yD  is obtained from D by 
replacing its second column with the column of “free” coefficients. 

3) Calculate the solution of the system by the formulas 

D
Dx x= ,  

D
D

y y= . 

Note. As you see, the denominator in these fractions is the determinant D. Therefore, 
these formulas make sense only if 0≠D . If D = 0, then the system does not have unique 
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solution. Instead, it either does not have solutions at all (the system is inconsistent), or it 
has infinite many solutions (the system is dependent). To detect which case we have, we 
should check xD  (or yD ) for zero. If 0≠xD , then there are no solutions. If 0=xD , 
then the system has infinite number of solutions. (It can be shown that if D = 0, then both 

xD  and yD  are equal or not equal to zero simultaneously). 

Example 13.1. Solve the following system using the Cramer’s rule. 





=+
=−

735
427

yx
yx

. 

Solution. 

1) Calculate the determinant D of the system: 

311021)2(537
35
27

=+=−⋅−⋅=
−

=D . 

2) Calculate the determinants xD  and yD : 

261412)2(734
37
24

=+=−⋅−⋅=
−

=xD , 

.2920494577
75
47

=−=⋅−⋅==yD  

3) Write the solution of the system: 

31
26

==
D
Dx x ,  

31
29

==
D
D

y y . 

Final answer: 
31
26

=x , 
31
29

=y , or, as a pair, 
26 29,
31 31

 
 
 

. 

Case of the system with three equations 

Consider the Cramer’s rule for the system 









=++
=++
=++

3333

2222

1111

dzcybxa
dzcybxa

dzcybxa
. 

Similar to systems with two equations, the solutions of this system can also be 
represented in terms of determinants as ratios of determinants xD , yD , and zD  
corresponding to variables x, y, and z, to the common determinant D of the system. Let’s 
describe how to find these determinants. 
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We will not derive here corresponding formulas, and just provide the final result. The 
determinant D of the above system is denoted by 

333

222

111

cba
cba
cba

D = . 

This is a 33×  determinant constructing from the coefficients of the system. There are 
several methods to calculate it. We consider here only one method: direct calculation. 

Direct calculation method. Here is the formula for determinant D: 

132321321 cbaacbcbaD ++=  
                 132321321 abccababc −−− . 

This formula seems difficult to memorize. Notice that it contains six terms: three terms 
with the plus sign, and another three with the minus sign. Here is one of the possible 
ways to memorize the formula. Let’s extend (double) the determinant D to the following 
table: 

















333333

222222

111111

cbacba
cbacba
cbacba

. 

To get three terms of the determinant with the plus sign, calculate products along the 
main diagonal 321 ,, cba , and two parallel diagonals 321 ,, acb  and 321 ,, bac . 

To get three terms with the minus sign, calculate products along the minor diagonal 
123 ,, cba , and two parallel diagonals 123 ,, acb  and 123 ,, bac . 

Note. The last column of the above table is not used, so it is not necessary to write it. 

Example 13.2. Calculate the following determinant by direct calculation 

302
423
265

−
−−

=D . 

Solution. Construct the extended table (we dropped the last column) 
















−

−−−

02302
23423
65265

 

We have 
  03)2(2)4()6(325 ⋅⋅−+⋅−⋅−+⋅⋅=D  

     1405484830)6(335)4(0)2(22 =+++=−⋅⋅−⋅−⋅−−⋅⋅− . 
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Now, we are ready to describe the Cramer’s rule for the system 









=++
=++
=++

3333

2222

1111

dzcybxa
dzcybxa

dzcybxa
. 

1) Calculate the determinant D of this system: 

333

222

111

cba
cba
cba

D = . 

2) Calculate three other determinants, xD , yD  and zD  that correspond to variables x, y, 
and z. These determinants are constructed by replacing corresponding columns of the 
determinant D with the column from the right side of the system:   

333

222

111

cbd
cbd
cbd

Dx = ,     

333

222

111

cda
cda
cda

Dy = ,     

333

222

111

dba
dba
dba

D = . 

3) Calculate the solution of the system by the formulas 

, ,yx zDD Dx y z
D D D

= = = . 

Note. Similar to the case of the system with two variables, there is no solution or there is 
infinite number of solutions if D = 0. 

Example 13.3. Solve the following system using the Cramer’s rule. 









=+
−=−+

=−−

532
8423

7265

zx
zyx
zyx

 

Solution.  

1) The determinant D of the system is 
302
423
265

−
−−

=D . 

This is exactly the same determinant as in example 13.2, so D = 140. 

2) Calculate the determinants xD , yD  and zD : 
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305
428
267

−−
−−

=xD ,   
352
483
275

−−
−

=yD ,   
502
823
765

−
−

=zD . 

For determinate xD , construct the extended table 

7 6 2 7 6
8 2 4 8 2
5 0 3 5 0

− − − 
 − − − 
  

. 

7 2 3 ( 6) ( 4) 5 ( 2) ( 8) 0
5 2 ( 2) 0 ( 4) 7 3 ( 8) ( 6) 38

xD = ⋅ ⋅ + − ⋅ − ⋅ + − ⋅ − ⋅
− ⋅ ⋅ − − ⋅ − ⋅ − ⋅ − ⋅ − =

    

For determinate yD , construct the extended table 

5 7 2 5 7
3 8 4 3 8
2 5 3 2 5

− 
 − − − 
  

. 

5 ( 8) 3 7 ( 4) 2 ( 2) 3 5

2 ( 8) ( 2) 5 ( 4) 5 3 3 7 201
yD = ⋅ − ⋅ + ⋅ − ⋅ + − ⋅ ⋅

− ⋅ − ⋅ − − ⋅ − ⋅ − ⋅ ⋅ = −
 

For determinate zD , construct the extended table 

5 6 7 5 6
3 2 8 3 2
2 0 5 2 0

− − 
 − 
  

.  

5 2 5 ( 6) ( 8) 2 7 3 0
2 2 7 0 ( 8) 5 5 3 ( 6) 208

zD = ⋅ ⋅ + − ⋅ − ⋅ + ⋅ ⋅
− ⋅ ⋅ − ⋅ − ⋅ − ⋅ ⋅ − =

 

3) Calculate the solutions x, y, and z of the system 

38 19
140 70

xDx
D

= = = ,  
140
201

−==
D
D

y y ,  
35
52

140
208

===
D
Dz z . 

Final answer: 
35
52,

140
201,

70
19

=−== zyx , or, as a triple, 19 201 52, ,
70 140 35

 − 
 

. 
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Exercises 13 
 
In exercises 13.1 and 13.2, solve systems of equations using Cramer’s rule. 
 

13.1.  
3 5 4

7 6 8
x y

x y
− + =
 − =

 
 

13.2.  
2 3 7
5 4 9

x y
x y
− =

 + =
 

 
In exercises 13.3 and 13.4, calculate determinants. 
 

13.3.  
3 2 1
5 4 3
2 1 7

D
−

= − −  

 

13.4.  
1 6 7
7 5 3
4 3 2

D
−

= −
−

 

 
In exercises 13.5 and 13.6, use the results of exercises 13.3 and 13.4 respectively to solve 
systems of equations using Cramer’s rule. 
 

13.5.   

3 2 1
5 4 3 0

2 7 2

x y z
x y z

x y z

− + =
− + − =
 + + =

 

 

13.6.   

6 7 2
7 5 3 1
4 3 2 0

x y z
x y z
x y z

+ − =
 − + = −
 − + =
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Session 14 
 

Nonlinear Systems of Equations in Two Variables 
 
We consider here couple examples of systems of two equations with two variables in 
which one or both equations are not linear. We also consider geometrical interpretation of 
solutions.  

Example 14.1. Solve the system of equations 




−+=

=+

84
6

2 xxy
yx

 

Solution. First of all, observe these equations. Notice that the first equation is linear, 
while the second is not (since it contains 2x ). We can easily solve the first (linear) 
equation for x or y and substitute this expression into the second (nonlinear) equation. As 
a result, the second equation will contain only one variable. Such method is called the 
substitution method. For the first equation itself, it does not matter for which variable to 
solve: for x or for y. However, it is matter for the second equation. If we solve the first 
equation for x, then we need to substitute this expression for both 2x  and x in the second 
equation, which is a bit inconvenient (especially for 2x ). It is more suitable to solve the 
first equation for y. In this case we substitute this expression into the second equation for 
y only, and we will avoid raising the expression into the second power. 

Let’s do this: solve the first equation for y: xy −= 6 . Substitute this expression into the 
second equation, and get the quadratic equation for x: 

846 2 −+=− xxx . 
Solve this equation: 

26 4 8x x x− = + − ⇒   2 4 8 6 0x x x+ − − + = ⇒   2 5 14 0x x+ − =  
 ( 2)( 7) 0x x⇒ − + = ⇒    x = 2 and x = –7.  
Now, using the expression xy −= 6 , we can find the corresponding values of y: if 

2=x , then y = 6 – 2 = 4, and if  x = –7, then y = 6 – (–7) = 13. 
Final answer: the system has two solutions: x = 2, y = 4 and x = –7, y = 13. Or, as a 
solution set, { })13,7(),4,2( − . 

Note. We can interpret the above solutions geometrically using graphs of given 
equations. The graph of the first equation is a straight line, and the graph of the second 
equations is a parabola. Solutions of the system give the points of intersection of these 
graphs. According to the final answer, the straight line and the parabola intersect each 
other at two points with the coordinates (2, 4) and (–7, 13). You can draw the 
corresponding graphs and see it for yourself. 

Example 14.2. Solve the system of equations 






−+=

+−=

46
143

2

2

xxy
xxy

. 

Solution. In this example both equations are nonlinear and both are solved for y.  In such 
a case we can easily eliminate y if we subtract these equations (in any order). Subtracting 
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the first equation from the second, we get 

 0 6 4 ( 3 14) 0 6 4 3 14 0 9 18 9 18 2x x x x x x x= − − − + ⇒ = − + − ⇒ = − ⇒ = ⇒ = . 

To find y, we can substitute x = 2 in either equation of the system. Substituting it into the 
first equation, we get 
    121464142322 =+−=+⋅−=y . 

Final answer: the system has one solution x = 2, y = 12, or as a pair (2, 12). 

Note. As in example 14.1, we can interpret the above solution geometrically. The graphs 
of both equations of the system are parabolas. According to the final answer, these 
parabolas intersect each other only at one point (2, 12). 

Example 14.3. Solve the system of equations 
2 2

2 2

3 2 30
4 3 43
x y
x y

 + =


+ =
. 

Solution. Notice that in this system both variables, x and y, are in the second power only. 
We may temporary use new variables u and v: 2 2,u x v y= = . Then, in terms of u and v, 
we have linear system 

    
3 2 30
4 3 43
u v
u v
+ =

 + =
 . 

Solve this system by elimination method: 

           
3 2 30 12 8 120
4 3 43 12 9 129
u v u v
u v u v
+ = − − = − 

⇒ + = + = 
. 

Add the last two equations to eliminate u and solve for v: v = 9. Substitute this value into 
the first equation of the system, and solve for u: 

3 2 9 30, 3 18 30, 3 12, 4u u u u+ ⋅ = + = = = . 

So, u = 4 and v = 9. Now, we need to return from u and v to original variables x and y. 
We have 2 4u x= = . From here, 4 2x = ± = ± . We got two values of x: 2 and  –2. 

Similar,  2 9 9 3v y y= = ⇒ = ± = ± . We have two values of y: 3 and  –3. 

From this point we need to be very careful to write final answer in correct way. Any 
solution of given system is a pair (x, y). Therefore, we need to combine each value of x 
with each value of y. As a result, original system has four solutions: 
         {(2, 3),  (2, –3),  (–2, 3),  (–2,–3)}. 
Note. It can be shown that graphs of the equations in given system are ellipses 
(“stretched” circles). The answer to the problem tells that these ellipses intersect each 
other at four above points.  

Example 14.4. Solve the system of equations 
2 22 15

y x
x y

 =


+ =
. 

–4 
  3 
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Solution. Here both equations are non-linear. Square the first equation: 2y x= . 
Substitute this expression into the second equation and get quadratic equation for x: 

2 22 15 2 15 0 ( 3)( 5) 0x x x x x x+ = ⇒ + − = ⇒ − + = . 

From here we get two solutions of the quadratic equation: x = 3 and x =  – 5. Now we can 
use the first equation to find corresponding values of y. 

For x = 3, 3y = . So, one solution is the pair ( )3, 3 . For x =  – 5, 5y = − . In this 

session, we consider only real numbers. Because 5−  is not a real number, we reject it. 
Finally answer: original system has only one solution ( )3, 3 . 

Note. Geometrically, the graph of the first equation is the curve, which has the shape of 
the half of parabola that “lies on the side”: it is going not along y-axis, but along x-axis, 
and the graph is located above x-axis. The second equation is the ellipse with the center 
in original. Both curves intersect each other at the point ( )3, 3 . 

Example 14. 5. The area of a rectangular region is 96 square feet, and the perimeter is 40 
feet. Find the dimensions of the region (i.e. find its length and width). 
Solution. As for most word problems, we will solve it in two steps: set up equations and 
solve equations. 
1) Let x represent the length of the region, and y represents its width. Then 96=xy  

(area of the rectangle), and 2x + 2y = 40 (perimeter of the rectangle). We come up to 
the system of equations: 





=+
=

4022
96

yx
xy

 

2) We can reduce the second equation by 2 (divide all terms by 2): 





=+
=

20
96

yx
xy

. 

Here the second equation is a linear one, and we can easily solve it for x or y. Let’s 
solve it for y: xy −= 20 . Substituting this expression in the first equation, we have 
x(20 – x) = 96,  or 9620 2 =− xx . This is a quadratic equation that can be rewritten in 
a standard form 096202 =+− xx . We can solve it by factoring: 
 (x – 8)(x – 12) = 0. From here x = 8 or x = 12. Corresponding value of y we can get 
from the expression xy −= 20 . If x = 8, then 12820 =−=y . If 12=x , then 

81220 =−=y . 

Note. It looks like we have found two solutions: x = 8, y = 12, and x = 12, y = 8. This is 
true for the system of equations. However, for given rectangle these two solutions simply 
mean that one side of the rectangle is 8, and the other is 12. Assuming that the length is 
greater than the width, we come up to the unique solution. 

Final answer: the length of the rectangle is 12 feet, and the width is 8 feet. 
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Exercises 14 
 
In exercises 14.1 and 14.2,  solve systems of equations (find real solutions). 
 

14.1.  a)  
2

3 1
2 5

x y
x y
− =


+ =

 

 b)  
2

2

5 2
3 26

x y y
x y y

 = + −


= − −
 

       c)  
2 2

0
5 36

x y
x y

 + =


− =
 

       d)  
2 2

2 3
3 2

x y
x y
− =


− = −

 

       e)  
2 2

2 2

2 34
5 3 93

x y
x y

 + =


+ =
 

 
14.2.  a)  

2

4 2
3 19

x y
x y

+ =


+ =
 

    b)  
2

2

6 2
3 16

x y y
x y y

 = + −


= + +
 

    c)  
2 2

0
3 4

x y
x y

 − =


− =
 

    d)  
2 2

3 2
8 4

x y
x y
+ =


− =

 

    e)  
2 2

2 2

5 3 28
3 2 44

x y
x y

 − = −


+ =
 

 
In exercises 14.3 and 14.4,  A represents the area of a rectangular region, and P represents 
its perimeter. Find the dimensions of the region (i.e. find its length and width). 
 
14.3.  A = 12 m2, P = 14 m.  14.4. A = 30 yd2, P = 22 yd . 
 

Challenge Problems 
 

14.5.  Solve  the system of equations 
2 ( )

ax y b
x cy d d ac bc
− =


+ = + −

. 

          Hint: Check that the quadratic equation 2 ( ) ( )x c ax b d d ac bc+ − = + −  has roots d 
and  –d – ac. 

14.6.  Consider the system of equations 
( )2 2

0x y
x a b y ab

 − =


+ − =
. 

    Prove the following statements: 
1) If  0a =  and 0b = , the system has one solutions ( )0, 0 . 

2) If  0a <  and 0b > , the system has two solutions ( ),a a− −  and ( ),b b . 

3) If  0a ≤  and 0b < , the system has one solutions ( ),a a− − . 

4) If  0a >  and 0b ≥ , the system has one solutions ( ),b b . 

5) If  0a >  and 0b < , the system does not have solutions. 
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Session 15 
 

Geometric and Trigonometric Angles 
 
Historically, trigonometry studies the relationships between angles and sides of triangles. 
In Greek, the word  “Trigonometry” literally means “Triangle-Measurement”. 
It is important to understand that in geometry and trigonometry we treat angles in 
different ways. 

In geometry, an angle is simply a figure, created by two rays, coming from the same 
point. Also, we assign the measure to an angle as some positive number. A common 
measure is the degree measure. If you cut a round pizza-pie (theoretically) into 360 
equal slices, the angle in one slice is of one degree: 1 . 

In trigonometry, we extend the meaning of an angle by assigning to it the “direction of 
rotation” and, as a result, the sign of its measure. That means that we assign to angles not 
only positive measure, but also negative. We can do this in the following way. Consider 
“geometric” angle 
 
 
 
 
 
 
 
Let’s call one of its sides initial side, and the other – terminal side. Let’s say, the 
horizontal side is the initial, and the slant side is the terminal. 
 
We can treat this angle as a result of rotation of the terminal side when it starts from the 
position of initial side and then rotates to its current position. To rotate, we have two 
directions: clockwise and counterclockwise. We can mark these two directions of rotation 
by arrows: 
 
 
 
 
 
  
 
 
 
It was an agreement to assign to an angle a positive measure if the direction of rotation is 
counterclockwise, and assign a negative measure if the direction of rotation is clockwise. 
On the left picture above, the angle is positive, and on the right – negative. 
As you can see, taking one “geometric” angle (two rays, coming from the same point), 
we can consider two “trigonometric” angles: one positive and another negative depending 

Initial side 

Terminal side 

Counterclockwise rotation: 
       angle is positive. 

Clockwise rotation: 
  angle is negative. 
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on direction in which we rotate the terminal side. Even more, we can assign to a given 
“geometric” angle infinite many “trigonometric” angles making multiple full rotations of 
terminal side in either direction. All such “trigonometric” angles have the same 
“geometric” angle and they are called coterminal angles. On two pictures above, the 
angles are coterminal. 

Example 15.1. Consider the angle of 40 : 
 
 
 
 
 
Describe all coterminal angles for this angle. 

Solution. If we make one full rotation (rotation by 360 ) of the terminal side in either 
direction, the terminal side returns to its original position and we obtain coterminal angle 
(i.e. the same “geometric” angle). We get the same result, if instead of one, we make n 
full rotations (i.e. rotations by 360 n⋅ ). All such angles are coterminal to 40  angle and 
their values are described by the parametric formula 40 360 n+ ⋅  , where parameter n is 
any integer (positive, negative, or zero). We can write that 0, 1, 2,...n = ± ± . For positive 
n, we get positive values of the angle, and for negative n – negative values. For example, 
if we put 1=n  and 1−=n , we get two specific coterminal angles: 40 360 400+ =    
and 40 360 320− = −   . 
 
Two Special Right Triangles and Three Special Angles 

In trigonometry, we often use the following two right triangles: one is a half of an 
equilateral triangle, and another is a half of a square: 
 
 
 
 
   
 
 
 
 
 
 

In the triangle ABC on the left picture, the acute angles are of 30  and 60 . We will call 
such triangle a  6030 −  triangle. In the triangle ABC on the right picture, both acute 
angles are of 45 . We will call such triangle a  4545 −  triangle. Both triangles: 

40  
Initial side 

Terminal side 

A 

B 

C 

b 

a 

c 

A 

B 

C 

a 

b 

c 

      ABC∆  is a half 
of an equilateral triangle 

ABC∆  is a half 
    of a square 
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 6030 −  and  4545 − , are called special right triangles, and angles 30 , 45  and 
60  are called special angles. 

Let’s consider special triangles in more details. For both, we will use the Pythagorean 
Theorem that states that for any right triangle with the hypotenuse c and legs a and b, the 
following equation is true: 
       222 cba =+ . 
We will also use this theorem in the forms: 

    2 2 2 2 2 2, ,c a b a c b b c a= + = − = − . 

o o30 60−  Triangle 
 
Let’s draw this triangle like this 
 
 
 
 
                                              
Recall that side c is the side of drawn above equilateral triangle, so side a is the half of 

side c: 
2
ca =  or c = 2a. Try to remember this fact:  

 

 

 
Example 15.2. Consider  6030 −  triangle with legs a, b and hypotenuse c (see picture 
above). Solve the following problems. 

1) a = 7. Find b and c. 
2) b = 5. Find a and c. 
3) c = 10. Find a and b. 

Solution. In all problems, side a is opposite to 30  angle. Therefore, c = 2a. 

1) 2 2 7 14c a= = × = . By Pythagorean Theorem 
2 2 2 214 7 196 49 147 49 3 7 3b c a= − = − = − = = ⋅ = . 

2) By Pythagorean Theorem 2 2 2c a b= +  and c = 2a. Therefore, 

( )
2

22 2 2 2 2 2 2 2 2 252 4 3
3 3
bc a a b a a b a b a= = + ⇒ = + ⇒ = ⇒ = = . 

 
25 5 5 3 10 3, 2
3 3 33

a c a= = = = = . 

30
 

60  

b 

a 
c 

In any  6030 −  triangle, the leg opposite to 30  is the half of the hypotenuse 
(or the hypotenuse is twice as this leg). 
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3) Again, c = 2a, so 
10 5

2 2
ca = = = . By Pythagorean Theorem 

2 2 2 210 5 100 25 75 25 3 5 3b c a= − = − = − = = ⋅ = . 

