Review of Calculus for MAT 2680 - Differential Equations

Nan Li

April 20, 2021

1 Derivatives

1.1 Definition and Notation

Let $y=f(x)$.
(1) The derivative is defined to be $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
(2) All of the following are equivalent notations for the derivative.

$$
f^{\prime}(x)=y^{\prime}=\frac{d f}{d x}=\frac{d y}{d x}=\frac{d}{d x}(f(x))
$$

(3) All of the following are equivalent notations for derivative evaluated at $x=a$.

$$
f^{\prime}(a)=y^{\prime}(a)=\left.y^{\prime}\right|_{x=a}=\left.\frac{d f}{d x}\right|_{x=a}=\left.\frac{d y}{d x}\right|_{x=a}
$$

(4) All of the following are equivalent notations for the second derivative

$$
\left(f^{\prime}(x)\right)^{\prime}=f^{\prime \prime}(x)=y^{\prime \prime}=\frac{d^{2} f}{d x^{2}}=\frac{d^{2} y}{d x^{2}}=\frac{d}{d x^{2}}(f(x))
$$

1.2 Interpretation of the Derivative

Let $y=f(x)$.
(1) $m=f^{\prime}(a)$ is the slope of the tangent line to $y=f(x)$ at $x=a$ and the equation of the tangent line at $x=a$ is given by $y=f(a)+f^{\prime}(a)(x-a)$.
(2) $f^{\prime}(x)$ is the instantaneous rate of the change of $f(x)$.
(3) If $f(x)$ is the position of an object at time x, then $f^{\prime}(x)$ is the velocity of the object and $\left|f^{\prime}(x)\right|$ is the speed.
(4) If $f^{\prime}(x)>0$ for all x in an interval I, then $f(x)$ is increasing on the interval I.
(5) If $f^{\prime}(x)<0$ for all x in an interval I, then $f(x)$ is decreasing on the interval I.
(6) If $f^{\prime}(x)=0$ for all x in an open interval I, then $f(x)$ is constant on the interval I.

1.3 Basic Properties and Formulas

Let $f(x)$ and $g(x)$ be differentiable functions (the derivative exists) and c and n be constants.
(1) $(c \cdot f(x))^{\prime}=c \cdot f^{\prime}(x)$
(2) $(f(x) \pm g(x))^{\prime}=f^{\prime}(x) \pm g^{\prime}(x)$
(3) Product rule: $(f \cdot g)^{\prime}=f^{\prime} \cdot g+f \cdot g^{\prime}$
(4) Quotient rule: $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} \cdot g-f \cdot g^{\prime}}{g^{2}}$
(5) Chain rule: $(f(g(x)))^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$

1.4 Common Derivatives

(1) $(\text { constant })^{\prime}=0$
(8) $(\sec x)^{\prime}=\sec x \tan x$
(2) Power rule: $\left(x^{n}\right)^{\prime}=n \cdot x^{n-1}$
(9) $(\cot x)^{\prime}=-\csc ^{2} x$
(3) $\left(e^{x}\right)^{\prime}=e^{x}$. In general, $\left(a^{x}\right)^{\prime}=a^{x} \cdot \ln (a)$.
(10) $(\csc x)^{\prime}=-\csc x \cot x$
(4) $(\ln (x))^{\prime}=\frac{1}{x}$. In general, $\left(\log _{a} x\right)^{\prime}=\frac{1}{x \ln (a)}$.
(11) $\left(\sin ^{-1} x\right)^{\prime}=\frac{1}{\sqrt{1-x^{2}}}$
(5) $(\sin x)^{\prime}=\cos x$
(6) $(\cos x)^{\prime}=-\sin x$
(12) $\left(\cos ^{-1} x\right)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}}$
(7) $(\tan x)^{\prime}=\sec ^{2} x$
(13) $\left(\tan ^{-1} x\right)^{\prime}=\frac{1}{1+x^{2}}$

2 Integrals

2.1 Definitions

(1) Indefinite Integral: $\int f(x) d x=F(x)+C$, where $F(x)$ is an anti-derivative of $f(x)$ and C is a constant.
(2) Definite Integral: $\int_{a}^{b} f(x) d x$ is defined to be the signed area of the region bounded by $y=$ $f(x), x=a, x=b$ and x-axis.
(3) Fundamental Theorem of Calculus: If $f(x)$ is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)
$$

where $F(x)$ is an anti-derivative of $f(x)$.

