CITY UNIVERSITY OF NEW YORK – NEW YORK CITY COLLEGE OF TECHNOLOGY

MAT 2675 – SPRING 2019 EXPERIMENTAL COURSE OUTLINE

BY CANER KOCA

TEXTBOOKS

The proposed outline uses two Open Educational Resource (OER) textbooks.

- 1. Whitman Calculus (Chapters 12-16),
 - a. available to browse at this link <u>https://www.whitman.edu/mathematics/calculus_online/</u> with interactive images
 - b. available to download at https://www.whitman.edu/mathematics/multivariable/multivariable.pdf
- 2. OpenStax Calculus 3 (Chapters 1-6)
 - a. available to browse at https://cnx.org/contents/oxzXkyFi@3.7:Zh8bDwa-@16/Preface
 - b. available to download at <u>https://cnx.org/exports/a31cd793-2162-4e9e-acb5-6e6bbd76a5fa@3.7.pdf/calculus-volume-3-3.7.pdf</u>

Whitman Calculus will be the required text, and OpenStax Calculus 3 will be used as a supplementary/optional resource.

WEBWORK

In Fall 2015, I had compiled problem sets on WeBWork based on our current MAT2675 outline. I will continue using it for the proposed experimental outline with only minor adjustments. Whitman Calculus provides a compilation of WeBWork questions available at <u>https://www.whitman.edu/mathematics/webwork/Guichard-Calc3-Webwork-20121209.tgz</u>.

PROPOSED EXPERIMENTAL OUTLINE & COMPARISON WITH THE CURRENT OUTLINE

Lec.	Topics in Current Outline	Topics in the <mark>Proposed</mark> Outline	Reading (Whitman)	Reading (Openstax)
1	9.1 Vectors in the Plane 9.2 Vectors in Three-dimensional Space	Points in space. Coordinate Systems	12.1 12.6	2.7
2	 9.3 The Dot Product and Applications (P. 741-745) 9.4 The Cross Product (P. 753-759) 	Vectors in space Dot Product Cross Product	12.2 12.3 12.4	2.1 2.2 2.3 2.4
3	9.5 Lines and Planes in Space	Lines and Planes in Space	12.5	2.5

4	10.1 Vector-Valued Functions Limits, Derivatives and Continuity	Vector valued functions and space curves	13.1	3.1
	10.2 Velocity (P. 805-807)	Tangent vectors to curves	13.2 13.3	3.2 3.3
5	10.3 Tangent Vectors and Arc Length (P. 813-820)	Multivariable functions Quadric Surfaces	14.1 14.2	4.1 2.6
6	11.1 Functions of Several Variables	Partial Derivatives Tangent Planes	14.3 14.6	4·3 4·4
7	11.3 Limits and Continuity	Chain Rule	14.4	4.5
8	First Examination	Test 1		
9	11.4 Partial Derivatives	Directional Derivatives Gradient	14.5	4.6
10	11.5 Differentiability and the Chain Rule	Max-Min Problems	14.7	4.7
11	11.6 Gradients and Directional Derivatives	Lagrange Multipliers	14.8	4.8
12	11.7 Tangent Planes	Volume under graphs	15.1	5.1
13	11.8 Maximum-Minimum Problems	Double and iterated integrals	15.1	5.2
14	11.9 Lagrange Multipliers	Double integral in polar coordinates	15.2	5.3
15	12.1 Double Integrals Over Rectangular Regions	Review		
16	Second Examination	Test 2		
17	12.2 Integration Over More General Regions	Triple integrals	15.5	5.4
18	12.3 Calculation of Volumes of Solids	Double integrals in spherical and cylindrical coordinates	15.6	5.5
19	12.4 Polar Coordinates	Change of Variables and jacobians	15.7	5.7
20	12.5 Integrating in Polar Coordinates	Vector fields Line integrals	16.1 16.2	6.1 6,2
21	12.6 Triple Integrals	Conservative vector fields	16.3	6.3
22	13.1 Vector Fields	Green's Theorem	16.4	6.4
23	13.2 Line Integrals	Divergence and Curl	16.5	6.5
24	Third Examination	Test 3		
25	13.3 Conservative Vector Fields and Path Independence	Vector functions on surfaces Surface integrals Surface area	16.6 16.7 15.4	6.6
26	13.4 Divergence, Gradient, and Curl	Stokes' Theorem	16.8	6.7

27	13.5 Green's Theorem	Stokes' Theorem,ctd Gauss' Theorem	16.8 16.9	6.7 6.8
28	13.6 Surface Integrals	Gauss' Theorem, ctd	16.9	6.8
29	Review	Review		
30	Final Examination	Final		

MAIN DIFFERENCES WITH THE CURRENT OUTLINE

The new outline allocates less time on "theoretical" topics such as *limits, continuity, and differentiability of multivariable functions*, with the aim of covering *Gauss Theorem* and *Stokes Theorem* in depth at the end of the semester. The pace of the course will be slightly faster in the beginning, up until Test 1.