Let’s describe the connection between sides of  6030 −  triangle in general form. Let a 
be a side, opposite to 30 . Then the hypotenuse c = 2a. Another side b which is opposite 
to 60 , can be calculated by the Pythagorean Theorem:  

( )22 2 2 2 2 22 4 3 3b c a a a a a a a= − = − = − = = . We get the following picture 

 

 
 
 
 
If you memorize this picture (or quickly get it), you can solve problems like in example 
15.2 faster. 
 

o o45 − 45  Triangle 
 
This triangle looks like this 
 
 
 
 
 
 
 
Both sides a and b are sides of the square above, therefore, they are equal: a = b. Try to 
remember this fact:  
 
 
 
 
Example 15.3. Consider  4545 −  triangle with legs a, b and hypotenuse c (see picture 
above). Solve the following problems. 

1) a = 5. Find b and c. 
2) b = 7. Find a and c. 
3) c = 10. Find a and b. 

a 

b 

c 

45
 

45
 

30
 

60  

3a  

a 
2a 

In any  4545 −  triangle both legs are equal. 
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Solution. In all problems a and b are two legs, so they are equal: a = b. Therefore, 
problems 1) and 2) actually the same (just numbers are different). 

1) a = b = 5. By Pythagorean Theorem 

     2 2 25 25 50 25 2 5 2c a b= + = + = = ⋅ = . 

2) a = b = 7,    2 2 2 2 27 7 7 2 7 2c a b= + = + = ⋅ = . 

3) By Pythagorean Theorem and using that a = b, 

     2 2 2 2 2 2 2 2, , 2 100, 50, 50 25 2 5 2a b c a a c a a a b+ = + = = = = = = ⋅ = . 

Similar to  6030 −  triangle, let’s describe the connection between sides of  4545 −  
triangle in general form. Let a be a side, opposite to one of the 45  angle. Then the other 
side b which is opposite to another 45  angle, is the same: b = a. The hypotenuse c can 
be calculated by the Pythagorean Theorem: 

2 2 2 2 22 2c a b a a a a= + = + = = . We get the following picture 

 
 
 
 
 
 
 
 
 
 

a 

a 

2a  

45
 

45
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Exercises 15 
 
In exercises 15.1 and 15.2, determine all coterminal angles for angle θ . Also, indicate two 
positive and two negative particular coterminal angles (answers may vary). 
 
15.1. 

a) 50θ =  . 

b) 70θ = −  . 

 15.2. 
a) 27θ =  . 
b) 35θ = −  . 

 
In exercises 15.3 and 15.4, 30 60−   triangle is given. In it, A, B and C are angles, and a, b, 
and c are sides, which are opposite to corresponding angles. 30A∠ =  , 90C∠ =  . Solve 
the given problems. 
 
15.3. 

a) a = 6. Find b and c. 
b) b = 3. Find a and c. 
c) c = 8. Find a and b. 

 15.4. 
a) a = 8. Find b and c. 
b) b = 9. Find a and c. 
c) c = 4. Find a and b. 

 
In exercises 15.5 and 15.6, 45 45−   triangle is given. In it, A, B and C are angles, and a, b, 
and c are sides, which are opposite to corresponding angles. 45A∠ =  , 90C∠ =  . Solve 
the given problems. 
 
15.5. 

a) a = 4. Find b and c. 
b) b = 8. Find a and c. 
c) c = 9. Find a and b. 

 15.6. 
a) a = 3. Find b and c. 
b) b = 6. Find a and c. 
c) c = 7. Find a and b. 

 
 

Challenge Problems 
 
15.7.  In  6030 −  triangle, the hypotenuse is c. Express in terms of c two other sides. 
 
15.8.  In  6030 −  triangle, the side opposite to 60  angle is b. Express in terms of b two 

other sides. 
 
15.9.  In 45 45−   triangle, the hypotenuse is c. Express in terms of c two other sides. 
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Session 16 
 

Trigonometric Functions for Acute Angles 
 
Definition of six trigonometric  functions 
 
Consider the following “giraffe” problem: 
“A giraffe’s shadow is 8 meters. How tall is the giraffe if the sun is 28  to the horizon?” 
Trigonometric functions that we introduce here, allow to solve this and many more 
problems that involve angles and sides of triangles. We will solve the above problem in 
the example 16.1 below. 
To approach such problems, let’s start with definition of trigonometric functions for acute 
angles. 
Consider an acute angle θ : 

 
 
 
 
 
Trigonometric functions (in short trig functions) take this angle as its argument (as input) 
and assign some numerical values to it (output values). You will see shortly what exactly 
these values are. 
Because angle θ   is acute, we can always construct a right triangle with this angle: 
 
 
 
 
 
 
By proportionality properties of similar triangles, the ratios of sides of this triangle do not 
depend on the size of the triangle; instead, they depend on the value of angle θ  only.  In 
other words, if we take two right triangles with the same angle θ , but different sizes, 
then the ratios of corresponding sides remain the same. Trigonometric functions are 
exactly these ratios. 

It is easy to see that there is a total of six possible ratios of the sides in a triangle. Here are 
all of them: a/c, b/c, a/b, b/a, c/b, c/a. So, there are exactly six trigonometric functions. 
Each of them has its own name and notation. The following table defines all six trig 
functions for angle θ . 

θ  

θ  

c 

b 

a 
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Function Name Function Notation Definition 

  sine θsin  c
a

 
  cosine  θcos  c

b
 

  tangent θtan  b
a

 
  cotangent θcot  a

b
 

  secant θsec  b
c

 
  cosecant θcsc  a

c
 

 
It may seem that it is difficult to memorize all of these functions. A simple advice (but, 
perhaps, not so simple to follow) is just to memorize them as you would the 
multiplication table. 

From the above six trig functions, the first three are the most frequently used: sine, 
cosine, and tangent. They are called basic trig functions. The other three are reciprocals 
to basics: cotangent is reciprocal to tangent, secant is reciprocal to cosine, and cosecant is 
reciprocal to sine: 

1 1 1cot , sec , csc .
tan cos sin

θ θ θ
θ θ θ

= = =  

Some people like the following mnemonic device SohCahToa to memorize the 
definition of basic trig functions. It works like this. In the above right triangle, we can 
treat legs a and b as opposite and adjacent to the angle θ : 

 
 
 
 
 
 
 
Now, the definition of sine, cosine, and tangent can be reformulated as 
 
     ypotenuseOpposite/Hsin =θ  

    ypotenuseAdjacent/Hcos =θ  

    djacentOpposite/Atan =θ  

 
The first three letters of the word SohCahToa mean: Sine is the ratio of Opposite leg to 
Hypotenuse, so we get Soh, and so on. 

θ  

Hypotenuse 

Adjacent 

O
pp

os
ite
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Trig Functions for Special Angles 
 
In the previous session we have introduced three special angles 30 , 45  and 60  as 
angles in special right triangles  6030 −  and  4545 − . Here we calculate basic trig 
functions sine, cosine and tangent for these angles. 
Because trig functions do not depend on the size of a triangle, for calculations, we can 
choose any value for one of the sides. Let’s select the value of 1 for the shortest leg of 

 6030 −  triangle and for both legs of  4545 −  triangle. Recall that in  6030 −  
triangle, hypotenuse is twice as the shortest leg (this leg is opposite to 30  angle), so the 

hypotenuse is 2. Then by Pythagorean Theorem the other leg is 2 22 1 3− = . For 
 4545 −  triangle, hypotenuse is 2 21 1 2+ = . We can draw the following two 

pictures 
 
 
 

 
 
 
Now, we use the definition of basic trig functions. 

30  angle: opposite side is 1, adjacent side is 3 , and hypotenuse is 2. Therefore, 

1 3 1 3sin 30 , cos30 , tan 30 .
2 2 33

= = = =aaa    

60  angle: opposite side is 3 , adjacent side is 1, and hypotenuse is 2. Therefore, 

3 1sin 60 , cos 60 , tan 60 3.
2 2

= = =aaa    

45  angle: opposite side is 1, adjacent side is 1, and hypotenuse is 2 . Therefore, 

1 2 1 2sin 45 , cos 45 , tan 45 1.
2 22 2

= = = = =aaa    

 
We summarize these results in the following table 
 

Angle θ  30  45  60  

θsin  
2
1

 
2
2

 
2
3

 

θcos  
2
3

 
2
2

 2
1

 

θtan  
3
3

 1 3  

1 
30

 

60  

3  

2 
2  1 

1 

45
 

45
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Working with arbitrary acute angles 
 
Practical application of trigonometry essentially is based on the following general 
principal: it is easier to measure angles than distances. To measure angles, there is an 
optical device which is called the clinometer. Schematically, it looks like this: 

 

 

 

 
 
 
 
 
The angle from the horizontal line going up is called the angle of elevation. In the picture 
above, θ  is the angle of elevation that can be measured by clinometer. In similar way, 
the angle from the horizontal line going down is called the angle of depression: 
 
 
 
 
 
To find the values of basic trig functions for arbitrary angles, we can use buttons sin, cos 
and tan on scientific or graphing calculator. 

Example 16.1. Let’s solve the “giraffe” problem, stated at the beginning of this session. 
We can draw corresponding picture like this 

 

 
 
 
 
 

For the 28  angle, giraffe is the opposite side, and shadow – adjacent. A suitable trig 
function is tangent (ratio of the opposite side to adjacent). Let’s denote giraffe’s shadow 

by s and giraffe’s height by g. We have tan 28 g
s

=a . From here, 

   tan 28 8 0.5317 4.25g s= = ⋅ =a  m. 

θ  

θ  

angle of elevation angle of depression 

28  
Shadow = 8 m 
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Example 16.2. Nick launched a kite on a 120-m thread. The angle of elevation of the 
thread is 37 . At what altitude is the kite flying? 

Solution. Here is the corresponding picture 

 
 
 
 
 
Let’s denote the length of the thread by t. This is the hypotenuse and  t = 120. The 
problem is to find height h which is opposite to the 37 angle. A suitable trig function is 

sine (ratio of the opposite side to hypotenuse). We have sin 37 h
t

= . From here, 

    sin 37 120 0.6018 72.22h t= = ⋅ =  m. 
 
Example 16.3. A ladder is leaning against the wall such that the angle of depression of 
the top of the ladder is 56 . What is the length of the ladder if the distance from its lower 
end to the wall is 2 m? 
 
 
 
 
 
 
Solution. In the right triangle formed by the ladder and dotted lines, the ladder is the 
hypotenuse, and the top (horizontal) dotted line is the side adjacent to 56  angle. Let’s 
denote the length of this side by d and the ladder’s length by l. We have d = 2 m. The 
problem is to find l. A suitable trig function is cosine (ratio of the adjacent side to 

hypotenuse). We have cos56 d
l

= . From here, 

                 2 3.58
cos56 0.559

dl = = =


 m.  

 
Trig functions allow also to find angles in right triangles when info about sides is known. 
To solve such problems, first identify, similar to previous examples, which trig function 
relates to given problem and find the value of this function. Then, to find the angle you 
can use buttons 1 1sin , cos− −  and 1tan−  on calculator. These buttons calculate the values 
of so-called inverse trigonometric functions. These functions restore angles from the 
values of corresponding trig functions. We will say more about inverse trig functions in 
sessions 18 and 19. 

37  

t  
h 

56
 

wall 

2 m 

ladder 
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Example 16.4. A ship is 160 m away from the center of a horizontal barrier that 
measures 200 m from end to end. What is the minimum angle that the ship must be 
turned to avoid hitting the barrier? 
 
 
 
 

Solution. The problem is to find angle θ . Let’s denote half of the length of barrier as a. 
We have a = 200/2 = 100 m. This is the side of right triangle on the picture and it is 
opposite to angle θ . Another side is the distance from the ship to the barrier. This side is 
adjacent to angle θ . We denote it as d. It is given that d = 160 m. Appropriate trig 
function here is tangent (ratio of the opposite side to adjacent). 
 

  ( )1100tan 0.625 tan 0.625 32
160

a
d

θ θ −= = = ⇒ = = a . 

Example 16.5.  An airplane is flying at an altitude of 2.5 miles and is preparing for 
landing. It is 8.6 miles from the runway. Find the angle of depression that the airplane 
must make to land safely. 
 
 
 
 
 

Solution. The problem is to find angle θ . Let’s denote distance from the airplane to 
runway as d, and altitude as h. It is given that d = 8.6 mi and h = 2.5 mi. In the drawn 
right triangle (with dotted lines), d is hypotenuse, and h is opposite side for angle θ . 
Appropriate trig function here is sine (ratio of the opposite side to hypotenuse). 

( )12.5sin 0.29 sin 0.29 17
8.6

h
d

θ θ −= = = ⇒ = =  . 

Example 16.6. Lillian wants to shingle her roof. The roofer asked her for the angle of 
elevation of the roof to make sure he can climb the roof safely. Help Lillian to calculate 
the angle according to the following picture: 
 
 
 
 
 
 

runway 

θ  
2.5 mi 8.6 mi 

θ  

a 

14.5 ft 

26 ft 

B
ar

rie
r 

20
0 

m
 

160 m 
θ  
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Solution. The problem is to find angle θ . Let’s denote the marked horizontal line 
segment (half of the width of the house) as a, and slant line segment (the width of the 
roof) as s. We have a =26/2 = 13 ft and s = 14.5 ft. In the triangle on the right side of the 
picture, s is hypotenuse and a is the side adjacent to angle θ . Appropriate trig function 
here is cosine (ratio of the adjacent side to hypotenuse). 

( )113cos 0.9 cos 0.9 26
14.5

a
s

θ θ −= = = ⇒ = = a . 
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Exercises 16 
 
Round all answers to the nearest tenth. 
 
16.1. The angle of depression from the top of an apartment building to the base of a 

fountain in a nearby park is 70 . If the building is 80 ft tall, how far away is the 
fountain? 

16.2. Allison is looking at the top of a tall building. Her eyes are 5 feet above the 
ground. The angle of elevation is 75  and she is 15 feet from the building. How 
tall is the building? 

16.3. A 20 foot ladder rests against a wall. The ladder makes a 55  angle with the 
ground. How far from the wall is the base of the ladder? 

16.4. Nick needs to reach a top window of the house using a ladder. He wants to put a 
ladder 1.5 meters from the wall. At this point, he measured that the angle of 
elevation to the window is 53 . How long does the ladder have to be? 

16.5. Ben is flying a kite and realizes that 260 feet of string are out. The angle of 
elevation of the kite is 40 . How high is kite above the ground? 

16.6. Lillian is swimming in the sea and notices a coral reef at the sea bottom. The angle 
of depression is 37  and the depth of the sea here is 50 feet. How far is she from 
the reef? 

16.7. Over 6000 feet (horizontal), a road rises 330 feet (vertical). What is the angle of 
elevation? 

16.8. Suppose a tree 15 m in height casts a shadow of length 27 m. What is the angle of 
elevation from the end of the shadow to the top of the tree? 

16.9. A boat is sailing and spots a big shell 18 feet below the water. A diver jumps from 
the boat and swims 25 feet to reach the shell. What is the angle of depression from 
the boat to the shell? 

16.10. A ladder leans against a wall. The foot of the ladder is 5.4 feet from the wall. The 
ladder is 15 feet long. Find the angle the ladder makes with the wall. 

16.11. A vertical pole stands on the ground and has a support wire that runs from its top 
to the ground. The support is 50 feet long and anchored 22 feet from the base of 
the pole. Find the angle of elevation from the anchor point to the top of the pole. 

16.12. Eli is putting up an antenna at the flat roof of a house. At its top, he attached a 50 
ft guy wire and anchored it on the roof. Antenna is 30 ft long. What angle does the 
guy wire form with the antenna? 
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Challenge Problems 

16.13. At a river shore (right near the water) a tree is standing. On the opposite side of the 
river, across the tree, Margaret is standing at the distance of 10 m from the water. 
She wants to determine the width of the river. She found that the angle of 
elevation to the top of the tree is 32 . Then Margaret walked right to the water 
and found that the angle of elevation now became 43 . What is the width of the 
river? 

16.14. Esther and Nick stand at points E and N, 2 m apart in a dark room with a large 
mirror. Esther stands 2 m from the mirror, and Nick stands 1 m. At what angle 
EBA should Esther shine a flashlight on mirror so that the reflected light directly 
strikes Nick? 

 Note. According to the law of reflection, EBA NBC∠ = ∠ . 

Mirror 

E 

N 2 

2 

1 

A B C 
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Session 17 
 

Trigonometric Functions for Arbitrary Angles 
 
Unit Circle 
 
In previous session we defined trig functions for acute angles: we constructed right 
triangle with given angle, and defined trig functions as ratios of sides in this triangle. This 
approach cannot be used for angles that are not acute like obtuse or negative angles: there 
are no right triangles with such angles. 
Nevertheless, it is possible to define trig functions for arbitrary angles. To do this we will 
use a special tool that allows to reformulate definition of trig function of acute angles in 
such a way that a new definition can be used for arbitrary angles. This tool is called the 
unit circle in the system of coordinates. 
This is just a circle with the radius of 1 and the center at the origin: 
 
 
 
 
 
 
 
 
 
In this figure, we will draw angles in standard position. It means that their vertices are 
in the origin, and the initial sides goes along the positive part of x-axis. Here is an 
example of such angle θ  in the 1st quadrant (i.e. acute angle): 
 
 
 
 
 
 
 
 
 
Angle θ  is uniquely defined (up to coterminal angles) by the point A on the circle at 
which terminal side intersects the circle. We will call point A corresponding to angle θ . 
Let (a, b) be coordinates of the point A (we also use the notation A(a, b) for point A): 

y 

x 1 0 

x 1 0 
θ  

A . 
y 
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Notice that 0A = 1 (radius of the unit circle). Then from the right triangle 0AB, we have 

bb
A

AB
===

10
sinθ , aa

A
B

===
10

0cosθ . 

We see that for acute angles, sine and cosine are coordinates of the corresponding 
points on the unit circle: sine is the second coordinate (y-coordinate), and cosine is the 
first coordinate (x-coordinate). We’ve got the reformulation (i.e. a new definition) of sine 
and cosine for acute angles: they are coordinates of points on unit circle. We can use this 
reformulation as a general definition for arbitrary angles. 
Definition. Let θ  be an arbitrary angle in standard position, and A(a, b) be the 
corresponding point on unit circle. Then, by definition, 

sinsin , cos , tan
cos

bb a
a

θθ θ θ
θ

= = = = . 

Note. To memorize which of the trig functions – sine or cosine, is the first coordinate and 
which one is the second, you may use the alphabetical order of the first letters in the 
words sine and cosine (c is before s, so cosine is the first coordinate, and sine is the 
second). 
Other three trig functions can be defined as reciprocals to the basics: 

            
θ

θ
tan

1cot = ,  
θ

θ
cos

1sec = ,  
θ

θ
sin

1csc = . 

 
Because sine and cosine are coordinates, trig functions may take both positive and 
negative values depending on the quadrant in which angle θ  lies. The following figures 
show the signs of basic trig functions. 
 
 
 
 
 
 
 
 
 
 

+ 

Signs of sine 

 –   

+ 

 –   

+ 

Signs of cosine 

 +   

– 

 –   

+ 

Signs of tangent 

 –   

– 

 +   

x 
1 0 

θ  

A . 
B 

y 

sinb θ=  

cosa θ=  
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Note. The following phrase may help to memorize which of these functions is positive in 
each quadrant: “All Students Take Calculus”. This phrase hints that in the first quadrant 
all three are positive, in the second – only sine, in the third – only tangent, and in the 
fourth – only cosine. 

Example 17.1. Calculate basic trig functions for quadrant angles of 0 , 90 , 180 , 
270 , and 360 . 

Solution. 
1) For 0  and 360  angles the corresponding point on unit circle has coordinates 

(1, 0). Therefore, 
0360sin0sin ==  ,  1360cos0cos ==  ,  0360tan0tan == aa . 

2) For 90  angle the corresponding point has coordinates (0, 1) . Therefore, 

190sin = , 090cos = . By definition, 
θ
θθ

cos
sintan = . Because 090cos = , 

90tn  is undefined (we can not divide by zero). 

3) For 180  angle the corresponding point has coordinates ( 1, 0)− . Therefore, 
0180sin = , 1180cos −= , 0180tan =a . 

4) For 270  angle the corresponding point has coordinates (0, 1)− . Therefore, 
1270sin −= , 0270cos = , 270tn  is undefined. 

We summarize the results of example 17.1 in the following table 
 

Angle θ  0  90  180  270  360  
θsin  0 1 0 –1 0 
θcos  1 0 –1 0 1 
θtan  0 undefined 0 undefined 0 

  
We see that maximal and minimal values of sine and cosine of the quadrant angles are 1 
and  – 1 respectively. For all other angles sine and cosine are between –1 and 1. In 
general, for any angle θ  
    sin 1, cos 1θ θ≤ ≤ . 
There is no restriction for tangent. 
 
