CITY UNIVERSITY OF NEW YORK - NEW YORK CITY COLLEGE OF TECHNOLOGY

MAT 2675 - SPRING 2019 EXPERIMENTAL COURSE OUTLINE

BY CANER KOCA

TEXTBOOKS

The proposed outline uses two Open Educational Resource (OER) textbooks.

1. Whitman Calculus (Chapters 12-16),
a. available to browse at this link https://www.whitman.edu/mathematics/calculus online/ with interactive images
b. available to download at https://www.whitman.edu/mathematics/multivariable/multivariable.pdf
2. OpenStax Calculus 3 (Chapters 1-6)
a. available to browse at https://cnx.org/contents/oxzXkyFi@3.7:Zh8bDwa-@16/Preface
b. available to download at https://cnx.org/exports/a31cd793-2162-4ege-acb5-

6e6bbd76a5fa@3.7.pdf/calculus-volume-3-3.7.pdf
Whitman Calculus will be the required text, and OpenStax Calculus 3 will be used as a supplementary/optional resource.

WEBWORK

In Fall 2015, I had compiled problem sets on WeBWork based on our current MAT2675 outline. I will continue using it for the proposed experimental outline with only minor adjustments. Whitman Calculus provides a compilation of WeBWork questions available at https://www.whitman.edu/mathematics/webwork/Guichard-Calc3-Webwork20121209.tgz.

PROPOSED EXPERIMENTAL OUTLINE \& COMPARISON WITH THE CURRENT OUTLINE

Lec.	Topics in Current Outline	Topics in the Proposed Outline	Reading (Whitman)	Reading (Openstax)
	9.1 Vectors in the Plane 9.2 Vectors in Three-dimensional Space	Points in space. Coordinate Systems	12.1	2.7
	9.3 The Dot Product and Applications (P. 741-745)	Vectors in space Dot Product	12.6	
	9.4 The Cross Product (P. 753-759)	Cross Product	12.2	2.1
3	$\mathbf{9 . 5}$ Lines and Planes in Space	Lines and Planes in Space	12.2	2.3

4	10.1 Vector-Valued Functions -Limits, Derivatives and Continuity 10.2 Velocity (P. 805-807)	Vector valued functions and space curves Tangent vectors to curves	$\begin{aligned} & 13.1 \\ & 13.2 \\ & 13.3 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 3.2 \\ & 3.3 \end{aligned}$
5	10.3 Tangent Vectors and Arc Length (P. 813-820)	Multivariable functions Quadric Surfaces	$\begin{aligned} & 14.1 \\ & 14.2 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 2.6 \end{aligned}$
6	11.1 Functions of Several Variables	Partial Derivatives Tangent Planes	$\begin{aligned} & 14.3 \\ & 14.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.3 \\ & 4.4 \end{aligned}$
7	11.3 Limits and Continuity	Chain Rule	14.4	4.5
8	First Examination	Test 1		
9	11.4 Partial Derivatives	Directional Derivatives Gradient	14.5	4.6
10	11.5 Differentiability and the Chain Rule	Max-Min Problems	14.7	4.7
11	11.6 Gradients and Directional Derivatives	Lagrange Multipliers	14.8	4.8
12	11.7 Tangent Planes	Volume under graphs	15.1	5.1
13	11.8 Maximum-Minimum Problems	Double and iterated integrals	15.1	5.2
14	11.9 Lagrange Multipliers	Double integral in polar coordinates	15.2	$5 \cdot 3$
15	12.1 Double Integrals Over Rectangular Regions	Review		
16	Second Examination	Test 2		
17	12.2 Integration Over More General Regions	Triple integrals	15.5	5.4
18	12.3 Calculation of Volumes of Solids	Double integrals in spherical and cylindrical coordinates	15.6	5.5
19	12.4 Polar Coordinates	Change of Variables and jacobians	15.7	5.7
20	12.5 Integrating in Polar Coordinates	Vector fields Line integrals	$\begin{aligned} & 16.1 \\ & 16.2 \end{aligned}$	$\begin{aligned} & 6.1 \\ & 6,2 \end{aligned}$
21	12.6 Triple Integrals	Conservative vector fields	16.3	6.3
22	13.1 Vector Fields	Green's Theorem	16.4	6.4
23	13.2 Line Integrals	Divergence and Curl	16.5	6.5
24	Third Examination	Test 3		
25	13.3 Conservative Vector Fields and Path Independence	Vector functions on surfaces Surface integrals Surface area	$\begin{aligned} & 16.6 \\ & 16.7 \\ & 15.4 \\ & \hline \end{aligned}$	6.6
26	13.4 Divergence, Gradient, and Curl	Stokes' Theorem	16.8	6.7

27	13.5 Green's Theorem	Stokes' Theorem,ctd Gauss' Theorem	16.8 6.9	6.7 6.8
28	13.6 Surface Integrals	Gauss' Theorem, ctd	16.9	6.8
29	Review	Review		
30	Final Examination	Final		

MAIN DIFFERENCES WITH THE CURRENT OUTLINE

The new outline allocates less time on "theoretical" topics such as limits, continuity, and differentiability of multivariable functions, with the aim of covering Gauss Theorem and Stokes Theorem in depth at the end of the semester. The pace of the course will be slightly faster in the beginning, up until Test 1.