Reduction Formulas (The “Head Rule”) 
 
In example 17.1 we calculated sine, cosine and tangent for quadrant angles 0 , 90 , 

180 , 270 , and 360 . Here we describe the way how to simplify sine and cosine of 
angles when we add (or subtract) angle θ  to (from) quadrant angles. In other words we 
will simplify the following expressions: 

( ) ( ) ( ) ( )sin 90 , cos 180 , sin 270 , sin 360θ θ θ θ± ± ± ±    . 
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Formulas to simplify these expressions are called reduction formulas. For example, it is 
not difficult to get that ( )sin 90 cosθ θ− =  and ( )cos 90 sinθ θ− =  (sine of an angle 

and cosine of complement angle are equal). Another example is ( )cos 180 cosθ θ+ = − . 
We can analyze each of such expressions separately, and get all reduction formulas (there 
is total eight of them). Instead, we suggest a simple rule to get such formulas. We call this 
rule the Head Rule.  
Head Rule works like this. To get the reduction formula assume that angle θ  is acute. 
We need to answer two questions: 

1) Should we put minus sign on the right side of the formula? 
2) Should we change sine to cosine and/or vice versa? 

To answer the first question, determine the quadrant in which angle under consideration 
lies. Based on the quadrant, determine the sign of trig function (as described above). 
To answer the second question, move your head along the axis on which the quadrant 
angle lies. In doing this you automatically get answer “yes” or “no”. 
 
Example 17.2. Get reduction formulas for  

                                     ( ) ( ) ( )sin 90 , cos 180 , sin 270θ θ θ+ + +   . 
Solution.  
For ( )sin 90 θ+ : 

1) Angle 90 θ+  lies in 2nd  quadrant. Here sine is positive, so minus sign is not needed. 

2) Move your head along vertical axis (where 90  angle is located) and you get the 
answer “yes”, so change sine to cosine. Final answer: ( )sin 90 cosθ θ+ = . 

For ( )cos 180 θ+ : 

1) Angle 180 θ+  lies in 3rd  quadrant. Here cosine is negative, so minus sign is needed. 

2) Move your head along horizontal axis (where 180  angle is located) and you get the 
answer “no”, so do not change cosine to sine. Final answer: ( )cos 180 cosθ θ+ = − . 

For ( )sin 270 θ+ : 

1) Angle 270 θ+  lies in 4th quadrant. Here sine is negative, so minus sign is needed. 

2) Move your head along vertical axis (where 270  angle is located) and you get the 
answer “yes”, so change sine to cosine. Final answer: ( )sin 270 cosθ θ+ = − . 

Special cases of reduction formulas (when quadrant angle is 0 ) are 

  ( )sin sinθ θ− = −  (odd property of sine) 

  ( )cos cosθ θ− =    (even property of cosine) 
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Reference Angle 
 
This is a useful tool to reduce calculation of trig functions of arbitrary angles to acute 
angles. 

Definition. Let θ  be an arbitrary angle in standard position. Angle rθ  is called the 
reference angle to θ , if it satisfies three conditions: 

1) Terminal side of rθ  coincides with the terminal side of θ .   
2) Initial side of rθ  is horizontal (it coincides with either the positive or negative 

parts of the x-axis). 
3) Angle rθ  is acute angle. 

Let’s see how reference angle rθ  looks like depending on the quadrant in which original 
angle θ  is located.  

1) Angle θ  is located in the first quadrant. Then rθ  coincides with θ : rθ θ= . 

2) Angle θ  is located in the second quadrant. Then 180rθ θ= − : 
 
 
 
 
 
 
 
 
3) Angle θ  is located in the third quadrant. Then 180rθ θ= −  : 
 
 
 
 
 
 
 
 
4) Angle θ  is located in the fourth quadrant. Then 360rθ θ= − : 
 
 
 
 
 
 
 
 
 

rθ  

180  

θ  

rθ  

180

 

θ  

rθ  

360  

θ  
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Reference angle is useful because up to sign, the values of trig functions of θ  coincide 
with the value of the same trig function for the reference angle rθ and rθ  is always acute 
angle. You can check this using reduction formulas described above. 

Main Property of Reference Angle 

 
 
 
 
Hence, to calculate the value of a trig function, it is enough to find the sign of the 
function and calculate the value of trig function of the reference angle. 

Example 17.3. Calculate cos120 . 

Solution. Angle 120  is located in the 2nd quadrant, so cos120 0< . This is the case 2) 

in the pictures above. Reference angle 180 120 60rθ = − =   . We have 
1cos 60
2

= . 

Therefore, 

     
1cos120 .
2

= −  

Example 17.4. Calculate sin 225 . 

Solution. Angle 225  is located in the 3rd quadrant, so sin 225 0< . This is the case 3) 

above. Reference angle 225 180 45rθ = − =   . We have 
2cos 45

2
= . Therefore, 

2sin 225 .
2

= −  

Example 17.5. Calculate tan 330a . 

Solution. Angle 330  is located in the 4th quadrant, so tan 330 0<a . This is the case 4) 

above. Reference angle 360 330 30rθ = − =   . We have 
3tan 30

3
=a . Therefore, 

3tan 330 .
3

= −a  

Example 17.6. Find the values of other five trig functions, if 5cos
6

θ = −  and 0tan >θ . 

Solution. For reference angle rθ , 
5cos
6rθ = . Let’s draw a right triangle, using definition 

of  cos rθ  as ratio of adjacent side to hypotenuse: 

The absolute value of any trig function of any angle is equal 
to the value of the same trig function of the reference angle. 
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By the Pythagorean theorem, vertical leg of this triangle is 2 26 5 11− = . From here, 
11sin
6rθ =  and 

11tan
5rθ = . Since cos 0θ <  and 0tan >θ , angle θ  lies in the 3rd 

quadrant. Therefore, 
11sin
6

θ = −  and 
11tan
5

θ = . Other three trig functions are: 

   
1 5 5 11 1 6 1 6 6 11cot , sec , csc

tan 11 cos 5 sin 1111 11
θ θ θ

θ θ θ
= = = = = = = − = − . 

It is possible to define trig function using a circle with arbitrary radius r (not only unit 
circle with r = 1). Namely, sine, cosine and tangent of any angle θ  (in a standard 
position), which has point A(a, b) on its terminal side are:  

2 2sin , cos , tan , .b a b r a b
r r a

θ θ θ= = = = +  

Note. In the above formulas, radius  r is the distance from point A(a, b) to the origin. 

Example 17.7. Find the value of the six trig functions of the angle θ  if point (2, 3)−  lies 
on the terminal side of angle θ , and θ  is in standard position. 

Solution. We have a = 2, b = – 3. Using the above formulas, 

2 2 2 22 ( 3) 13,r a b= + = + − =  

3 3 13 2 13 3 3sin , cos , tan
13 13 2 213

b a b
r r a

θ θ θ− −
= = = − = = = = = − . 

Other three trig function are 

1 13 1 13 1 2csc , sec , cot .
sin 3 cos 2 tan 3

θ θ θ
θ θ θ

= = − = = = = −  

5 

6 

rθ  
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Exercises 17 
 
In exercises 17.1 and 17.2,  get reduction formulas for given expressions. 
 
17.1. 
     a)   ( )sin 180 θ+  

     b)   ( )cos 90 θ−  

 17.2. 
     a)   ( )cos 180 θ−  

     b)   ( )sin 270 θ−  
 
In exercises 17.3 and 17.4, find reference angles to given angles. 
 
17.3. 

a) 130  

b) 320  

c) 250  

d) 85  

 17.4. 
a) 200  

b) 10  

c) 310  

d) 100  
 
In exercises 17.5 and 17.6, reference angle of angle θ  and quadrant  in which angle θ  is 
located are given. Find angle θ  in the interval from 0  to 360 . 
 
17.5. 

a)  40 ,  quadrant III 

b) 70 , quadrant II 

c) 50 , quadrant IV 

d) 20 , quadrant I 

 17.6. 
a)  40 ,  quadrant IV 

b) 70 ,  quadrant I 

c) 50 ,  quadrant II 

d) 20 ,  quadrant III 
 
In exercises 17.7 and 17.8, calculate the values of trig functions without using a calculator. 
   
17.7. 

a) sin 210  

b) cos300  

c) tan135a  

 17.8. 
a) sin 315  
b) cos150  

c) tan 240a  
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In exercises 17.9 and 17.10, use given information to identify the quadrant in which angle θ  is 
located and find the values of five remaining trig functions. 
 
17.9. 

a) 
2sin
3

θ = −  and tan 0θ <  

b) 
2cos
5

θ = −  and sin 0θ >  

c) 
3tan
5

θ =  and cos 0θ <  

 17.10. 

a) 
4sin
7

θ =  and cos 0θ <  

b) 
5cos
8

θ = −  and tan 0θ >  

c) 
7tan
4

θ = −  and sin 0θ <  

 
In exercises 17.11 and 17.12, coordinates of a point are given. Find the values of six trig 
functions of an angle in standard position for which the terminal side passes through this point. 
 
17.11.  ( 1, 2)− −   17.12.  ( 3, 5)−  
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Session 18 
 

Solving Oblique Triangles – Law of Sines 
 
Oblique triangles – triangles that are not necessary right triangles. We are going to 
“solve” them. It means to find its basic elements – sides and angles, given some of them. 
First of all, let’s see what elements must be given. Obvious, if only angles are given and 
no sides, this info is not enough to determine sides since triangles with the same angles 
are similar and may have different sizes. So, at least one side must be given. We consider 
all possible cases when one, two or all three sides are given as well as some number of 
angles. More precisely, the following four cases are possible in solving triangles: 

1) One side and two angles are given. 
2) Two sides and an angle opposite to one of them are given. 
3) Two sides and angle between them are given. 
4) Three sides are given. 

Main tools to solve these problems are two important theorems: Law of Sines and Law of 
Cosines. Here we consider Law of Sines and the first two problems. 
 
Law of Sines 

It is clear that in any triangle, the bigger side, the bigger opposite angle. However, sides 
are not proportional to opposite angles. For example, in right triangle 30 60−  , if side 
opposite to 30  is a, then side opposite to 60  is 3a , which is not 2a. Law of Sines 
says that in any triangle sides are proportional to the sines of opposite angles. In other 
words, the ratio of any side to the sine of the opposite angle remains the same for all three 
sides in a given triangle. 
More formally, the following theorem is true. 
 
Theorem (Law of Sines). Consider triangle ABC: 
 
 
 
 
 
 
 
 
Then 

          
C

c
B

b
A

a
sinsinsin

==  

A 

B 

C 

a 

b 

c 
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Proof. For simplicity, we consider only acute triangle (proof for obtuse triangle is 
slightly different, but similar). Let’s draw height h to the side b: 

 
 
 
 
 
 
 
 
Height h breaks triangle ABC into two right triangles: ABD and BCD. Let’s consider 
sines of angles A and C:  

From triangle ABD, 
c
hA =sin . Solve for h: Ach sin= . 

From triangle BCD, 
a
hC =sin . Solve for h: Cah sin= . 

Equate the above two expressions for h: CaAc sinsin = . Divide both sides of this 
equation by sin sinA C⋅  and get 

  
C

c
A

a
sinsin

= .  
 
Similar ratio is true for the side b and angle B. The proof is completed. 

Law of Sines works perfectly good for solving triangles for the case 1) above when a side 
and two angles of a triangle are given. In this case triangle is defined uniquely (we 
assume that the sum of given angles is less than 180 ). With no problem we can find the 
third angle by subtracting two given angles from 180 , and then use Law of Sines to find 
two other sides. 

Example 18.1. Solve a triangle, if a = 14, 40=B , and 75=C . 

Solution. We need to find angle A, and sides b and c. 

1) 180 180 40 75 65A B C= − − = − − =     . 

2) By Law of Sines,  
B

b
A

a
sinsin

= . From here, using calculator, we get 

sin 14 sin 40 9.9
sin sin 65

a Bb
A

⋅
= = =

a

a

. 

3) Again by Law of Sines, 
C

c
A

a
sinsin

= . From here 

     sin 14 sin 75 14.9
sin sin 65

a Cc
A

⋅
= = =

a

a

. 

A 

B 

C 

a 

b 

c 

D 

h 
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Final answer: 65=A , b = 9.9, c = 14.9. 

Using Law of Sines – Ambiguous Case 

We consider how to solve a triangle for the case 2) above when two sides and an angle 
opposite to one of them are given. In this case a triangle is not always defined uniquely 
and we may face some difficulties to solve it. This is the ambiguous case. We will 
assume that the following data are given: sides a and b, and angle A opposite to side a.  

Case: angle A is obtuse 
This is a simple case since only two options are possible: triangle does not exist or 
triangle is unique. To understand why, let’s draw angle A and mark side b on its slant 
side: 

 

 

 

To get a triangle, we need to draw side a from the top point to meet with the horizontal 
side of angle A. Obvious, if side a is too short, it will not meet the horizontal side, and 
triangle does not exist: 

    

 

 

For triangle to exist, side a must be greater than b. Then triangle is defined uniquely. We 
come up to the following 

Proposition 18.1. Let two sides a and b, and obtuse angle A opposite to side a are given. 
Then 

1) If a b≤ , triangle does not exist. 

2) If a b> , triangle exists and unique. 

Note. Conclusion in part 1) is also clear by the following reason: if a b≤ , then A B≤ . 
Angle A is obtuse, so B also must be obtuse. But triangle cannot have two obtuse angles. 

Example 18.2. Solve a triangle, if a = 18, b = 14, and 130A =  . 

Solution. We need to find angles B and C, and side c. Using Law of Sines, we have 

B
b

A
a

sinsin
= . From here 

A 
b 

A 
b 

a 
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sin 14 sin130sin 0.596
18

b AB
a

⋅
= = =

a

. 

Notice, that at this point we calculated sine of angle B, but not angle B itself. To restore 
angle B from its sine, we can use the button 1sin−  on calculator similar to what we did in 
session 16 for right triangles. This button corresponds to inverse sine. We have 

1sin (0.596) 37B −= =  . 

Now it is easy to find angle C:  180 180 130 37 13C A B= − − = − − =     . 
To find side c, we can use Law of Sines again: 

   
sin 18sin13 5.3

sin sin sin sin130
a c a Cc

A C A
= ⇒ = = =

a

a

. 

Final answer: 37 , 13 , 5.3B C c= = =  . 

Case: angle A is acute 
Similar to obtuse angle, let’s draw angle A and mark side b on its slant side: 

 
 
 
 
 
To create a triangle, we draw side a from the top point. Four cases are possible here: 
1) Side a is too short to meet with the horizontal side: 
 
 
 
 
 
      Triangle does not exist. 

2) Side a touches horizontal side exactly in one point: 
 

 
 
 
      We have right triangle which is unique. 

3) Side a intersects horizontal side in two points: 
 
 
 

A 
b 

A 
b a 

A 
b 

a a 

A 
b a 
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     We have two triangles with sides a, b and angle A. 

4) Side a is long enough, and to create a triangle, side a intersects horizontal side only in 
one point: 

 
 
 
 
       The triangle is unique. The top angle may be acute or obtuse. 
How can we distinguish the above four cases using the values of sides a, b and angle A? 
Take a look at this picture  
 
 
 
 
 
In your mind, draw side a from the top point. You can see that if a < h, side a is too short 
and triangle does not exist. If a = h, we can draw only one right triangle. If a is between h 
and b: h < a < b, we can draw side a on both sides (left and right) of the height h, and we 
have two triangles. Finally, if a b≥ , we can draw only one triangle. Notice that 

sinh A
b
= , so sinh b A= . 

We come up to the following 

Proposition 18.2. Let two sides a and b, and acute angle A opposite to side a are given. 

1) If  a b≥ , triangle is unique. This triangle may be acute or obtuse. 

2) If  a b< , denote sinh b A= . 

a) If  a < h, triangle does not exist. 
b) If  a = h, triangle is unique. It is a right triangle. 
c) If a > h,  there are two triangles. Both of them may be obtuse, or one is acute and 

the other is obtuse (see Exercise 18.17). 

Practical way to use Proposition 18.2 is to directly apply Law of Sines 
B

b
A

a
sinsin

=  and 

solve this equation for sin B : 
sinsin b AB
a

= . Three cases are possible when calculating 

sin B by the above formula: 

1) sin 1B > . Because sin B  cannot be greater than 1, triangle does not exist. 

A 
b a 

A 

b b h 
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2) sin 1B = . Then 1sin (1) 90B −= =   .The triangle is unique. It is a right triangle. 

3) sin 1B < . Let sin B s= , then 1sin ( )B s−= . Angle B (as inverse sine of positive 
value) is always positive and acute. So, one triangle already exists. To understand 
whether another triangle exists, notice that there is one more angle B′  such that 
sin sinB B′ = . This angle is supplement to angle B: 180B B′ = − . Angle B′  is 
obtuse. Should we accept it as a second solution or reject it?  Just compare a and b: 

a) If a b≥ , then by Proposition 18.2 the triangle is unique, so second 
triangle does not exist. 

b)  If a b< , the second triangle exists having the obtuse angle 
180B B′ = − . 

Note. Another way to see whether second triangle exists, is to calculate supplemental 
angle 180B B′ = −  in any case (regardless on which side is bigger: a or b). Then, if 

180B A′ + <  , accept B′ , and if 180B A′ + ≥  , reject it. 
 
Example 18.3. Let b = 20 and 30A =  . Determine the number of triangles that satisfy 
the given conditions. If triangle exists, solve it. 

1) a = 5 
2) a = 10 
3) a = 16 
4) a = 25 

Solution. Using Law of Sines 
B

b
A

a
sinsin

= , we have  
sinsin b AB
a

= . From calculator 

(or just notice that 30  is a special angle), sin sin 30 0.5A = = , and expression for 

sin B becomes 
20 0.5sin B

a
⋅

= , so 
10sin B
a

=  

1) If a = 5, then 
10sin 2
5

B = = . Because sine cannot be greater than 1, triangle does not 

exist. 

2) If a = 10, then 
10sin 1
10

B = =  and 1sin (1) 90B −= =  . This is a right triangle. To 

solve it, calculate angle C and side c. 

90 90 30 60C A= − = − =    . Side c can be found by Pythagorean Theorem (notice 
that b is hypotenuse, and a and c are legs): 

2 2 2 220 10 300 10 3c b a= − = − = = . 

Final answer: 90 , 60 , 10 3B C c= = =  . 

128



 
Session 18: Solving Oblique Triangles – Law of Sines 

3) If a = 16, then 
10sin 0.625
16

B = =  and 1sin (0.625) 39B −= =  . Another angle B′ , 

such that sin sinB B′ =  is an obtuse angle and is supplement to angle B: 
180 180 39 141B B′ = − = − =    . We accept it because 

   141 30 171 180B A′ + = + = <    . 

Another reason to accept B′  is that  b > a. So, we have two triangles. Let’s solve 
them. It remains to find angle C and side c.  

a) Triangle with angle 39B =  . We have 180 180 30 39 111C A B= − − = − − =     . 
    By Law of Sines, 

             
sin 16sin111 20.87

sin sin sin sin 30
a c a Cc

A C A
= ⇒ = = =

a

a

. 

b) Triangle with angle 141B =   (we use letter B instead of B′ ).We have 

    180 180 30 141 9C A B= − − = − − =     . 
    By Law of Sines, 

   
sin 16sin 9 5.01

sin sin sin sin 30
a c a Cc

A C A
= ⇒ = = =

a

a

. 

    Final answer: There are two triangles: 

   39 , 111 , 20.87B C c= = =  . 

   141 , 9 , 5.01B C c= = =  . 

4) If a = 25, then 
10sin 0.4
25

B = =  and 1sin (0.4) 24B −= =  . Another angle B′ , such 

that sin sinB B′ =  is supplement to B and is obtuse angle: 

       180 180 24 156B B′ = − = − =    . 
We reject it because 

     156 30 186 180B A′ + = + = >    . 

Another reason to reject B′  is that b < a and angle B′  cannot be obtuse. So, we have 
only one triangle with angle 24B =  . To solve it, it remains to find angle C and side 
c. 

   180 180 30 24 126C A B= − − = − − =     . 
By Law of Sines, 

   
sin 25sin126 40.45

sin sin sin sin 30
a c a Cc

A C A
= ⇒ = = =

a

a

   . 

Final answer: 24 , 126 , 40.45B C c= = =  . 
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Exercises 18 

Round answers (where applicable) to the nearest tenth. For a triangle ABC, use the 
following notation: A, B and C are angles, and a, b, and c are sides opposite to the 
corresponding angles. 
 
18.1. Three friends, Alice, Bob and Carol, are camping in their own tents on a flat 

meadow in the woodland. Alice and Carol are 12 m apart. The angle going from 
Alice to Bob and Carol is 50 , and angle going from Carol to Alice and Bob is 
110 . How far apart are Alice and Bob, and Bob and Carol? 

18.2. A post is standing on the ground and is supported by two wires (one on each side 
going in opposite direction). The ends of the wires on the ground are 7 ft apart. The 
angle of elevation of one of the wires is 80 , and of the other wire is 65 . Find the 
length of each wire. 

18.3. Back to problem 18.1. On the next trip, the three friends set up tents such that Alice 
and Carol are 12 m apart, and Alice and Bob are 19 m apart. The angle going from 
Carol to Alice and Bob is 110 . How far apart are Bob and Carol? 

18.4. On another trip, the three friends set up tents such that Alice and Carol are 19 m 
apart, and Bob and Carol are 25 m apart. The angle going from Alice to Bob and 
Carol is 50 . How far apart are Alice and Bob? 

18.5. Nina intends to purchase a parcel of land in the shape of a triangle (say, ABC). She 
hired an assessor to measure the parcel. Nina told the assessor that it would be 
enough to provide her with minimum information such that she could calculate the 
remaining measurements (angles and sides) herself. The assessor submitted the 
following report: a = 370 ft, 91A =  , b = 400 ft,. Recently Nina took a course of 
Trigonometry, and she decided to fire this assessor. Why? 

18.6. Nina hired another assessor. This assessor submitted the following report: a = 370 ft, 
71 , 115A B= =  . Nina decided to fire this assessor as well. Why? 

18.7. Nina then hired a third assessor. This assessor submitted the following report: 
 a = 370 ft, 71 , 65 , 40A B C= = =   . Nina again decided to fire this assessor. 
Why? 

18.8. Nina hired yet another assessor. This assessor submitted the following report: 
 a = 370 ft, b = 500 ft, c = 120 ft. Nina decided to fire this assessor too. Why? 
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Challenge Problems 

18.9. Nina hired another assessor. This assessor submitted the following report: 
a = 370 ft, 71A =  , b = 400 ft. Nina decided to fire this assessor. Why? 

18.10. Nina hired another assessor. This assessor submitted the following report: 
 a = 370 ft, 71A =  , b = 350 ft, 54C =  . Nina decided to fire this assessor. Why? 

18.11. Nina hired another assessor. This assessor submitted the following report: 
a = 370 ft, 61A =  , b = 400 ft. This time Nina decided not to fire the assessor but 
to request additional information to be able to calculate remaining angles and 
sides. What additional info (non-numeric) is needed? 

18.12. Two radar stations are located 15 miles apart. They detect an aircraft between 
them. The angle of elevation measured by the first station is 20 , and the angle of 
elevation measured by the second station is 40 . Find the altitude of the aircraft. 

18.13. Back to previous problem, solve it in general form. Let d be the distance between 
radar stations, and let A and B be the angles of elevations to the aircraft from the 
stations. As before, the aircraft is between radar stations. Find the formula that 
expresses altitude of the aircraft in terms of A, B and d. In this case, it is possible 
to input this formula into a computer program to calculate the altitude instantly 
and track it during the aircraft flight between radar stations. 

18.14. Back to problem 18.12. This time radar stations detect an aircraft on the right side 
of both stations. The distance between stations is 15 miles, and the angles of 
elevations to the aircraft are 20  and 70 . Find the altitude of the aircraft. 

18.15. Back to previous problem, solve it in general form. Let d be the distance between 
the radar stations, and let A and B be the angles of elevations to the aircraft. As 
before, the aircraft is on the same side (left or right) of both radar stations. Find 
the formula that expresses altitude of the aircraft in terms of A, B and d. 

18.16. A 2.5 m flagpole is NOT standing up straight on the ground. It is supported by two 
wires (one on each side going in opposite direction), each 3 m long. Both wires 
make a 55  angle with the ground. How far apart is each wire from the flagpole? 

18.17. Let two sides a and b, and angle A opposite to side a in a triangle ABC are given. 
Prove the following statements: 

a) If 0 tanb A a b< < < , there are two obtuse triangles. 
b) If sin min( , tan )b A a b b A< < , there are two triangles: one is acute and 

the other is obtuse. 

Hint: Use the picture located above Proposition 18.2, and consider two cases for 
          angle A: 45A <   and 45A >  . 
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Session 19 
 

Solving Oblique Triangles – Law of Cosines 
In previous session, using Law of Sines, we considered two problems on solving triangles 
from the total of four: when one side and two angles are given, and when two sides and 
angle opposite to one of them are given. 
Here we consider the remaining two problems: 

1) Two sides and angle between them are given. 
2) Three sides are given. 

For both problems, triangle is unique and we do not have an ambiguous case. Method to 
solve these problems is based on another important law in trigonometry: Law of Cosines.  

Note. Formally speaking, in problem 2) triangle does not exist, if one of the sides is 
greater or equal to the sum of two other sides. We will assume that this case will not 
happen. 

Law of Cosines 
 
This law can be treated as generalization of the Pythagorean Theorem from right triangles 
to oblique ones. 
Consider the triangle 
 
 
 
 
 
 
 
 

If angle C is not right angle, we cannot conclude that 2 2 2c a b= + , so Pythagorean 
Theorem is not true here. Instead, the following result is valid. 
 
Theorem (Law of Cosines). For any triangle, 

        Cabbac cos2222 −+=  

Note. Consider the special case when 90=C  (case of a right triangle). Then 
090coscos == C  and the above formula becomes 222 bac +=  which is exactly the 

Pythagorean Theorem. Therefore, the Law of Cosines can be considered as a 
generalization of the Pythagorean Theorem to oblique triangles. 
 
Proof of the Law of Cosines. 
 Similar to the proof of Law of Sines, we consider only case of acute triangles. Let’s draw 
the height h to the side b: 

A 

B 

C 

a 

b 

c 
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Height h breaks the triangle ABC into two right triangles: ABD and BCD. Let’s write 
down the Pythagorean Theorem for each of them: 

For triangle ABD: 222 hADc += . 

For triangle BCD: 222 hDCa += . 

Now subtract the second equation from the first one to eliminate 2h : 

( )( )2 2 2 2c a AD DC AD DC AD DC− = − = + − . 

Notice that AD + DC = b. From here AD = b – DC and 

   AD – DC = (b – DC) – DC = b – 2DC. 

Formula for 2 2c a−  becomes  
2 2 2( 2 ) 2c a b b DC b bDC− = − = −  

or   
2 2 2 2c a b bDC= + − . 

Now write down the definition of Ccos  from the triangle BCD: 
a

DCC =cos . From 

here CaDC cos= . Substitute this expression into the above formula for 2c : 

Cabbac cos2222 −+= . 
The theorem is proved. 
Note. In this theorem, we have expressed side c through sides a, b and the angle C that is 
between them. Because all three sides play the same role, no one has any privilege 
against the others. Therefore, we can write similar expressions for the sides a and b: 

Abccba cos2222 −+=  and  Baccab cos2222 −+= . 

Law of Cosines allows to express cosine of any angle through three sides. To do this, just 
solve the above equations for cosines: 

bc
acbA

2
cos

222 −+
= ,  

ac
bcaB

2
cos

222 −+
= ,  

ab
cbaC

2
cos

222 −+
= . 

As we mentioned, using Law of Cosines we can solve triangles for the cases 1) and 2) 
indicated above. Also we will use the property 180=++ CBA . 

A 

B 

C 

a 

b 

c 

D 

h 
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Case 1.  Two sides and angle between them are given. 

Example 19.1. Solve a triangle, if a = 50, b = 15, and 55C =  . 

Solution. We need to find side c, and angles A and B. 
1) By Law of Cosines 

       2 2 2 2 22 cos 50 15 2 50 15 cos55c a b ab C= + − = + − ⋅ ⋅ ⋅ a . 

            Using calculator, cos55 0.5736=  and 

 2 2500 225 1500 0.5736 1864.6c = + − ⋅ = . 

             1864.6 43.2c = = . 

       2) 
2 2 2 2 215 1864.6 50cos 0.3167

2 2 15 43.2
b c aA

bc
+ − + −

= = = −
⋅ ⋅

. 

 Using calculator, ( )1cos 0.3167 108.5A −= − =  . 

       3) 180 180 108.5 55 16.5B A C= − − = − − =     . 

Final answer: c = 43.2, 108.5A =  , 16.5B =  . 
 
Note. In solving problems for Case 1, it is possible in step 2) to use Law of Sines instead 
of Law of Cosines. However, you need to be very careful when using button 1sin−  on 
calculator. This button always gives only acute angle, but the actual angle may be 
obtuse. To avoid possible mistake, we recommend, when using Law of Sines for 
calculation of angle, do not start with the angle opposite to the biggest side, because this 
angle may be obtuse. Always start with another angle which is definitely acute. 

See, what may happen if you do not follow this advice. Let’s return to Example 19.1, and 
try to use Law of Sines in step 2) to find angle A, which is opposite to the largest side 
 a = 50: 

We have 
sin sin

a c
A C
= . From here 

      
sin 50sin 55 50 0.8192sin 0.9481

43.2 43.2
a CA

c
⋅

= = = =
a

, 

 and, using calculator,  ( )1sin 0.9481 71.5− =  . 

So, it looks like 71.5A =  . However, this answer is wrong. You can check it by 
calculating angle 180 180 71.5 55 53.5B A C= − − = − − =     and using Law of Sines: 

 
50 52.7

sin sin 71.5
a

A
= =

a

  but  
15 18.7

sin sin 53.5
b

B
= =



  

Correct answer is the supplement obtuse angle  108.5 180 71.5= −   . 
 
When using Law of Cosines, not always you start with 2c . You need to start with the side 
for which opposite angle is given. The following example demonstrates it. 
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Example 19.2. Solve a triangle, if b = 12, c = 15, and 25A =  . 

Solution. We need to find a, B and C. 
1) Because angle A is given, we start with its opposite side a: 

   2 2 2 2 22 cos 12 15 2 12 15 cos 25a b c bc A= + − = + − ⋅ ⋅ ⋅ a . 

   Using calculator, cos 25 0.9063=  and 2 144 225 360 0.9063 42.73a = + − ⋅ = . 
   42.73 6.5a = = . 

2) Let’s find angle B using Law of Sines. It’s safe to do because the opposite side b is not 
the largest one (see Note above). We have 

   ( )1sin 12sin 25sin 0.78 sin 0.78 51
sin sin 6.5

a b b AB B
A B a

−= ⇒ = = = ⇒ = =
a

a . 

3) 180 180 25 51 104C A B= − − = − − =     . 

Final answer: 6.5, 51 , 104a B C= = =aa  . 
 
Case 2. Three sides are given. 

We only need to find three angles. Using Law of Cosines, we can start with any side. We 
recommend to start with the biggest side and find the opposite angle. In doing this, we 
guarantee that the other two angles are acute, and to find them we can use either Law of 
Cosines again or Law of Sines (without making mistake indicated in the Note above). 
Here are our general recommendations: 

1) When using Law of Sines, start with the smallest side. 
2) When using Law of Cosines, start with the biggest side. 

Example 19.3. Solve a triangle, if a = 12, b = 20, c = 17.  

Solution. We need to find angles A, B and C. 
1) According to the above recommendation, we use Law of Cosines starting with the 
largest side b =  20. 

Baccab cos2222 −+= . 
To find angle B, you can directly substitute given sides into this formula, or first solve 
it for cos B . Let’s solve for cos B  first 

( )
2 2 2 2 2 2

112 17 20cos 0.081, cos 0.081 85
2 2 12 17

a c bB B
ac

−+ − + −
= = = = =

⋅ ⋅
a . 

2) To find angle A, let’s use Law of Sines  

( )1sin 12sin85, sin 0.598, sin 0.598 37
sin sin 20

a b a BA A
A B b

−= = = = = =
a

a . 
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3) 180 180 37 85 58C A B= − − = − − =     . 

Final answer: 37 , 85 , 58A B C= = =   . 

Example 19.4. Justify the following method to check whether a triangle with given sides 
a, b, and c is an acute, an obtuse or a right triangle: 

Let c be the biggest side of the triangle. Calculate the value 222 cbaE −+= . 

1) If E > 0, the triangle is acute. 
2) If E < 0, the triangle is obtuse. 
3) If E = 0, the triangle is right. 

Solution. Using Law of Cosines, 
ab
E

ab
cbaC

22
cos

222

=
−+

= . 

1) If E > 0, then 0cos >C  and 90<C . Since c is a biggest side, C is a biggest 
angle. Therefore, two other angels are also less than 90  and the triangle is acute. 

2) If E < 0, then 0cos <C  and 90>C . The triangle is obtuse. 

3) If E = 0, 0cos =C  and 90=C . The triangle is right. 

Specific example of using this method was given in session 11, example 11.2. 

136



 
Session 19: Solving Oblique Triangles – Law of Cosines 

 

Exercises 19 

Round answers (where applicable) to the nearest tenth. 

19.1. Eli and Ben came to the forest to pick some wild flowers. They started from the 
same point and each walked in a straight line at an angle of 40  relative to each 
other. Every minute they call out to each other to avoid being lost. A sound in this 
forest can be heard from up to 60 m away. After 10 minutes, Eli has walked 80 m 
and Ben has walked 70 m. Can they hear each other at that time? 

19.2. Lillian wants to measure the distance between two trees that are on opposite sides 
of a small pond. She started at one of the trees and walked 240 ft in a straight line 
along the pond. Then she turned at 115  toward the second tree and walked another 
310 ft until she reached the second tree. What is the distance between the trees?  

19.3. Three friends, Alice, Bob and Carol, are camping in their own tents on a flat 
meadow in the woodland. Alice and Carol are 10 m apart, and Alice and Bob are 15 
m apart. The angle going from Alice to Bob and Carol is 50 . What is the angle 
going from Bob to Alice and Carol? 

19.4. Back to previous problem. On the next trip, the three friends set up tents such that 
Alice and Bob are 15 m apart, Bob and Carol are 20 m apart, and the angle going 
from Bob to Alice and Carol is 110 . Find the angle going from Carol to Alice and 
Bob. 

19.5. A small airplane is 60 miles from the airport and is going down for landing. 
However its navigation device malfunctions and incorrectly shows the distance to 
be 65 miles. The dispatcher noticed this mistake and figured out that if airplane 
continues on its current course, it will end up 16 miles from airport. By how many 
degrees should dispatcher adjust the airplane heading? 

19.6. An aircraft is making a flight to airport A. At some point a pilot receives 
information that due to bad weather, airport A is closed, and he needs to fly to 
airport B. At that moment, the aircraft is 520 mi apart from airport A, and is 650 mi 
apart from airport B. The distance between airports A and B is 570 mi. By what 
angle should the pilot change the course of the aircraft to fly to airport B? 

 

Challenge Problem 

19.7. After hurricane Sandy, a small tree was leaning. To keep it from falling, it was 
nailed by a 7-foot strap into the ground 5 feet from the base of the tree. The strap 
was attached to the tree 4 feet along the tree from the ground. By what angle from 
the vertical position was the tree leaning? 
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Session 20 
 

Radian Measure of Angles 
 
Most people familiar with the degree measure of angles. We already mentioned in session 
15 that if we cut a round pizza pie (theoretically, of course) into 360 slices, the angle in 
one slice is of one degree (and this is a very tiny piece, so almost nothing to eat). But why 
the number 360 is used for the degree measure of angles?  
This number was introduced by astronomers in ancient Babylon (at least 3000 B.C.). No 
one knows for sure why they settled for this number. At those times, it was already 
known that the yearly cycle consists of 365 and 1/4 days, even though astronomers didn’t 
know yet that the earth revolves around the sun. It is reasonable to guess that they just 
rounded 365 and 1/4 to 360 because the number 360 has many more divisors. In other 
words, the number 360 can be divided into whole parts much better than 365. From this 
point of view, we could treat one degree angle as one day related to entire year. In any 
case, it’s clear that angle measure based on the number 360 is artificial. It looks similar to 
the decimal system which is also an artificial one since it was introduced only because we 
have 10 fingers on our hands. In math, and especially in computer science, it is used more 
convenient systems like binary or octal which have as bases powers of two. These 
systems could be considered as natural ones. 
And how about measurement of angles? Does some kind of natural measure of angles 
exist? The answer is “yes”. This measure is called the radian measure. 
To define the radian measure, consider an angle as a central angle in a circle. It means 
that we draw a circle and put the vertex of the angle in its center: 
 
 
 
 
 
 
 
 
 
Of course, we can draw infinite many such circles. One of them is a unit circle (its radius 
is equal to 1). Using it, the radian measure (denoted as θ ) of the central angle is the 
length s of the corresponding arc (arc between two radii): 
 
 
 
 
 
 

Central angle 

s=θ
 

θ  

1 

1 
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For any other circle (with arbitrary radius), by the proportionality, the ratio of the arc to 
the radius equals to the above arc of the unit circle. We come up to the following 
definition for arbitrary circle. 
Definition of Radians. Consider an angle as a central angle: we draw a circle with the 
center in its vertex. Let the radius and the corresponding arc of the circle be r and s 
accordingly. Then the radian measure θ  of the angle is defined as the ratio of s to r: 
 
 
 
 
 
 
 
 
 

From here, s rθ= ⋅ . We may say that the radian measure of a central angle is the 
number of radii that can fit in the corresponding arc; hence the term “radian”. 
In particular, a central angle is of one radian measure, if the length of the corresponding 
arc is equal to the radius: s = r. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We may also say that a one-radian angle is an angle in a “curvilinear” equilateral triangle 
(sector) in which two sides are radii, the third side is an arc, and all three sides are equal. 

From this point of view, it is easy to estimate the value of one radian. As we know, in a 
“normal” equilateral triangle all three angles are of 60 . In “curvilinear” equilateral 
triangle, the central angle should be a bit less than 60  because the opposite side is an arc 
(a curve). Below in example 20.1 we will calculate that 1 radian 3.57≈ . As we see, it is 
much better to cut our pizza pie by radians. In this case at least 6 people (360/57.3 ≈ 6) 
will have something to eat. 
 
At the first glance the radian measure may look a bit more complicated than the degree 
measure. However it is more useful in some problems in mathematics and science.  

r
s

=θ  θ  
r  
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To understand the benefit of radian measure, let’s re-write the above formula 
r
s

=θ  as 

rs ⋅= θ . As you see, using the radian measure, the connection between arc, angle and 
radius is very simple. For any other measure of angles (for example, for degrees) this 
connection is more complicated and has the form rks ⋅⋅= θ , where k is some 
numerical coefficient (we will show in example 20.4 below that for the degree measure, 

017.0≈k ). Radian measure is different from all others by the simplest value 
 k = 1. The main idea of the radian measure is to relate linear (length of the arc) and 
angular measurements in the simplest possible way. That’s why many mathematical and 
technical calculations are simpler when using radians. 
The idea of measuring angles by the length of the arc is credited to Roger Cotes in the 
early 1700s, an English mathematician who worked closely with Isaac Newton. But the 
term radian was first introduced only in the late 1800s by James Thomson, Ireland. 

Let’s set up connection between the radians and degrees. Consider the angle of 360 . 
This angle corresponds to a full rotation around a circle. If we consider it as a central 
angle, the corresponding arc s is the entire circumference. Recall the formula for the 
circumference of a circle: 2s rπ= ⋅ . Compare this formula with the above rs ⋅= θ . By 
equating both, we get 2r rθ π⋅ = ⋅ . From here, πθ 2= . We see that angle 360  
corresponds to π2  radians. This connection allows to express any degree measure in 
radians and vice versa. In particular, 180  corresponds to π  radians. For any angle, let’s 
denote its degree measure as θ , and the radian measure as rθ . It is easy to set up 
connection between θ  and rθ , if we use the proportion: 180  relates to π  as θ  relates 
to rθ   
 
 
 
 
           
Let’s call this proportion the main proportion. 

Using cross-multiplication, we get 180 rθ π θ⋅ = ⋅  . From here we can express θ  
through rθ  and vice versa: 

     rθπ
θ ⋅=





180
,     θπθ ⋅=

180r . 

Note. You do not need to memorize these formulas. Just remember that 180  
corresponds to π  radians: 
    180 radπ=a  
 

and then use the main proportion. 

 

180

r

θ
π θ

=
 
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Example 20.1. Express the angle of 1 radian in degrees. 

Solution. The main proportion takes the form 

180
1r

θ
π

=
 

  

By cross-multiplication,  180=⋅πθ . From here, 
180 180 57.3

3.14
θ

π
= ≈ ≈

 

  . 

So, 1 radian 57.3≈  . 

Note. If angle in radians is given in terms of π , there is no need to use proportion to 
convert this angle into degrees: simply replace π  with 180. In this way we can say 

immediately that 
2
π

 is 90 , 
3
2
π

 is 270 , 2π  is 360  and so on.    

Example 20.2. Express the angle of  
5
12
π

 radians in degrees. 

Solution. Replace π  with 180 and you are done: 
5 5 180 75 .
12 12
π ⋅
= =



  

 
Example 20.3. Express the angle of 1  in radians. 

Solution. The main proportion takes the form 

180 1

rπ θ
=

 

 

By cross-multiplication, πθ =⋅ r180 . From here, 3.14 0.017.
180 180r
πθ = ≈ ≈  

So, 1 0.017≈  radians. 

Example 20.4. Express the arc length of a central angle through the radius of the circle 
and the degree measure of the angle. 

Solution. Let s, r, and θ  be the arc length, radius, and degree measure of the central 
angle accordingly. Also, denote by rθ  the radian measure of the angle. As we mentioned 

above, rs r ⋅= θ , and θπθ ⋅=
180r . From here, rs ⋅⋅= θπ

180
. Using calculation 

0.017
180
π

≈ , we can write the approximate formula rs ⋅⋅≈ θ017.0 . 
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rs r ⋅= θ  

Note. Let’s recall again that for radian measure, connection between arc length s, radius 
r, and central angle rθ  is the simplest: 

 
 

For any other measure this relation is more complicated, for example for degrees, 
rs ⋅⋅≈ θ017.0 . 

 
Using the main proportion, we can calculate the radian measure of special angles 30 , 

45  and 60 , as well as of quadrant angles 0 , 90  180  270  360 . The following 
table summarizes the calculations. 
 
Degrees 0  30  45  60  90  180  270  360  

Radians 0 
6
π

 
4
π

 
3
π

 
2
π

 π  
2

3π
 π2  

 
 
In conclusion, let’s mark quadrant angles in degrees and radians on the unit circle. 
Compare left and right figures. 
 
 
 
 
 
 
 
 
 
 
 

90º 

0º 180º 
–180º 

270º –90º 

360º 2π 
0 

–π 

–π/2 3π/2 

π 

π/2 

Angles in degrees Angles in radians 
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Exercises 20 

In exercises 20.1 and 20.2, convert given angles from radians to degrees. Round the answers 
to the nearest tenth. 
 
20.1.  a)  1.3 
          b)  – 0.6 

 20.2.  a)  2.4 
          b)  – 0.8 

 
In exercises 20.3 and 20.4, convert given angles from radians to degrees. 
 

20.3.  a)  
2
9
π

 

          b) 
3
10
π

−  

 
20.4.  a)  

4
15
π

 

          b) 
6
5
π

−  

 
In exercises 20.5 and 20.6, convert given angles from degrees to radians. Round the answers 
to the nearest hundreds. 
 
20.5.  a)  140  

          b) 85−   

 20.6.  a)  78  

           b) 237−   
 
In exercises 20.7 and 20.8, convert given angles from degrees to radians. Write the answers 
in terms of π . Do not round the answers. 
 
20.7.  a)  120  

          b) 150−   

 20.8.  a)  330  

          b) 225−   
 
In exercises 20.9 and 20.10, angle θ  is given in radians. Without using a calculator, find the 
exact values of sine cosine and tangent of angle θ . 
 

20.9.  a)  
4
3
πθ =  

          b)  
4
πθ = −  

          c)  
5
6
πθ =  

 
20.10. a)  

6
πθ = −  

           b)  
2
3
πθ =  

           c)  
3
4
πθ = −  

 
In exercises 20.11 and 20.12, r is the radius of a circle, and θ  is the degree measure of a 
central angle. Find the length of the arc bounded by angle θ . Round your answer to the 
nearest tenth. 
 
20.11. r = 1.3 cm,  80θ =    20.12. r = 2.5 ft,  115θ =   
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Challenge Problems 

20.13.   The angles of a triangle are in the ratio of 3:4:5. Express these angles in radians. 

20.14.  The diameter of a Ferris wheel is 16 m. The spokes connecting two consecutive 

cabs to the center of the wheel make an angle of 
8
π

. How many cabs are on the 

wheel? What is the length of the arc between two consecutive cabs? 

20.15.   Nick is running around a circular track of radius 30-meters. Esther is standing at 
the center and observing him. She found that she turned 6 radians in one minute. 
What was the Nick’s speed? 

20.16.  A fly sat on the top of the second hand of a large clock and rode 48 cm until 
Lillian swatted it away. How long was the fly riding if the length of the second 
hand is 1.5 m? 
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Session 21 
 

Graphs and Simplest Equations for 
Basic Trigonometric Functions 

 
We consider here three basic trig functions: sine, cosine and tangent. For them, we will 
construct graphs, and solve three simplest (or basic) equations: sin , cosx a x a= = , and 
tan x a= . We call these equations basic because solution of many more complicated 
equations can be reduced to them. We will use radian measure. 

Function xy = sin( )  

Let’s recall definition of sine for arbitrary angle: we draw an angle in standard position in 
system of coordinates with the unit circle, and consider point of interception of the 
terminal side of the angle with unit circle. Sine is the second (vertical) coordinate of this 
point. 
To draw graph of sine, we will move along unit circle starting with the right-most 
position and observe how vertical coordinates of points on the unit circle change from 
quadrant to quadrant. 
Obvious that in the first quadrant vertical coordinate (i.e. sine) increases from zero to 
one: 

 
 
 
 
 
 
 
To graph sine, we will use another system of coordinates in which we mark angle on 
horizontal axis (we will use letter x instead of θ ), and mark sin x  on vertical y-axis. If 
you pick up several values of angles x in the first quadrant (i.e. from 0 to / 2π ), calculate 
sin x , and plot points in the system of coordinates, you will see that sine increases not 
along a strait line. Instead, it increases along the curve: 
 
 
 
 
 
 
 
 
                                   Graph of sine in the first quadrant 
 

y 

x 1 0 

• 

θ  sinθ  = vertical coordinate 

1 

/ 2π  

siny x=  

x 0 

1 
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      Entire graph of function xy sin=  

In similar way, in the second quadrant (from / 2π  to π ), sine decreases from 1 to 0: 
 
  
 
 
 
                               
                                    Graph of sine in the first and second quadrants 
 
Continue moving along unit circle, we see that in third quadrant (from π  to 3 / 2π ) sine 
decreases from 0 to –1, and in fourth quadrant (from 3 / 2π  to 2π ) sine increases from 
–1 to 0. At this point, we get the graph of sine at one full cycle (we also say, on one 
period interval): 

  
 
 
 
 
 
 
 

                   Graph of sine on one period interval [ ]0, 2π  
 
If we continue moving around unit circle in either direction (positive or negative), we 
extend graph of sine to the entire number line, i.e. for all the values of x from  – ∞ to + ∞: 
 
 
 
 
 
 
 
 
 
 
 
You can see that domain of sine is interval  (– ∞, + ∞) and range is [–1, 1]. Sine is 
periodical function with the period 2π . It means that sine repeats itself on each interval 
of the length 2π . More formally, for any x 
 
   sin( 2 ) sin( )x xπ+ =   (Periodic property of sine) 

Also, graph is symmetric with respect to origin. Algebraically, it means that 

   sin( ) sin( )x x− = −  (Odd property of sine) 
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Solving Simplest Equation x asin( ) =  on One Period Interval [ )0, 2π  

Notice that the right point 2π  is not included in the interval. The reason is that this point 
corresponds to the angle of 0, which is already taken for the left point. 

In this interval, equation sin( )x a=  may have zero, one or two solutions depending on 
the value of a. More precisely, the following statement is true. 

Proposition 21.1. Consider the equation  sin( )x a=  in the interval [ )0, 2π . Then 

1) If 1a > , the equation does not have solutions. 

2) If 1a = , the equation has one solution. 

3) If 1a < , the equation has two solutions. 

It is easy to check all three statements using geometric interpretation of the equation 
sin( )x a= : its solutions are x-coordinates of points of intersection of the horizontal line 
y = a with the graph of sine. By drawing this horizontal line, we can see three different 
locations of it, depending on three different values of number a. 

1) 1a > . This inequality is equivalent to 1a >  or 1a < − . Horizontal line 
y = a is located above or below the graph of sine, so no points of intersection, and no 
solutions. 

2) 1a = . This equality is equivalent to a = 1 or a = –1. In both cases line 

y = a touches the graph of sine only in one point in the interval [ )0, 2π : 

   For equation sin( ) 1,x = the only solution is / 2x π= . 

   For equation sin( ) 1,x = −  the only solution is 3 / 2.x π=  

3) 1a < . This inequality is equivalent to 1 1a− < < . Line y = a is located between lines 
y = –1 and y = 1 and intersects the graph of sine exactly into two points in the interval 
[ )0, 2π . In particular, if a = 0, equation sin( ) 0x =  has two solutions: 

     0x =  and x π= . 

To find roots of the equation sin( )x a=  when 0a ≠ , we can use reference angle. 
(For review of reference angles, see session 17). Here are possible steps to solve the 
equation sin( )x a= . 

a) Calculate the reference angle rx  by the formula 

( )1sinrx a−= . 

In other words, ignore the sign of number a and calculate the acute angle (root) of 
the equation sin( )x a= . To find rx , you may use button 1sin−  on calculator. 

147



 
Session 21: Graphs and Simplest Equations for Basic Trigonometric Functions 

 

b)  Based on the sign of number a, identify quadrants in which angle x is located: 
     If a > 0, angle x is located in the 1st and 2nd quadrants. 
     If a < 0, angle x is located the 3rd and 4th quadrants. 

c)  Using quadrants and reference angle, find two solutions 1x  and 2x  of the equation 
sin( )x a= . 

      If a > 0, then 1 rx x=  and 2 rx xπ= − : 

 
 
 
 
 

 
 

 
If a < 0, then 1 rx xπ= +  and 2 2 rx xπ= − : 

 
 
  
 
 
 
 
 
 

Example 21.1. Solve the equation 2sin( ) 4 5x + =  in the interval [ )0, 2π . 

Solution. It is easy to reduce this equation to the basic one by solving for sin( )x : 
sin( ) 1/ 2x = . Here a = 1/2 > 0. Reference angle is 1sin (1/ 2)rx −= . We can find rx  with 
calculator or using special value 1/2: 1sin (1/ 2) 30 / 6rx π−= = = . Given equation has 
two roots. One of them, 1x , is in the 1st quadrant and coincides with the reference angle: 

1 / 6rx x π= = . Second root 2x  is in the 2nd quadrant: 2 / 6 5 / 6rx xπ π π π= − = − = . 
 
Example 21.2. Solve the equation 2sin( ) 2x− =  in the interval [ )0, 2π . 

Solution. Solving for sin( )x , we get basic equation 
2sin( )

2
x = − . Here: 

1 rx x=
 

2 rx xπ= −  

rx  

rx   

2 2 rx xπ= −  

rx   

1 rx xπ= +  
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2 0
2

a = − < . Reference angle is 1 12 2sin sin
2 2rx − −

   
= − =        

. With calculator, or 

using special value 
2

2
, we can find that 1 2sin 45

2 4rx π−  
= = =  

 

 . The equation has 

two roots. One of them, 1x , is in 3rd quadrant: 1
5

4 4rx x π ππ π= + = + = . Second root 2x  

is in 4th  quadrant: 2
72 2

4 4rx x π ππ π= − = − = . 

Function xy = cos( )  

We can proceed here similar to function sine. Let’s do this in brief form hoping that the 
reader can restore details yourself. By definition, cosine is first (horizontal) coordinate of 
a point on unit circle that corresponds to given angle: 
 
  
 
 
 
 
 
 
 
Moving around the unit circle from quadrant to quadrant, we can construct the graph of 
cosine by observing how horizontal coordinate is changing. For example, in the first 
quadrant when angle runs from 0 to / 2π , cosine decreases from 1 to 0: 
 
 
 
 
 
 
 
In second quadrant cosine continue to decrease from 0 to –1, in third quadrant it increases 
from –1 to 0, and, finally, in fourth quadrant increases from 0 to 1. Here is the graph of 
cosine at one full cycle (on one period interval) from 0 to 2π : 

 
  

                        Graph of cosine on one period interval 
 
 
 
 
 

y 

x 1 0 

• 

θ  

cosθ  = horizontal coordinate 

1 

cosy x=
 

x / 2π  0 

1 

2π  

π  

2
π  3

2
π  π

 
/ 2π  3 / 2π  2π

 
0 
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If we extend graph to the entire x-axis, we get complete graph of cosine: 
 
 
 
 
 

      

 

     Entire graph of function cosy x=  

As for sine, the domain of cosine is (– ∞, + ∞), range is [–1, 1], and cosine is periodical 
function with the same period 2π . Graph of cosine is symmetric with respect to y-axis: 

 cos( ) cos( )x x− =  (Even property of cosine). 
 
Note. It is also possible to get the graph of cosine by shifting the graph of sine to the left 
by / 2π  using the reduction formula cos( ) sin( / 2)x x π= + . 

Solving Simplest Equation x acos( ) =  on One Period Interval [ )0, 2π  

Number of solutions for this equation is exactly the same as for sine. 

Proposition 21.2. Consider the equation cos( )x a=  on the interval [ )0, 2π . Then 

1) If 1a > , the equation does not have solutions. 

2) If 1a = , the equation has one solution in the interval [ )0, 2π : 

 For equation cos( ) 1,x = the only solution is 0x = . 

  For equation cos( ) 1,x = −  the only solution is .x π=  

3) If 1a < , the equation has two roots. In particular, if a = 0, roots of the equation 
cos( ) 0x =  are / 2x π=  and 3 / 2x π= . If 0a ≠ , both roots can be found using 

reference angle ( )1cosrx a−=  in the same way as we did above for the equation 
sin( )x a= . Also, the following formulas can be used that are true any values of a, 
such that 1a < : 

                   1cos ( )x a−=  and 12 cos ( )x aπ −= − . 

Example 21.3. Solve the equation 2 3 cos( ) 1 2x − =  in the interval [ )0, 2π . 

Solution. Solving this equation for cos( )x , we have 
3cos( )

2 3
x =  or 

3cos( )
2

x = . 
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This equation has two solutions: 1 3cos 30
2 6

x π−  
= = =  

 

 , and 112
6 6

x π ππ= − = . 

Example 21.4. Solve the equation 2cos( ) 4 3x + =  in the interval [ )0, 2π . 

Solution. Solving this equation for cos( )x , we have cos( ) 1/ 2x = − . This equation has 

two solutions: 1 1 2cos 120
2 3

x π−  = − = = 
 

 , and 
2 42
3 3

x π ππ= − = . 

Function xy = tan( )  

On unit circle in the system of coordinates, we can interpret tangent like this. On the right 
side of unit circle, draw vertical line and extend terminal side of the angle to meet with 
that line. Then tangent is the vertical coordinate of the point of interception. Here are 
pictures of tangent when angle is located in each of the quadrants: 
 
 
 
 

 
 
 
 
          Angle is in 1st quadrant           Angle is in 2nd quadrant 
 
 
 
 
 
 
 
      
 
          Angle is in 3rd quadrant           Angle is in 4th quadrant 
 
We will draw graph of tangent in the way similar to as we did for sine and cosine. 
Moving along unit circle in the first quadrant, notice that tangent increases from zero to 
infinity, and its graph in the 1st quadrant is this 
 
 
 
 
 
 

1 
θ  

tanθ  

1 θ  

tanθ  

tanθ  

θ  
1 

tanθ  θ  

1 

/ 2π  

tany x=  

x 0 

y 
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Line / 2x π=  becomes vertical asymptote. Continue moving in 2nd quadrant, we get the 
picture  
 
 
 
 
 
 
 
 
 
 
 
Moving in 3rd and 4th quadrants, we get graph of tangent on interval [ )0, 2π : 
 
 

 
 
 
 
 
 
 

               Graph of tangent on [ ]0, 2π  interval 
 
Continue moving around unit circle in both directions, we can draw complete graph of 
tangent: 
 
 
 
 
 
 
 
 
 
 

 
Entire graph of function tany x=  

 
We see that graph consists of infinite number of branches, and it has infinite number of 
vertical asymptotes. The graph is symmetric with respect to origin, so tangent is odd 

y 

0 / 2π  π  x 

tany x=  
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function: ( ) ( )tan tanx x− = − . It repeats itself on π -length interval, so tangent has period 

π : ( ) ( )tan tanx xπ+ = . 
 

Solving Simplest Equation x atan( ) =  on Interval [ )0, 2π  

Any horizontal line y = a intersects the graph of tangent on [ )0, 2π  interval always in 

two points, so the equation ( )tan x a=  always has exactly two roots for any a. The roots 
can be found in the same way as we described above for the equation sin( )x a= , using 
reference angle. 
 
 Proposition 21.3. For any a, equation ( )tan x a=  has two roots in the interval [ )0, 2π . 
If 0a = , the roots are 1 20,x x π= = . If 0a ≠ , to find roots, you may first calculate the 
reference angle 

( )1tanrx a−= . 

 It can be calculated with calculator, using the button 1tan− . Then 

1) If 0a > , roots are in the 1st and the 3rd quadrants and are 

1 2,r rx x x xπ= = + . 

2) If 0a < , roots are in the 2nd  and the 4th quadrants and are 

          1 2, 2r rx x x xπ π= − = − . 

Note. You don’t need to memorize these formulas. Just draw unit circle and mark 
corresponding angles as we did above for the equation sin( )x a= . 

Example 21.5. Solve the equation ( )3tan 2 3 3x − =  in the interval [ )0, 2π . 

Solution. Solving the equation for ( )tan x  we get basic equation ( )tan 3x = . The 

reference angle is 1tan ( 3) 60 / 3rx π−= = =a . Roots of given equation are located in 
the 1st and the 3rd quadrants and are 

1 2/ 3, / 3 4 / 3r rx x x xπ π π π π= = = + = + = . 

Example 21.6. Solve the equation 4 tan( ) 5 1x + =  in the interval [ )0, 2π . 

Solution. Solving the equation for ( )tan x  we get basic equation ( )tan 1x = − . The 

reference angle is ( ) ( )1 1tan 1 tan 1 45 / 4rx π− −= − = = =a . Roots of given equation are 
located in the 2nd and the 4th quadrants and are 

1 / 4 3 / 4rx xπ π π π= − = − = , 

2 2 2 / 4 7 / 4rx xπ π π π= − = − = . 
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Exercises 21 
 
In all exercises, solve given equations in the interval [ )0, 2π . Use radian measure. Do 
not round the answers. Write answers in terms of π . 
  
21.1.  a)  2 2 sin( ) 1 1x − =     21.2.  a)  2 3 sin( ) 1 2x − =  

          b)  2 3 sin( ) 4 1x + =                        b)  2sin( ) 3 2x + =  

21.3.  a)  2 2 cos( ) 3 5x + =     21.4.  a)  2cos( ) 5 6x + =  

          b)  2 3 cos( ) 5 2x + =               b)  2 cos( ) 4 3x + =  

21.5.  a)  3 tan( ) 2 3x + =     21.6.  a)  3 tan( ) 1 2x − =  

          b)  3 tan( ) 6 3x + =               b)  3 tan( ) 6 5x + =  

21.7.  2 3 sin( ) 3 1x − =     21.8.  3 2 cos( ) 4 2x − =  

154



 
Session 22: Trigonometric Identities and None-Simplest Equations 

 

Session 22 
 
Trigonometric Identities and None-Simplest Equations 

  
Trigonometric Identities 

Let’s compare two statements: 

sin cos 1x x+ =  and 2 2sin cos 1x x+ = . 

They look pretty much similar. However, they are completely different. The first one is 
equation and the second one is identity. 

As we already know, equation is a statement that is true only for some specific values of 
variable, and the basic problem for equation is to solve it, which means to find these 
specific values. Such values are called solutions or roots of the equation. For example, 
the values 0x =  and / 2x π=  are roots of the equation sin cos 1x x+ = . It is easy to 
check by substitution these values into equation. We will have sin 0 cos 0 0 1 1+ = + =  
and ( ) ( )sin / 2 cos / 2 1 0 1π π+ = + = , so the equation becomes true statement. If we 
pick, for example, x π= , it is not a root, because by substitution π  for x, the equation 
does not become a true statement: ( ) ( )sin cos 0 1 1 1π π+ = − = − ≠ . Below in example 
22.7 we show that roots 0 and / 2π  are the only roots of the equation sin cos 1x x+ =  in 
the interval [ )0, 2π .  

On the contrary, the second statement 2 2sin cos 1x x+ =  is true for any value of x, no 
exceptions. It is easy to check if we use definitions of sine and cosine as vertical and 
horizontal coordinates of points on unit circle: 
 
 
 
 
 
 
These coordinates (i.e. sin x  and cos x ) together with the radius (which is equal to 1) 
form a right triangle if a point ( )sin , cosx x  lies in the 1st quadrant. By Pythagorean 

Theorem, 2 2sin cos 1x x+ = . We can check that this statement is true for all quadrants. 
Statements like this are called identities. Here is exact definition. 

Definition. Statement ( ) ( )f x g x= , where f  and g  are two functions, is called the 
identity, if this statement is true for all values of variable x from the common domain of 
functions f  and g . 

1 0 
x 
. sin x  

cos x  
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The basic problem for identity is to prove it, not to solve. In general, it is not possible to 
give exact recipe how to prove an identity. Common guideline is to try modify one or 
both sides f  and g  of the identity to get the same expression. Below we consider 
several examples. 
Let’s start with identities that we call basic. They can be used to prove more complicated 
identities. Four of them are simply expressions of tan , cot , secx x x  and csc x  through 
sin x  and cos x : 
 
 
 
 
 
Another identity we already proved above: 
 
 
 
We call this the main identity (it is also called Pythagorean identity). It allows to express 

2sin x  through 2cos x  and vice versa: 
 

2 2sin 1 cosx x= −  and  2 2cos 1 sinx x= − . 
 
From the main identity, we can derive two more identities that connect tan x  with sec x , 
and cot x  with csc x : just divide both sides of the main identity by 2cos x  and 2sin x : 

  
2 2

2 2 2

sin cos 1
cos cos cos

x x
x x x
+ =   and  

2 2

2 2 2

sin cos 1
sin sin sin

x x
x x x
+ =  

From here, we get 
 
  

There are a lot of trig identities that can be derived from basics. Let’s consider some 
examples. 

Example 22.1. Prove the identity 2 2
2 2

1 1 sec csc
sin cos

x x
x x
+ = ⋅ . 

Solution. We will modify the left side to get the right side: 

      
2 2

2 2
2 2 2 2 2 2 2 2

1 1 cos sin 1 1 1 csc sec
sin cos sin cos sin cos sin cos

x x x x
x x x x x x x x

+
+ = = = ⋅ = ⋅

⋅ ⋅
 

Example 22.2. Prove the identity 2 2 4 4sin cos sin cosx x x x− = − . 

Solution. This time we modify the right side using formula ( ) ( )bababa +⋅−=− 22 : 

sin cos 1 1tan , cot , sec , csc
cos sin cos sin

x xx x x x
x x x x

= = = =  

2 2sin cos 1x x+ =  

2 2 2 2tan 1 sec , 1 cot cscx x x x+ = + =  
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( ) ( )4 4 2 2 2 2 2 2sin cos sin cos sin cos sin cosx x x x x x x x− = − ⋅ + = − . 

Example 22.3. Prove the identity  ( )21 sin tan sec
1 sin

x x x
x

+
= +

−
. 

Solution. Here both sides look rather complicated and we modify both of them. 
To modify left side, we multiply numerator and denominator by 1 sin x+ . Then using the 
identity 2 21 sin cosx x− =  in the denominator, we get 

        

( )( )
( )( )

( )2 2

2 2

2
2 2

2 2 2

2 2

1 sin 1 sin 1 sin1 sin 1 2sin sin
1 sin 1 sin 1 sin 1 sin cos

1 2sin sin sin 1sec 2 tan
cos cos cos cos cos
sec 2 tan sec tan .

x x xx x x
x x x x x

x x xx x
x x x x x
x x x x

+ + ++ + +
= = =

− − + −

= + + = + ⋅ +

= + ⋅ +

 

Now let’s modify right side of the original identity: 

( )2 2 2tan sec tan 2 tan sec secx x x x x x+ = + ⋅ +  

We’ve got the same expression as for left side. Identity is proved. 
 
None-Simplest Trigonometric Equations 
In previous session we solved simplest trig equations sin , cosx a x a= =  and tan x a= . 
Now we consider slightly more complicated equations that can be reduced to simplest. To 
solve some of the equations, we will use basic identities. All equations we will solve in 
radians and in the interval [ )0, 2π . 

Example 22.4. Solve the equation 28sin 14sin 15 0x x− − = . 
Solution. This equation can be treated as a quadratic equation with respect to xsin .  
Using the notation sin x u= , the equation becomes quadratic with respect to variable u: 

28 14 15 0u u− − = . It can be solved by factoring: ( )( )4 3 2 5 0u u− + = . From here 
3 0.75
4

u = =  and 
5 2.5
2

u = − = − . Replacing u with sin x , we get two simplest trig 

equations: sin 0.75x =  and sin 2.5x = − . We can solve them in the same way as we did 
in the previous session. 

1) Equation sin 0.75x =  has two solutions in the interval [ )0, 2π  (rounded to 3 

decimal places): 1sin (0.75) 0.848x −= =  and 1sin (0.75) 2.294x π −= − = . 

2) Equation sin 2.5x = −  does not have solutions because xsin  cannot be less than 
1− . 

Final answer: there are two solutions 0.848x =  and 2.294x = . 
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Example 22.5. Solve the equation 28sin 2cos 5 0x x− − = . 

 Solution. We may re-write this equation in terms of cos x  using the identity 
2 2sin 1 cosx x= − . By substitution this expression into the original equation, we get 

( )2 28 1 cos 2cos 5 0 8 8cos 2cos 5 0x x x x− + − = ⇒ − − − = ⇒  
2 28cos 2cos 3 0 8cos 2cos 3 0x x x x− − + = ⇒ + − = . 

 
Similar to example 22.4, we can treat this equation as quadratic with respect to cos x . 
Letting cosu x= , we have the equation 28 2 3 0u u+ − = . It can be solved by factoring 

( ) ( )2 1 4 3 0u u− ⋅ + = . From here 
1 0.5
2

u = =  and 
3 0.75
4

u = − = − . Replacing u with 

cos x , we get two simplest trig equation cos 0.5x =  and cos 075x = − . Let’s solve 
them. 
1) Equation cos 0.5x =  has two solutions (which are special angles) 

 ( )1cos 0.5 60
3

x π−= = =  and 
52

3 3
x π ππ= − = . 

2) Equation cos 075x = −  also has two solutions (which can be find using calculator): 

( )1cos 0.75 2.42x −= − =  and ( )12 cos 0.75 3.86x π −= − − = . 

Final answer: there are four roots: 
5, , 2.42, 3.86

3 3
x x x xπ π
= = = = . 

Note. First two roots are exact solutions, while the last two are approximations to two 
decimal places. 

Example 22.6. Solve the equation 2sin tan 3 tan 0x x x⋅ + = . 

Solution. We can factor out tan x : ( )tan 2sin 3 0x x + = . Now equation can be split 

into two: tan 0x =  and 2sin 3 0x + = . The first one is simplest, and the second one 
can be written as simplest: sin 3 / 2x = − . Let’s solve them. Both of them have two 
solutions. 
For tan 0x = , 0x =  and x π= . 

For sin 3 / 2x = −  calculate ( )1sin 3 / 2 60 / 3x π− − = − = − . From here, 

2 / 3 5 / 3x π π π= − =  and / 3 4 / 3x π π π= + = . 

Final answer: there are four solutions: 0, , 4 / 3, 5 / 3x x x xπ π π= = = = . 
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Example 22.7. Solve the equation sin cos 1x x+ = . 

Solution. Let’s square both sides: 

 ( )2 2 2 2sin cos 1 sin 2sin cos cos 1x x x x x x+ = ⇒ + ⋅ + = . 

Using the main identity 2 2sin cos 1x x+ = , we can simplify the above equation: 
1 2sin cos 1 2sin cos 0 sin cos 0x x x x x x+ ⋅ = ⇒ ⋅ = ⇒ ⋅ = . 

This equation can be broken into two simplest equations: sin 0x =  and cos 0x = . 

Equation sin 0x =  has two solutions 0x =  and x π= . Equation cos 0x =  also has two 

solutions 
2

x π
=  and 

32
2 2

x π ππ= − = . So, it looks like the original equation has four 

solutions: 

     
30, , ,

2 2
x x x xπ ππ= = = = . 

However, this is not true. We need to be very careful, and check these values with the 
original equation. The reason is that when we square both sides of an equation, we may 
get additional roots that are not really roots of the original equation. We already saw that 
in session 6, example 6.6, and in session 8, example 8.7. Let’s check the above four 
values. 

Values  0x = , 
2

x π
=  and x π=  we already checked at the beginning of this session: 0 

and 
2
π

 are roots, but x π=  is not. Let’s check 
3
2

x π
= : 

 
3 3sin cos 1 0 1 1
2 2
π π   + = − + = − ≠   

   
. So, 

3
2

x π
=  is not the root, and we reject it. 

Final answer: there are only two roots 0x =  and 
2

x π
= . 

159



 
Session 22: Trigonometric Identities and None-Simplest Equations 

 

Exercises 22 

In exercises 22.1 – 22.6, prove given identities 
 

22.1.  
coscsc sin
tan

xx x
x

− =     22.2.  
sinsec cos
cot

xx x
x

− =  

22.3.  
cot cot 2sec

1 csc 1 csc
x x x

x x
− =

+ −
   22.4.  

tan tan 2csc
1 sec 1 sec

x x x
x x
− =

+ −
 

22.5.  
4 4

2
2

cos sin 2 sec
cos
x x x

x
−

= −    22.6.  
4 4

2
2

sin cos 2 csc
sin
x x x

x
−

= −  

In exercises 22.7 – 22.14, solve given equations in the interval [ )0, 2π . Use radian 
measure. If it is possible to find exact solutions, write them in terms of π . If it is not 
possible, round the answers to the nearest thousandth. 

22.7.  22sin ( ) 3sin( ) 2x x− =    22.8.  22cos ( ) 7cos( ) 3x x+ = −  

22.9.  23sin ( ) cos( ) 1 0x x− − =    22.10. 25cos ( ) sin( ) 1 0x x+ − =  

22.11. 3sin( ) tan( ) 3 sin( )x x x⋅ =    22.12. cos( ) tan( ) 3 cos( )x x x⋅ =  

22.13. sin( ) cos( ) 1x x− =     22.14. cos( ) sin( ) 1x x− =  
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Session 23 
 

Logarithms 
 
Consider the following problem. Suppose we have three numbers x, y and z, that are 
connected by the equation xy z= . How to solve this equation for x and for y? 

It is easy to solve for y: raise both sides of the equation to the power 1
x

, and get 

 ( )
1 11

1
xxx x x xxy y y y y z

⋅
= = = = = .  So, 

1
xy z= . 

It is important to understand that even we obtained the formula 
1
xy z= , this formula, in 

general, does not give us a direct way (a finite sequence of arithmetic operations) to get 

the exact answer. Actually, the expression 
1
xz  provides only the notation of a specific 

operation on x and z, and the question how to perform this operation is another story 
(which is out of the scope of this session). 

Similar situation occurs when we want to solve the equation xy z=  for x. In other 
words, we want to express power x in terms of the base y and number z. Of course, for 
some specific values of y and z, it is easy to do. 

Example 23.1. Solve the equation 2 8x = . 

Solution. This equation can be solved directly. Indeed, we can represent number 8 as an 
exponent with the base 2: 328 = . Then the equation takes the form 32 2x = . From here 
we immediately conclude that x = 3. 

However, in general, we cannot solve the equation xy z=  for x so easily. Consider, for 
example, equation 2 6.x =  Because 22 4=  and 32 8= , we can just estimate that x should 
be somewhere between 2 and 3. But where? We cannot indicate the exact value. At the 
end of this session we will be able to get an approximation. We will see in Example 23.8 
that up to three decimals, 2.585.x ≈  

In general, we may think of the solution x of the equation xy z=  as a result of some 
specific operation that we perform on y and z. In other words, we consider x as some 
function of two variables y and z. Since we have function, we need a notation for it. You 
may invent your own notation. For example, using the abbreviation “sol” for solution, we 
can write x = sol(y, z). In mathematics the following notation is used: log yx z= . We read 
this as “logarithm (or, in short, log) of number z with the base y”. So, the solution of the 
equation xy z=  with respect to x is log yx z= . 

In the definition below, we simply change letter y to b and z to c. 
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Definition of Logarithm. Let b be a positive number not equal to 1, and c be any 
positive number. Then logbx c=  is the solution of the equation xb c= . In other words, 
logarithm is a power to which we raise base b to get number c. 
Note. You may be wondering why the base 1b ≠ . Well, let’s  b = 1, so we consider the 
equation cx =1 . If we raise 1 to any power, the result is still 1, so we have c = 1, and any 
number x satisfies the equation 11 =x . Therefore, in this case the solution 1log 1x =  does 
not make sense: it can be any number. Another restriction is b > 0. This is to avoid 
problems with complex (not real) numbers. For example, ( )1/ 21 1− = −  is not a real 
number, so we exclude negative base b.  Also, we put the restriction on number c: c > 0. 
This is because xc b= , and positive b raised to any power is positive, so for non-positive 
c logarithm does not exist. 
In practice, often number 10 is used as the base of logarithms. Such logarithms are called 
common ones. Usually, for simplicity we drop the base 10 in the notation of common 
logs. So, 
    cc 10loglog = . 

Working with logs, it is often convenient to convert them into exponents. If we denote 
given logarithm by x (i.e. logb c x= ), we can re-write it (by definition) as xb c= . To be 
more comfortable with this technique, you may memorize the following “Circular Rule” 
for conversion: in logb c x= , take base b, raise it to power x, and you get c: 
 

       log x
b c x b c= ⇔ =  

 

This rule says that two statements: logbx c=  and xc b=  are equivalent. 

Logarithms were invented by Scottish mathematician John Napier in early 1600, and the 
notation log was introduced by German mathematician Gottfried Leibniz in 1675. 
In some cases, it is easier to operate with exponents rather than with logarithms. We will 
see this in the following example. 

Example 23.2. Calculate or simplify 
a) 8log2  

b) 100log  

c) 0001.0log  

d) log 1b  

e) logb b  

f) log n
b b  

g) logb cb  
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Solution.  

a)  Problem to calculate 8log2  is, actually, the same as example 23.1, just written in 
different form. Indeed, if 8log2=x , then, by circular rule, 82 =x . From example 
23.1, we have x = 3, so 38log2 = . 

b) Let 100log100log 10==x . By the circular rule, 21010010 ==x , 
so log100 2x = = . 

c) Let 0001.0log=x . Then 4100001.010 −==x , so x = log 0.0001 4= − . 

d) Let log 1bx = . Then 01xb b= = . Therefore, x = log 1 0b = . 

e) Let logbx b= . Then 1xb b b= = . Therefore, x = log 1b b = . 

f) Let log n
bx b= . Then x nb b= . Therefore, x = log n

b b n= . 

g) At the first glance, the expression logb cb  looks rather complicated. However, if you 
look at it carefully, you will realize that it is actually a very simple. Indeed, if we 
denote logb c x= , then xb c= , so, logb c xb b c= = . 

Note. Try to memorize answers of problems 23.2, d) and e): 

              For any base b,  log 1 0b =  and log 1b b = . 

 Example 23.3. Prove that 1log logb
b

c c= − . 

Solution. Let’s use letters x and y for the above logs: 1log , logb
b

x c y c= = . Then 

1 1 ,
x

x y
x b c b c

b b
−  = = = = 

 
. From here,  x yb b− = . So, y x= − . Therefore, 

1log logb
b

c c= − . 

 
Basic properties of logarithms 

Multiplication Rule: log ( ) log logb b bx y x y⋅ = + . 

In words: logarithm of product is equal to the sum of logarithms. 

The proof of this statement can be done in a manner similar to examples 23.2 and 23.3. 
Denote each of three logs by letters: log ( ), log , and logb b bA x y B x C y= ⋅ = = . 
Next, use the circular rule to convert them into exponents: Ab x y= ⋅ , Bb x= , and 

.Cb y=  Now, multiply the second and third equations: , or .B C B Cb b x y b x y+⋅ = ⋅ = ⋅  
Compare this equation with Ab x y= ⋅ . From here, A B Cb b += , hence A = B + C, or 
log ( ) log logb b bx y x y⋅ = + . 
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Note. Before the era of calculators, there was a widely used device, so-called logarithmic 
ruler, or slide ruler, that allows to multiply numbers based on the Multiplication Rule for 
logarithms. Schematically speaking, this device works like this. It contains two rules that 
allow to convert numbers into logs and vice versa. To multiply two numbers, the device 
converts them to logs and adds them up. According to the Multiplication Rule this sum is 
the log of product. Then device converts this log of product back to the product of given 
numbers. So, the device makes (physically) summation, but mathematically, we get 
multiplication. 

Example 23.4. Solve the equation 3)3(log)1(log 22 =−+− xx . 

Solution. Using the Multiplication Rule, we can combine both logs in one: 
3)3)(1(log2 =−− xx . From here, 82)3)(1( 3 ==−− xx . This is a quadratic equation that 

can be written in standard form 0542 =−− xx . We can solve it by factoring: 
(x – 5)(x + 1) = 0, and we get two solutions: x = 5 and x = – 1. Let’s check these solutions 
with the original equation. Let x = 5. Then 
    3122log4log)35(log)15(log 2222 =+=+=−+− , 

so everything is OK with this. Now, let x = – 1. Then we come up with logs of negative 
numbers: )2(log2 −  and )4(log2 − . Such logs do not make sense. Therefore, we must 
reject the value x = – 1. Final answer: the equation has the only solution x = 5. 

Notes.  
1)  Example 23.4 shows that we need to be very careful when come up with the final 

answer: we must check the answer with the original equation. 

2)  Keep in mind that log log log ( )a b bx y x y+ ≠ ⋅  if a b≠ . Multiplication Rule is 
applicable only to logs with the same base. 

Quotient (or Division) Rule: log log logb b b
x x y
y

 
= − 

 
. 

In words: logarithm of quotient is equal to the difference of logarithms. 
The proof is similar to that given for multiplication rule. The proof of this statement as 
well as others statements given below, are left as exercises. 

Note. The above two rules: multiplication and division rules for logs, can be considered 
as inverse rules for multiplication and division of exponents. If we multiply exponents, 
we add their powers (powers are logs), if we add logs, we multiply their numbers. If we 
divide exponents, we subtract their powers, if we subtract logs, we divide their numbers. 
In next session, we will discuss more about this “inverse connection”. 

Example 23.5. Solve the equation 1)74log()8log( =−−+ xx . 

Solution. Using the Division Rule, we can represent the left part as logarithm of quotient, 

and the equation takes the form 1
74
8log =
−
+

x
x . From here 1010

74
8 1 ==
−
+

x
x . Solving this 

equation, we get x = 2. Let’s check this answer with the original equation: 

165



 
Session 23: Logarithms 

 

 1011log10log)724log()82log( =−=−=−×−+ .  So, x  = 2 is the solution. 

 
Power Rule: log logn

b bx n x= ⋅ . 

In words: logarithm of an exponent is equal to its power times logarithm of its base (base 
of exponent, not base of log). 
 
Example 23.6. Calculate without using a calculator: 

  6 6 63 log 3 log 75 2 log 10⋅ − + ⋅  

Solution. Here we can use all three rules listed above. We can modify first and third 
terms like this: 

3
6 6 63 log 3 log 3 log 27⋅ = =  

2
6 6 62 log 10 log 10 log 100⋅ = =  

From here 

6 6 6 6 6 6

2
6 6 6 6

3 log 3 log 75 2 log 10 log 27 log 75 log 100
27 100log log 36 log 6 2 log 6 2.

75

⋅ − + ⋅ = − +
⋅

= = = = ⋅ =
 

Most scientific calculators allow to calculate logarithms only with specific bases: base 10 
(common logs), and base e (this is a special number that we will discuss later in session 
25). Logs with the base e are denoted with the symbol ln and are called the natural 
logarithms, so ln logex x= . To calculate logs with other bases, we need the way to 
convert logs from one base to another. The following rule allows to do this. 

Change-of-Base Rule:  
          loglog

log
d

b
d

xx
b

= . 

According to this rule, if we need to calculate logarithm with the base b, but our ability is 
restricted with the base d only, we can make conversion from base b to d, and then 
perform the calculations. If we put x = d, we get special case of the Change-of-Base Rule: 

1log
logb

d

d
b

= . 

To prove Change-of-Base Rule, denote logby x=  and convert it into exponential form 
. Now apply log with the base d to both sides and use power rule: 

          loglog log log log
log

y d
d d d d

d

xb x y b x y
b

= ⇒ = ⇒ = . 
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Example 23.7. Assume that you have a calculator that allows to calculate common logs 
(logs with the base of 10). Calculate 5log3 . 

Solution. Using Change-of-Base Rule and calculator, we have 

   465.1
477.0
699.0

3log
5log5log3 ≈≈= . 

Often, logarithms are useful in solving exponential equations in which powers of 
exponents are unknown. 
 
Example 23.8. Solve the equation 2 6x =  that we discussed at the beginning of this 
session. Approximate the solution to the nearest thousandth. 

Solution. Let’s take the logarithm of both sides of this equation to the base 10 (common 

log): log 2 log 6.x =  Using the Power Rule, log 2 log 6,x ⋅ =  and log 6
log 2

x = . This is “exact 

answer”. Using calculator, we can get numerical approximation: log 6 0.7781 2.585
log 2 0.3010

≈ ≈ . 

So, 2.585.x ≈  
 
Example 23.9. Solve the equation 53 12 =−x . Approximate the solution to the nearest 
hundredth. 

Solution. As in Example 23.8, we take log from both sides: 5log3log 12 =−x . Using the 
Power Rule, we have 5log3log)12( =−x . From here, 

23.11
477.0
699.0

2
11

3log
5log

2
1,1

3log
5log2,

3log
5log12 ≈






 +≈








+=+==− xxx . 

So, 23.1≈x . 

Note. Method of taking a logarithm of both side of a given equation, that we used in 
Examples 23.8 and 23.9, is used very often for equations that contain exponents. 
Theoretically, we can take logarithm with any base. We used common logs (base is 10) to 
be able to use calculator. We could also use natural logs (logs with the base e). 
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Exercises 23 

In exercises 23.1 and 23.2, solve given equation. 
 
23.1.  3 27x =      23.2.  5 625x =  
 
In exercises 23.3 and 23.4, calculate without using a calculator. 
 
23.3.  a)  3log 81    23.4.  a)  4log 16  

          b)  log1000               b)  log10000  

          c)  log 0.01              c)  log 0.001 

          d)  1
2

log 64               d)  1
3

log 27  

 
In exercises 23.5 and 23.6, solve given equations. 
 
23.5.      23.6. 
     a)  3 3log ( 4) log ( 2) 3x x− + + =        a)  4 4log ( 4) log ( 2) 2x x+ + − =  

     b)  5 5log (7 3) log ( 3) 2x x− − − =        b)  2 2log (15 3) log ( 3) 3x x+ − + =  
 
In exercises 23.7 and 23.8, calculate without using a calculator. 
 
23.7. 8 8 8log 32 2 log 6 log 9− ⋅ +   23.8.  3 log 20 2 log3 log 72⋅ + ⋅ −  
 
In exercises 23.9 and 23.10, assume that calculator allows to calculating only common 
logs ((logs with the base of 10). Calculate given expressions. Round your answers to the 
nearest thousands. 
 
23.9.  7log 8      23.10. 8log 7  
 
In exercises 23.11 and 23.12, solve given equations. Round your answers to the nearest 
thousands. 
 
23.11. a)  6 9x =     23.12.  a) 5 8x =  

           b)  3 27 4x+ =                 b)  5 34 7x− =  
 

Challenge Problem 

23.13. Consider the equation 

 log ( ) log ( )c cx a x b p q+ + + = + ,  where p qb a c c= − + . 

           Prove that the only solution of this equation is px c a= − . 

168



 
Session 24: Exponential and Logarithmic Functions 

 

Session 24 
 

Exponential and Logarithmic Functions 
 
We already studied some functions: quadratic functions (parabolas) and trigonometric 
functions. In this session, we will study exponents and logarithms from the point of view 
of functions. For these functions, we will denote by letter a any positive number, not 
equal to 1, and call it the base of a function.  

Exponential Functions   

We can treat the exponent xa as a function of x: if we pick any number x, the exponent 
will produce the value xay = . We can also write xaxf =)( . The domain of this function 
(possible values of x) is the set of all real numbers (since any number x can be taken as a 
power, so no exceptions), but the range (possible values of y) is the set of only positive 
numbers (the value of xa  cannot be negative number or zero). 
We are interested in the behavior of this function. It means that we want to know what 
happens with the value y when x takes some specific values, increases to positive infinity, 
or decreases to negative infinity. One of the ways for this is to visualize the functions, in 
other words, construct its graph. One point on the graph is easy to observe: if x = 0 then 

10 == ay . So, for any base a, the graph of the exponential function xay =  passes 
through the point (0, 1) which is located on the y-axis. It turns out that the shape of the 
graph of the function xa  depends whether base a is greater or less than 1. 

1. Case a > 1. In this case, the bigger x, the bigger y. We say that function xay =  
increases, and increases very fast. For example, if we take a = 2, we can construct the 
following tables of values of function 2xy =  for non-negative and negative values of x: 

 
x 0 1 2 3 4 5 

xy 2=  1 2 4 8 16 32 
 

x – 1 – 2 – 3 – 4 – 5 
xy 2=  

2
12 1 =−  

4
12 2 =−  

8
12 3 =−  

16
12 4 =−  

32
12 5 =−  

 
Based on these two tables we can draw the graph of the function xy 2= : 
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Notice that when x goes to positive infinity (moving to the right), y also goes to infinity 
(moving up), and when x goes to negative infinity (moving to the left), y approaches to 
zero (approaches to x-axis and never touches it). We say that x-axis is the horizontal 
asymptote of the function xay = . 

2. Case 0 < a < 1. In this case, the bigger x, the smaller y. We say that function xay =  

decreases. Let’s take as an example 
2
1

=a . We can construct the graph of the function 

x

y 





=

2
1  in a similar way as we did above for the function xy 2=  by creating the table 

of its values. However, we can get this graph almost immediately, if we notice that 

x
x

x
−==






 2

2
1

2
1 . So, we actually need to graph the function xy −= 2 . 

Let’s consider in general the relationship between the graphs of functions )(xf  and 
)( xf − . Points (x, y) and (–x, y) are symmetric to each other with respect to y-axis. 

Therefore, graphs of )(xf  and )( xf −  are also symmetric to each other with respect to 
y-axis. It means that if we already drew the graph of )(xf , then, to get the graph of 

)( xf − , we can just reflect the graph of )(xf  with respect to y-axis. 

We can apply the above reasoning to the function x
x

y −=





= 2

2
1  and reflect the graph of 

xy 2=  with respect to y-axis. Her is the resulting picture 

xy 2=  

170



 
Session 24: Exponential and Logarithmic Functions 

 

                  

As you can see, when x goes to negative infinity, y increases to positive infinity, and 
when x goes to positive infinity, y approaches to zero (but doesn’t equal to it), so x-axis is 

still horizontal asymptote of the function 
x

y 





=

2
1 . 

Logarithmic Functions 
Similar to exponents, we can treat the logarithm xalog  (with fixed base a) as a function 
of x: xy alog= . Its domain is the set of all positive numbers, and range – the set of all 
real numbers. 

Note. Notice that the domain of xalog  is the range of xa , and the range of xalog  is the 
domain of xa . This is not a coincidence: we will see shortly that this is related to the 
concept of inverse functions. 

All logarithmic functions (for all bases a) have the same value of zero at  x = 1: 
               01log =a . 

So, the graphs of all logs pass through the same point (1, 0)  on x-axis. Similar to 
exponential functions, the shape of the graph of the function xy alog=  depends whether 
a is greater or less than 1. 

1. Case a > 1. In this case, as for an exponential function, the log function increases, but 
this time increases very slowly. Let’s take as an example a = 2. Here are tables of 
values of the function xy 2log=  for values of x greater and less than 1. 

 
x 1 2 4 8 16 32 

xy 2log=  0 1 2 3 4 5 
 

x

y 





=

2
1
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x 
2
1  

4
1  

8
1  

16
1  

32
1  

xy 2log=  – 1 – 2 – 3 – 4 – 5 

 
The graph of the function xy 2log=  is this 

                          

Here y-axis is the vertical asymptote: y goes to negative infinity when x approaches to 
zero, but never touches y-axis. 
   
2. Case 0 < a < 1. In this case, like for an exponential function, the function xy alog=  

decreases, but now decreases very slowly. Let’s take the example of 
2
1

=a . To draw the 

graph of xy
2
1log=  without creating a table of values, we can use the result of example 

23.3 from the previous session: xx a
a

loglog 1 −= . In our particular case, 

xx 2
2
1 loglog −= . 

Let’s consider in general the connection between graphs of functions )(xfy =  and 
)(xfy −= . Points (x, y) and (x, – y) are symmetric to each other with respect to x-axis. 

Therefore, the graphs of )(xf  and )(xf−  are also symmetric to each other with respect 
to x-axis. So, to get the graph of )(xf− , we can just reflect the graph of )(xf  with 
respect to x-axis. 

Applying this reasoning to the function xxy 2
2
1 loglog −== , we will get the picture 

xy 2log=  
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Here y-axis remains the vertical asymptote. 
 
Relation between Exponential and Logarithmic Functions 

If you compare the tables of values of functions xy 2=  and xy 2log= , shown above, 
you may notice that variables x and y exchange their values. This is not a coincidence. 
The thing is that functions xay =  and xy alog=  are inverse to each other. Let’s consider 
this concept in general form. 
Let ( )y f x=  be a function. As we already mentioned, we can treat variable x as input 
that goes into function f, then f operates on x and produces the output y. Schematically, 
we can represent function f by the diagram 
 
 
 
 
 
A function g is called the inverse to f, if it does the job opposite to f: it passes y back to x. 
In other words, the input of the inverse function is y, and the output is x. Usually, we 
denote the function inverse to f by 1−f . Schematically, we can represent the inverse 
function 1−f  by the diagram 

 
 
 

Note. The notation 1−f  for inverse function may create confusion with the notation 
f
1  

for the reciprocal function. Keep in mind that these are completely different functions.  

         f x (input) y (output) 

xy
2
1log=

 

        f  –1  y (input) x (output) 

173



 
Session 24: Exponential and Logarithmic Functions 

 

 
To find the function inverse to f, we can solve the equation y = f(x) for x, and then 
exchange x and y: replace x with y, and y with x. 

Example 24.1. Find the inverse function to 2xy = , where 0≥x . 

Solution. If we solve the equation 2xy =  for non-negative x, we get yx = . Now, just 
exchange x and y. The inverse function is xy = . 

Example 24.2. Find the inverse function to xy alog= . 

Solution. As in example 24.1, solve the equation xy alog=  for x. Using the “Circular 
Rule” described in session 23, we have yax = . Now, exchange x and y, and get the 
inverse function xay = . 

As you see, logarithmic and exponential functions are inverse to each other. 
 
Let’s return to a general case of the function f, and see how the graphs of   f   and 1−f  are 
related. If (x, f(x)) is a point on the graph of  f, then the point ((f(x), x) will be on the graph 
of 1−f . The points with coordinates (a, b) and (b, a) are symmetric to each other with 
respect to the line y = x which is the bisector of the first and third quadrants. (To see that, 
you may consider some examples, like points (3, 4) and (4, 3), or try to prove this 
statement in general form). Therefore, the graphs of the function f and its inverse 1−f  are 
symmetric to each other with respect to the line y = x. 

Let’s draw together the graphs of the functions xy 2= and xy 2log=  which are inverse 
to each other: 
 

                             

x 

y = x 

2xy =  

2logy x=  

y 
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Exercises 24 
In exercises 24.1 – 24.8, graphs of given functions f and g are drawn. One of the graphs is 
labeled as A and another as B. Identify functions f and g with the graphs. Explain your 
answers. 
 
24.1.  ( ) 3 , ( ) 4x xf x g x= = .           24.2.  ( ) 4 , ( ) 5x xf x g x= = . 
 
 
 
 
 
 
 
 
 
 
 
 

24.3.  1 1( ) , ( )
3 4

x x

f x g x   = =   
   

.          24.4.  1 1( ) , ( )
4 5

x x

f x g x   = =   
   

. 

 
 
 
 
 
 
 
 
 
 
 
 
24.5.  3 4( ) log ( ), ( ) log ( )f x x g x x= = .         24.6.  4 5( ) log ( ), ( ) log ( )f x x g x x= = . 
 
 
 
 
 
 
 
 
 
 
 

A 

B 

B 

A 

A 

A 

B 

B 

A 

B 

B 

A 
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24.7.  1 1
3 4

( ) log ( ), ( ) log ( )f x x g x x= = .         24.8.  1 1
4 5

( ) log ( ), ( ) log ( )f x x g x x= = . 

 
 
 
 
 
 
 
 
 
 
 
 
In exercises 24.9 and 24.10, find the inverse function to function f(x). 
 

24.9.  a)  ( ) 3xf x =              24.10. a)  3( )
4

x

f x  =  
 

 

          b)  2
3

( ) log ( )f x x=             b)  5( ) log ( )f x x=  

A 
A B 

B 
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Session 25 
 

Compound Interest and Number e 
 
If you deposit money into a bank, bank pays you interest for usage of your money. If you 
borrow money from the bank, you pay interest to the bank. The interest may be simple or 
compound. To explain these, let’s start with some terminology and notations. 
P –  Principal or Initial Value. This is amount of money that you deposit into a bank or 
        borrow from the bank. 
T – Time. This is a period of time that money is used (by you or by bank). In 

calculations, it is usually counted in years. If the time period is a few months, it is 
given by fraction or decimal. For example, T = 0.5 means 6 months. 

R – Rate. This is interest rate used to pay for usage of money. Usually it is given as 
percentage per year. In calculations it is used as a decimal. For example, if interest 
rate is 1.7%, in calculations it is used as 0.017. 

I –  Interest. This is amount of money that you (or bank) earn for usage of money for T 
years. (Do not confuse interest and rate: interest is dollar amount while rate is 
percentage).  

A - Amount or Future Value. This is amount of money that you will have after T years. 
Obviously the future value is the sum of two parts: Initial Value and Interest. So,  
A = P + I. 

Simple Interest 

This type of interest is usually used when you keep money for a short period of time, like 
several months. This interest is really simple to calculate. If you deposit P dollars for one 
year with the rate R (taken as a decimal), then the interest I (this is what you earn), will 
be I = PR. If you keep money for T year, the total interest you earn will be 
I =PRT. This is the formula for simple interest. As you see, it’s really simple. We can 
also calculate the future value A: A = P + I = P + PRT = P(1 + RT). So, basic formulas for 
simple interest are 
 
 
Note. When using the above formulas, keep in mind that rate R must be taken as a 
decimal (not as percent), and time T should be in the same units of time as rate R (usually 
in years).  
Example 25.1. Suppose you deposit $800 for 3 months into a bank that pays 5% simple 
interest. Calculate interest that bank will pay you and future value (amount that you 
withdraw) after 3 months. 
Solution. We have 

P = 800,  R = 5% = 0.05,  25.0years
12
3months3 ===T . 

Using the above formulas for I and A, we get 

 I = PTR,  A = P(1+RT) 
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       1025.005.0800 =××== PRTI (dollars),    A = P + I = 800 + 10 = 810 (dollars). 

Compound Interest 

If you keep money in a bank for a long period of time (for example on CD – Certificate 
of Deposit, for several years), it is not fair to calculate interest using the above formula 
for simple interest. Indeed, if the principal is P, and the bank rate is R, then the amount 

1A  after the first year, according to the formula for future value with T = 1, is 
)1(1 RPA += . Assume that after the first year you do not withdraw your money. Then for 

the second year it would be not fair to take as a principal the original value P. Instead, it 
is reasonable to take as a new principal the value 1A  (which is, of course, greater than P). 
In other words, for the second year rate R should be applied not only to the initial deposit 
P, but also to the interest I = PR that you earned for the first year. Notice that according 
to the formula )1(1 RPA += , the amount at the end of a year is equal to the amount at the 
beginning of the year times )1( R+ . Therefore, at the end of the second year the amount, 
denoted as 2A , should be 

   2
12 )1()1)(1()1( RPRRPRAA +=++=+= . 

If we continue the same reasoning, then after T years you will accumulate the amount of 
T

T RPA )1( +=  dollars. Formula 

                  TRPA )1( +=        

allows to calculate the future value after T years, if the initial principal is P, and the bank 
interest is R.  

Even so the above formula for future value is fairer than corresponding formula for 
simple interest, it still is not enough fair. Here is the reasoning. After some (even short) 
period of time, let’s say after a half an year, your principal will be increased by the 
earned interest for that period. However, according to the above formula, the original 
principal remain the same for the entire year, and only at the beginning of the next year 
bank makes re-calculation, and replaces the original principal with a new value. It would 
be better (for customers), if such recalculations would be done more often. Many banks 
do that. They introduce a parameter which is called the compounded period. This is a 
period of time after which bank makes recalculation of the principal: bank takes the 
principal, adds earned interest, and uses this sum as a new principal. Usually, bank 
compounds (recalculates) semiannually (every half of a year), quarterly (every three 
months), monthly, and even daily. Therefore, the above formula for future value should 
be modified by including a new parameter N – number of compounded periods per year. 
For example, if investment is compounded semiannually, then N = 2, if quarterly, then 
N = 4 , if monthly, then N = 12 and so on. 
Let’s modify the above formula for future value if investment compounded monthly, i.e. 

N = 12. Since the rate R is for the entire year, interest for one month will be 
12
PRI = . 
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After 1st month, future value is 1
12 12
PR RA P I P P  = + = + = + 

 
. So, in order to get future 

value for any month, we should take future value for the previous month and multiply it 

by expression 1
12
R

+ . Therefore after 2nd month, future value 

 
2

1 1 1
12 12 12
R R RA P P    = + + = +    

    
. And, at the end of the year T, future value 

12

1
12

TRA P  = + 
 

. In similar way, for any compound period N, we can get the general 

compound interest formula: 

 
 
 

. 

 Here R
N

 is the rate for one compound period, and TN is the total number of compounded 

periods for T years. For example, if rate R = 2.4%, deposit is compounded quarterly  

(N = 4), and number of years T = 5, then 0.024 0.006
4

R
N
= =   and  5 4 20TN = ⋅ = . 

Interest I on this deposit is the difference between future value A and the original 
principal P: 

            











−






 +=−






 +=−= 111

TNTN

N
RPP

N
RPPAI . 

Example 25.2. Suppose you deposit $300 for 8 years at 3% compounded quarterly. Find 
the future value and earned interest. 

Solution. We have: P = 300, R = 3% = 0.03, N = 4, T = 8. Substitute these values into the 
compound interest formula and calculate future value A: 

      
8 4

320.03300 1 300 (1.0075) 300 1.2701 381.03
4

A
⋅

 = ⋅ + = ⋅ ≈ ⋅ = 
 

. 

So, the future value is $381.03. Interest I is the difference: 

          I = A – P = 381.03 – 300 = 81.03. 

Therefore, you will earn $81.03 for 8 years. 
 
The compound interest formula can be used to find rate R, or time T required to 
accumulate desirable amount in future. 

TN

N
RPA 





 += 1  
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Let’s solve the problem to find time T in general form. Dividing both parts of the 
compound interest formula by P, we have 

TN

N
R

P
A







 += 1 .  

 

Now, take log from both sides: 





 +⋅=






 +=

N
RTN

N
R

P
A TN

1log1loglog . 

From here, 







 +⋅

=

N
RN

P
A

T
1log

log
. 

Example 25.3. Suppose you deposit some amount of money at 6% compounded 
monthly. In how many years your deposit will be doubled? 

Solution. According to the problem, the future value A is twice as principal P: A = 2P. 
Also, R = 6% = 0.06, N = 12. By the above formula, 

2log log 2 log 2 0.3010 11.5
0.06 12 log1.005 12 0.0022log 1 12 log 1
12

P
PT

RN
N

= = = ≈ ≈
⋅ ⋅   + ⋅ +   

   

. 

So, your deposit will be doubled in about 11.5 years. 
 
When you make a decision in what bank to deposit your money, or what credit card to 
use to make only minimum payments, you need to take into consideration not only the 
rate, but also the compounded period. To make a true comparison of different rates, we 
can compare the interest that is accumulated on one dollar for one year. This value is 
called the effective rate or APY (Annual Percentage Yield). To get a formula for APY, 
we substitute into the above formula for interest I the values P = 1 and T = 1. We will 
have 

        11 −





 +=

N

N
RAPY . 

 Usually, APY is presented as percentage. 

Example 25.4. Suppose you have a choice of using two credit cards on which you want 
to make minimum payments only. On the 1st card, you will pay 18% interest compounded 
monthly, and on the 2nd card  – 17. 9% compounded daily. Which deal is better for you? 
 
Solution. On the first glance, it looks like the 2nd card is better (you pay smaller rate). 
However, let’s compare APYs for these two cards. 
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1st card:   1956.01
12
18.01

12

≈−





 +=APY ,  or APY = 19.56%. 

2nd  card:   1960.01
360
179.01

360

≈−





 +=APY ,  or APY = 19.60%. 

 
As you see, even the rate on the 1st credit card is higher, you would prefer this card 
because its APY is smaller, and in long run you will pay less interest. 

 
Continuous compound interest. Number e 

We saw that when you deposit money into a bank, it is more profitable for you, if bank 
uses compound interest formula instead of the simple one. Also, the shorter the 
compound period, the greater your profit. We mentioned the cases of compounding 
semiannually, quarterly, monthly, and daily. But why we need to be restricted only with 
these periods? Is it possible for the compound period to be one hour, one minute, or even 
one second? The answer is yes. In this way we come up to a formula which is called 
continuous compound interest. 
To get this formula, let’s modify the compound interest formula: 

                

TR

R
NTN

N
RP

N
RPA




















 +=






 += 11 . 

If we denote 
R
N

N N
Re 





 += 1 , then ( )TR

NePA = . 

Let’s see what happens with your income when compound period becomes shorter and 
shorter. In this case, recalculation of the interest happens more often, and, as a result, the 
future value (i.e. your money) becomes bigger. You may think that the future value will 
grow endless and, eventually, may become huge. However (unfortunately for you) this is 
not true. Your income has a limit. If N increases to infinity (becomes bigger and bigger), 

then the value 
R
N  also increases to infinity. However, this is not the case for Ne  (and so 

for future value). This value also increases but not to infinity. Let’s calculate Ne  for some 

values of 
R
N . 

R
N  1 2 3 4 5 10 100 1000 

Ne  2 2.25 2.37 2.44 2.49 2.59 2.70 2.717 
 
It can be shown that if N continues to increase, the value of Ne  cannot be greater than 3. 
Actually Ne  becomes closer and closer to a certain constant number. This number is 
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TRPeA =  

denoted by the letter e and is approximately equals to 2.718. In mathematics, this number 
is called Euler's number or the base of natural logarithms. Most scientific calculators 
have a button to calculate the number e with even better precision. 

Let’s return to the formula 
R
N

N N
Re 





 += 1  and denote power N n

R
= . Then, by taking 

reciprocal, 1R
N n
=  and 11

n

Ne
n

 = + 
 

. If N is big, number n is also big and Ne e≈ . We 

may say that 

    11 2.718
n

e
n

 ≈ + ≈ 
 

,  if number n is big. 

If we replace Ne  in the formula ( )TR
NePA =  with the number e, we will get the 

continuous compound interest formula 
 
 
 
 
This formula gives the greatest possible future value compared to compound interest 
formula with any finite number N of compound periods per year. 
 
Example 25.5.  Suppose you made an investment of $300 for 8 years at 3% compounded 
continuously. Find the future value and earned interest. 

Solution. We have: P = 300, R = 3% = 0.03, T = 8. Substitute these values into the above 
formula and calculate future value A: 

8 0.03 0.24300 300 300 1.27125 381.37TRA Pe e e⋅= = ⋅ = ⋅ = ⋅ =  

So, the future value is $381.37. Interest I is the difference: 

 I = A – P = 381.37 – 300 = 81.37. 

Compare this result with the result of example 25.2. The difference in interest is small 
(34 cents) but for large investments the difference becomes significant. 
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Exercises 25 

Round all answers to the nearest cent. 
 
25.1.  Suppose you deposit $700 for 5 months into a bank that pays 2.5% simple interest. 

Calculate interest that bank will pay you and future value (amount that you 
withdraw) after 5 months. 

25.2.  Suppose you deposit $600 for 7 months into a bank that pays 4% simple interest. 
Calculate interest that bank will pay you and future value (amount that you 
withdraw) after 7 months. 

25.3.  Suppose you deposit $1,200 for 5 years at 5% compounded monthly. Find the 
future value and earned interest. 

25.4.  Suppose you deposit $2,400 for 6 years at 2% compounded semiannually. Find the 
future value and earned interest. 

25.5. Suppose you made an investment of $1,200 for 5 years at 5% compounded 
continuously. Find the future value and earned interest. Compare with the results 
of example 25.3. 

25.6. Suppose you made an investment of $2,400 for 6 years at 2% compounded 
continuously. Find the future value and earned interest. Compare with the results 
of example 25.4. 

 

Challenge Problem 

25.7.  Suppose you want to invest $5,000 for the next 10 years. You are considering two 
banks for your investment. Bank A offers a rate of 7 % compounded semiannually. 
Bank B offers a rate of 6.9 % compounded daily. Which bank would you choose? 
Is it possible to solve this problem without information about investment amount 
and time? 
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Session 1 
 

1.1.   42.5 10×  1.2.   42.9 10×  1.3.   42.56 10−×  1.4.   51.4 10−×  
    
1.5.   0.00004  1.6.   0.0875  1.7.   3,475,000  1.8.   1,236 
    
1.9. a)  33.47 10−×  

b)  22.5 10×  

1.10. a)  54.38 10−×  

b)  43.6 10×  

1.11. a)   2 
b) 1 
c) 1/16 
d) – 1/16 
e) 1/16 

1.12. a)   3 
b) 1 
c) 1/25 
d) –1/25 
e) 1/25 

    
1.13.  a)  21/ a  

          b)  61/ a  

1.14.  a)  31/ c  

          b)  121/ d  

1.15. a)  121/ p  

b) 12p  

c) 4p  

1.16. a)  12r  

b) 61/ r  

c) 121/ r  
    
1.17.  /b d a cy x+ +  1.18.  /w y x zp q+ +  1.19.  /mnb a  1.20.  2 3/xyu v  
    
1.21.  
( ) ( )30 1636 / 25s r  

1.22. 
( ) ( )60 36125 / 8x y−  
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2.1.   
6 4

5
y −

 2.2.   
12 8

7
z −

 2.3.   
( )
( )
3 5

2 3
z z

z
+
−

 2.4.   
( )2 2 3
3 5

y y
y

+
−

 

   
2.5.   

( )
( )

2 5
3 4

x
x
+
+

 2.6.   
( )
( )

3 2
4 1

x
x
−
−

 2.7.   
( )2 4

7
x

x
+

 2.8.   
( )3 3

4
x

x
+

 

    
2.9.   2 2.10.  2 2.11.  

10 15
36

m +
 2.12.  

7 50
60

n +
 

    

2.13.  
14 15

24
x y

xy
+

 2.14.  
9 28

24
x y

xy
+

 2.15.  
2

2

35 50 8
30

x x
x

− +
 2.16.  

2

2

9 28 10
24

x x
x

− +
 

    
2.17.  ( )( )

23
4 7 7 4

x
x x

+
− −

 2.18.  ( )( )
3 10

3 4 4 3
x

x x
+

− −
 2.19.  

2
4

a
a −

 2.20.  
2

5
b

b −
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2.21.  
3

2
x

x −
 2.22.  

2
4

x
x −

 2.23.  ( )
3

5 5
x
x
+
−

 2.24.  ( )
5

4 4
x
x
+
−

 

    
2.25.  ( )( )

2
3 5x x+ +

 2.26.  ( )( )
1

4 5x x+ +
 2.27.  ( )( )

13
4 2b b

−
+ −

 2.28.  ( )( )
25

3 5c c
−

− +
 

    
2.29.  2

4
9

d
c

 2.30.  3

15n
m

 2.31.  
7
24

−  2.32.  
41
2

 

    
2.33.  2

4 3
6 2

x xy
y x
+
−

 2.34.  2

6 5
4 3

xy y
y x
−
+

 2.35.  
4 19
6 13

k
k
−
−

 2.36.  
5 12
7 34

m
m
−
−

 

    
2.37.  

1
4

x
x
−
+

 2.38.  
1
2

x
x
−
+
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3.1.   9 / 7x =  3.2.   5x =  3.3.   4 / 9x =  3.4.   6 / 5x = −  3.5. 17 / 3x =  
     
3.6.   7x =  3.7.   1/12x = −  3.8.   11/ 5x = −  3.9.   11x = −  3.10.  6x = −  
     3.11.  113/11m = −  3.12.  15m = −  3.13.  3x =  3.14.  11x = −  3.15.  2  gallons 
     
3.16.  4  gallons 3.17.  36%  3.18.  14%    

 
 

Session 4 
 
4.1.   a)  4        b)  3        c)  25        d)  4        e)  1/2        f)  125        g)  1/9        h)  2 

4.2.   a)  9        b)  4        c)  36        d)  3        e)  1/6        f)  4            g)  1/8        h)  3 
 

 4.3.   
1
a

 4.4.   b  4.5.   5 2  4.6.   3 6  

    
 4.7.   4 2  4.8.   6 2  4.9.   a)  4x  

b)  3x x  
4.10.  a)  3x  
          b)  2x x  

    
4.11.  a)  186y  

  b)  43y y  
4.12.  a)  247z z  
          b)  328z  

4.13.  5 2 815 3x y z y  4.14.  7 4 625 3x y z yz  
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5.1.   2018 5.2.   2019 5.3.   47 2  5.4.   26 3  
    
5.5.   5576 3a b b  5.6.   6 3294 2u v v  5.7.   11 6  5.8.   9 5  
    
5.9.   8 6 2 7m n k+  5.10. 12 3 2 6p q r+  5.11.  10 6 10 5−  5.12.  28 7 40 3−  
    
5.13.  315 5.14.  24 5.15.  42 5.16.   67  
    
5.17.  117 5.18.  189 5.19.  83 12 35+  5.20.  72 48 2+  
    
5.21.  83 12 35−  5.22.  72 48 2−    
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6.1.   
15
5

 6.2.  
42
7

  6.3.   
5

15
 6.4.   

3
15

 
    

6.5.   
4 3
15

 6.6.  
2 5
15

  6.7.   
5 3

4
−

 6.8.   
3 5

2
−

 

6.9.   2 3+  6.10. 
5 6

19
−

 6.11. 
6 3

3
−

 6.12. 6 5+  

    

6.13.   
4 3 8 6

16 9
u uv u v

u v
+ + +

−
 6.14.  

2 3 5
4 25

a ab b
a b

− −
−

 

    
6.15.  7x =  6.16.  13x =  6.17.  8x =  6.18.   5x =   
    
6.19.  No solutions 6.20.  No solutions 6.21.  4x =  6.22.  No solutions 
    
6.23.  No solutions 6.24.  2x =    

 
Session 7 

 
7.1. a)  5i  

   b)  4 2i  

7.2. a)  4i  

         b)  3 3i  

7.3. a)  9 2i−  
         b)  4 8i− −  

7.4. a)  12 5i−  
         b)  4 5i+  

7.5.   a)  6 12i−       b)  12 54i− −       c)  45 7i−            d)  13  

7.6.   a)  12 20i+     b)  21 42i+         c)  34 38i−           d)  20  

186



 
Answers to Exercises 

Session 7 (continued) 

7.7.  a)  
8 2
5 5

i+       b)  
3
2

i−     c)  
3 9
2 4

i+      d) 
2 39
61 61

i− +    e)  
22 7
41 41

i+  

7.8.  a)  
73
2

i− +      b)  
2
3

i       c)  
1 2
2 3

i−      d) 
38 9
25 25

i−       e)  
2 23

13 13
i− −  

7.9.   a)  1−             b)  i−         c)  1        d)  i  

7.10. a)  i−             b)  1          c)  i                d)  1−  

 

Session 8 
 

8.1. a)  23 14 0; 3, 1, 14x x a b c+ − = = = = −  

b)  216 24 3 0; 16, 24, 3x x a b c− + = = = − =  

8.2. a)  28 2 3 0; 8, 2, 3x x a b c− − = = = − = −  

b)  225 20 1 0; 25, 20, 1x x a b c+ + = = = =  
 

8.3.  a)  
7 , 2
3

 − 
 

 

b)  
5
6

 
 
 

 

8.4.  a)  
3 1,
4 2

 − 
 

 

        b)  
4
7

 − 
 

 

8.5.  a)  
50,
3

 − 
 

 

        b)  { 4}±  

        c)  { 4, 3}−  

        d)  {4, 5}−  

8.6.   a)  
70,
6

 
 
 

 

         b)  { 3}±  

         c)  { 3, 5}−  

         d)  {6, 4}−  

8.7.  a)  { }2  

        b)  { }2, 1− −  

8.8.  a)  { }3, 1− −  
 

        b)  { }1  
 

8.9.  a)  
3 1,
4 2

 − 
 

 

        b)  
3 , 3
5

 − 
 

 

8.10. a)  
1 5,
3 2

 − 
 

 

         b)  
4 , 1
7

 − 
 

 

8.11.  a)  
3 6

4
 ± 
 
  

       b)  { }7i±         c)  
2 3
3 6

i
  − ± 
  

 

8.12.  a)  
2 3

5
 − ± 
 
  

     b)  { }3i±         c)  
5 6
7 7

i
  ± 
  
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Answers to Exercises 

Session 9 
 

9.1.  a)  { }1, 5−           b)  { }3, 2− −       c)  
7 17

2
 ± 
 
  

          d)  
33,
2

 − 
 

 

9.2.  a)  { }4, 2−           b)  { }2, 7            c)  
3 29

2
 − ± 
 
  

        d)  
12,
3

 − − 
 

 

9.3.  a)  
4 21

5
 ± 
 
  

    b)  
3
4

 − 
 

           c)  
7 31
8 8

i
  ± 
  

        d)  
4 3,
3 2

 
 
 

 

9.4.  a)  
3 30

7
 ± 
 
  

    b)  
7
3

 
 
 

              c)  
5 47

12 12
i

  − ± 
  

   d)  
5 3,
6 2

 
 
 

 

 
Session 10 

 
10.1.  a)  ( )4, 5− − , Up       b)  ( )2, 6 , Down      c)  ( )5, 4− , Up 

10.2.  a)  ( )3, 7 , Down       b)  ( )7, 3− − , Up      c)  ( )1, 8− , Down 

10.3.  a)  square form: ( )23 2 3y x= + − ,   standard form: 23 12 9y x x= + +   

b) square form: ( )23 2 1y x= + + ,   standard form: 23 12 13y x x= + +  

10.4.  a)  square form: ( )23 2 1y x= − + ,    standard form: 23 12 13y x x= − +   

b) square form: ( )23 2 3y x= − − ,   standard form: 23 12 9y x x= − +  

10.5.  a)  square form: ( )22 3 2y x= − − + , standard form: 22 12 16y x x= − + −   

b) square form: ( )22 3 1y x= − − − , standard form: 22 12 19y x x= − + −  

10.6.  a)  square form: ( )22 3 1y x= − + − , standard form: 22 12 19y x x= − − −   

b) square form: ( )22 3 2y x= − + + , standard form: 22 12 16y x x= − − −  

10.7. a)  vertex: ( )1, 4− , x-intercepts: ( )1, 0−  and ( )3, 0 , y- intercepts: ( )0, 3−  

b) vertex: ( )2, 9− , x-intercepts: ( )5, 0−  and ( )1, 0 , y- intercepts: ( )0, 5  

10.8. a)  vertex: ( )1, 9− , x-intercepts: ( )4, 0−  and ( )2, 0 , y- intercepts: ( )0, 8  

b) vertex: ( )3, 4− , x-intercepts: ( )1, 0  and ( )5, 0 , y- intercepts: ( )0, 5  
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Answers to Exercises 

Session 11 
 

11.1.   2 10         11.2.  5 2  

11.3.  Acute triangle. Biggest angle C, smallest angle A. 
11.4.  Right triangle. Biggest angle A, smallest angle C. 

11.5.  ( )1, 5− −    11.6.  ( )3, 1    11.7.  ( )1, 3     11.8.  ( )7, 2− −  

11.9.  a)  Center ( )2, 4− − ,  radius = 6    b)  Center ( )5, 2− ,    radius = 2 5  

11.10. a)  Center ( )6, 3 ,    radius = 4 2     b)  Center ( )7, 8− , radius = 5 2  

11.11. ( ) ( )2 2 23 4 13x y+ + + =      11.12.  ( ) ( )2 2 212 10 17x y− + − =  

11.13. a)  Center ( )2, 1− ,    radius = 4, points: ( ) ( ) ( ) ( )2, 5 , 2, 3 , 6, 1 , 2, 1− − − −  

           b)  Center ( )5, 4 ,      radius = 3, points: ( ) ( ) ( ) ( )5, 1 , 5, 7 , 2, 4 , 8, 4  

11.14. a)  Center ( )4, 1− ,    radius = 3, points: ( ) ( ) ( ) ( )4, 2 , 4, 4 , 1, 1 , 7, 1− − −  

           b)  Center ( )3, 2− − , radius = 5, points: ( ) ( ) ( ) ( )3, 7 , 3, 3 , 8, 2 , 2, 2− − − − − −  
 

Session 12 
 
12.1. a)  System has unique solution ( )2, 1, 3− − . 

b) System is dependent. Possible parametric form: 
1, 2 ,
2

x t y t z t= = − = . 

Particular solutions for 0t = : 
10, , 0
2

 
 
 

. 

c) System is inconsistent: no solutions. 

12.2. a)  System has unique solution ( )3, 4, 2− − . 
b) System is inconsistent: no solutions. 
c) System is dependent. Possible parametric form: 1 , , 1x t y t z t= − = = + . 

Particular solutions for 0t = : ( )1, 0, 1 . 
 

Session 13 
 

13.1.  
64 52,
17 17
 
 
 

              13.2.  
55 17,
23 23

 − 
 

             13.3.  22D =                 13.4.  6D = −   

13.5.  
35 37 9, ,
22 22 22

 − 
 

    13.6.  
11 17 29, ,
6 3 6

 
 
 
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Answers to Exercises 

Session 14 
 
14.1.  a)  ( ) ( ){ }7, 22 , 1, 2− −                      14.2.  a)  ( ) ( ){ }1, 6 , 13, 50− −  

          b)  ( ){ }8, 3− −                                               b)  ( ){ }70, 6  

          c)  ( ){ }9, 3−                                                  c)  ( ){ }4, 2  

          d)  ( ) ( ){ }19, 11 , 1, 1− − −                            d)  ( ) ( ){ }34, 12 , 2, 0−  

          e)  ( ) ( ) ( ) ( ){ }3, 4 , 3, 4 , 3, 4 , 3, 4− − − −     e)  ( ) ( ) ( ) ( ){ }2, 4 , 2, 4 , 2, 4 , 2, 4− − − −  

14.3.  Length = 4 m, width = 3 m                  14.4.  Length = 6 yd, width = 5 yd 
 

Session 15 
 
15.1.  a)  50 360 , 0, 1, 2,...n n+ = ± ±       15.2.  a)  27 360 , 0, 1, 2,...n n+ = ± ±  ; 
               410 , 770 , 310−  , 670−                            387 , 747 , 333−  , 693−   

          b)  70 360 , 0, 1, 2,...n n− + = ± ±               b)  35 360 , 0, 1, 2,...n n− + = ± ±   
    290 , 650 , 430−  , 790−                            325 , 685 , 395−  , 755−   

15.3. a)  6 3, 12b c= =              15.4.  a)  8 3, 16b c= =  

b)  3, 2 3a c= =                        b)  3 3, 6 3a c= =  

c)  4, 4 3a b= =             c)  2, 2 3a b= =  

15.5. a)  4, 4 2b c= =              15.6.  a)  3, 3 2b c= =  

b)  8, 8 2a c= =                        b)  6, 6 2a c= =  

c)  
9 2

2
a b= =             c)  

7 2
2

a b= =  

15.7.  Side opposite to 30  is 
2
c

, side opposite to 60  is 
3

2
c

 

15.8. Side opposite to 30  is 
3

3
b

, hypotenuse is 
2 3

3
b

 

15.9. Both sides are 
2

2
c
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Answers to Exercises 

Session 16 
 
16.1.  29.1 ft      16.2.  61 ft      16.3.  11.5 ft      16.4.  2.5 m      16.5.  167.1 ft      16.6.  83.1 ft 

16.7.  3.2          16.8.  29.1     16.9.  46.1       16.10. 21.1      16.11. 63.9         16.12. 53.1  

16.13. 20.3 m   16.14. 60  
Session 17 

 
17.1.  a)  sinθ−  b)  sinθ  

17.2.  a)  cosθ−  b)  cosθ−  

17.3.  a)  50   b)  40    c)  70    d)  85  

17.4.  a)  20   b)  10     c)  50    d)  80  

17.5. a)  220  b)  110    c)  310    d)  20  

17.6. a)  320   b)  70    c)  130    d)  200  

17.7.  a)  
1
2

−   b)  
1
2

    c)  1−  

17.8.  a)  
2

2
−  b)  

3
2

−    c)  3  

17.9. 

a)  IV,  
5 2 5 3 3 5 5cos , tan , csc , sec , cot

3 5 2 5 2
θ θ θ θ θ= = − = − = = −  

b)  II,   
21 21 5 21 5 2 21sin , tan , csc , sec , cot
5 2 21 2 21

θ θ θ θ θ= = − = = − = −  

c)  III,  
3 34 5 34 34 34 5sin , cos , csc , sec , cot

34 34 3 5 3
θ θ θ θ θ= − = − = − = − =  

17.10. 

a)  II,   
33 4 33 7 7 33 33cos , tan , csc , sec , cot
7 33 4 33 4

θ θ θ θ θ= − = − = = − = −  

b)  III,  
39 39 8 39 8 5 39sin , tan , csc , sec , cot
8 5 39 5 39

θ θ θ θ θ= − = = − = − =  

c)  IV,  
7 65 4 65 65 65 4sin , cos , csc , sec , cot

65 65 7 4 7
θ θ θ θ θ= − = = − = = −  
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Answers to Exercises 

Session 17 (continued) 
 
17.11. 

2 5 5 5 1sin , cos , tan 2, csc , sec 5, cot
5 5 2 2

θ θ θ θ θ θ= − = − = = − = − =  

17.12. 
5 34 3 34 5 34 34 3sin , cos , tan , csc , sec , cot

34 34 3 5 3 5
θ θ θ θ θ θ= = − = − = = − = −

 
Session 18 

 
18.1.  AB = 33 m, BC = 26.9 m. 18.2.  11.1 ft and 12.0 ft.   18.3.  11.2 m 

18.4.  32.5 m    18.12.  3.8 mi     18.13. ( )
sin sin

sin
d A B

A B+
 

18.14. 6.3 mi    18.15.  
sin sin
sin

d A B
A B−

    18.16.  1.3 m and 2.2 m 

 
Session 19 

 
19.1.  Yes    19.2.  301.4 ft     19.3.  41.8  

19.4.  29.3     19.5.  14      19.6.  57  

19.7.  11.5  
Session 20 

 

20.1.  a)  74.5    20.2.  a)  137.5     20.3.  a)  40  

          b) 34.4−               b) 45.8−     b) 54−   

20.4.  a)  48     20.5.  a)  2.44     20.6.  a)  1.36 

          b) 216−               b) – 1.48     b) – 4.14 

20.7.  a)  
2
3
π

    20.8.  a)  
11

6
π

  

          b) 
5
6
π

−              b) 
5
4
π

−  
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Answers to Exercises 

Session 20 (continued) 
 

20.9.   a)  
4 3 4 1 4sin , cos , tan 3
3 2 3 2 3
π π π     = − = − =     

     
 

           b)  
2 2sin , cos , tan 1

4 2 4 2 4
π π π     − = − − = − = −     

     
 

           c)  
5 1 5 3 5 3sin , cos , tan
6 2 6 2 6 3
π π π     = = − = −     

     
 

20.10. a)  
1 3 3sin , cos , tan

6 2 6 2 6 3
π π π     − = − − = − = −     

     
 

           b)  
2 3 2 1 2sin , cos , tan 3
3 2 3 2 3
π π π     = = − = −     

     
 

           c)  
3 2 3 2 3sin , cos , tan 1
4 2 4 2 4
π π π     − = − − = − − =     

     
 

20.11. 1.8 cm    20.12. 5 ft     20.13. 
5, ,

4 3 12
π π π

 

20.14. 16 cabs, arc ≈  3.14 m  20.15. 180 m/min    20.16. 3 sec 
 

Session 21 

21.1.  a)  
3,

4 4
π π

   21.2.  a)  
2,

3 3
π π

    21.3.  a)  
7,

4 4
π π

 

          b) 
4 5,
3 3
π π

             b) 
7 11,
6 6
π π

   b) 
5 7,
6 6
π π

 

21.4.  a)  
5,

3 3
π π

   21.5.  a)  
7,

6 6
π π

    21.6.  a)  
5,

4 4
π π

 

          b) 
3 5,
4 4
π π

             b)  
2 5,
3 3
π π

     b)  
5 11,
6 6
π π

 

21.7.  No solutions   21.8.  No solutions 
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Answers to Exercises 

Session 22 
 

22.7.  
7 11,
6 6
π π

      22.8.  
2 4,
3 3
π π

       22.9.  , 0.841, 5.442π  

22.10. , 4.069, 5.356
2
π

     22.11. 
70, , ,

6 6
π ππ       22.12. 

4,
3 3
π π

 

22.13. ,
2
π π        22.14. 

30,
2
π

 

Session 23 
 

23.1.  3 23.2.  4         23.3.   a)  4         b)  3      c)  – 2      d)  – 6 

23.4.  a)  2 b)  4    c)  – 3       d)  – 3            23.5.  a)  7      b)  4 

23.6.  a)  4       b)  3        23.7.  1    23.8.  3               23.9.  1.069           23.10. 0.936 

23.11. a)  1.226     b)  – 0.429                        23.12. a)  1.292     b)  0.881 

Session 24 
 

24.1.  ,f B g A↔ ↔      24.2.  ,f A g B↔ ↔       24.3.  ,f A g B↔ ↔  

24.4.  ,f B g A↔ ↔      24.5.  ,f B g A↔ ↔       24.6.  ,f A g B↔ ↔  

24.7.  ,f A g B↔ ↔      24.8.  ,f B g A↔ ↔  

24.9.  a)  3log ( )x    b)  
2
3

x
 
 
 

     24.10. a)  3
4

log ( )x    b)  5x  

Session 25 
 

25.1.  I = $7.29, A = $ 707.29       25.2.  I = $14.00, A = $ 614.00 

25.3.  A = $1,540.03, I = $ 340.03      25.4.  A = $2,704.38, I = $ 304.38 

25.5.  A = $1,540.83, I = $ 340.83      25.6.  A = $2,705.99, I = $ 305.99 

25.7.  Bank B. Yes, information about investment amount and time is not needed. 
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