2.2 Basic Properties and Formulas

Let $f(x)$ and $g(x)$ be differentiable functions (the derivative exists) and c and n be constants.
(1) $\int c \cdot f(x) d x=c \cdot \int f(x) d x$
(2) $\int_{a}^{b} c \cdot f(x) d x=c \cdot \int_{a}^{b} f(x) d x$
(3) $\int f(x) \pm g(x) d x=\int f(x) d x \pm \int g(x) d x$
(4) $\int_{a}^{b} f(x) \pm g(x) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$

2.3 Common Integrals (compare with Common Derivatives)

(1) $\int k d x=k x+C$
(2) Power rule $(n \neq-1): \int x^{n} d x=\frac{x^{n+1}}{n+1}+C$
(8) $\int \sec ^{2} x d x=\tan x+C$
(3) Power rule $(n=-1): \int \frac{1}{x} d x=\ln |x|+C$
(9) $\int \sec x \tan x d x=\sec x+C$
(4) $\int \frac{1}{a x+b} d x=\frac{\ln |a x+b|}{a}+C$
(10) $\int \csc ^{2} x d x=-\cot x+C$
(5) $\int e^{x} d x=e^{x}+C ; \quad \int e^{k x} d x=\frac{1}{k} e^{k x}+C$.
(11) $\int \csc x \cot x d x=-\csc x+C$
(6) $\int \sin x d x=-\cos x+C$;
$\int \sin (k x) d x=-\frac{1}{k} \cos (k x)+C$
(7) $\int \cos x d x=\sin x+C$;
(12) $\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+C$
(13) $\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C$
$\int \cos (k x) d x=\frac{1}{k} \sin (k x)+C$

2.4 Standard Integration Techniques

- The following types of problems can be solved by integration by substitution: $\int f(x) d x=$ $\int g(u) d u$, where $u=u(x)$ and $d u=u^{\prime}(x) d x$.
(1) $\int x^{2} \cos \left(x^{3}\right) d x$

Set $u=x^{3}$. Then $d u=\left(x^{3}\right)^{\prime} d x=3 x^{2} d x$ and

$$
\int x^{2} \cos \left(x^{3}\right) d x=\int \cos u \cdot \frac{1}{3} d u=\frac{1}{3} \sin u+C=\frac{1}{3} \sin \left(x^{3}\right)+C .
$$

(2) $\int x^{2} \sqrt{x^{3}+5} d x$

Set $u=x^{3}+5$. Then $d u=\left(x^{3}+5\right)^{\prime} d x=3 x^{2} d x$ and

$$
\int x^{2} \sqrt{x^{3}+5} d x=\int \sqrt{u} \cdot \frac{1}{3} d u=\frac{1}{3} \cdot \frac{u^{3 / 2}}{3 / 2}+C=\frac{2}{9}\left(x^{3}+5\right)^{3 / 2}+C .
$$

- The following types of problems can be solved by integration by parts $\int u d v=u v-\int v d u$.
(1) $\int(3 x+1) e^{2 x} d x$

Set $u=3 x+1, d v=e^{2 x} d x$. Then $d u=(3 x+1)^{\prime} d x=3 d x$ and $v=\int e^{2 x} d x=\frac{1}{2} e^{2 x}$.

$$
\begin{aligned}
\int(3 x+1) e^{2 x} d x & =\int(3 x+1) \cdot e^{2 x} d x=\int u \cdot d v=u v-\int v d u \\
& =(3 x+1) \cdot \frac{1}{2} e^{2 x}-\int \frac{1}{2} e^{2 x} \cdot 3 d x \\
& =\frac{1}{2}(3 x+1) e^{2 x}-\frac{3}{2} \int e^{2 x} d x=\frac{1}{2}(3 x+1) e^{2 x}-\frac{3}{4} e^{2 x}+C \\
& =\frac{3}{2} x e^{2 x}-\frac{1}{4} e^{2 x}+C .
\end{aligned}
$$

(2) $\int x^{3} \ln x d x$

Set $u=\ln x, d v=x^{3} d x$. Then $d u=(\ln x)^{\prime} d x=\frac{1}{x} d x$ and $v=\int x^{3} d x=\frac{1}{4} x^{4}$.

$$
\begin{aligned}
\int x^{3} \ln x d x & =\int(\ln x) \cdot x^{3} d x=\int u \cdot d v=u v-\int v d u \\
& =(\ln x) \cdot \frac{1}{4} x^{4}-\int \frac{1}{4} x^{4} \cdot \frac{1}{x} d x \\
& =\frac{1}{4} x^{4} \ln x-\frac{1}{4} \int x^{3} d x \\
& =\frac{1}{4} x^{4} \ln x-\frac{1}{16} x^{4}+C
\end{aligned}
$$

(3) $\int(2 x+1) \sin (x) d x$

Set $u=2 x+1, d v=\sin x d x$. Then $d u=(2 x+1)^{\prime} d x=2 d x$ and $v=\int \sin x d x=-\cos x$.

$$
\begin{aligned}
\int(2 x+1) \sin (x) d x & =\int(2 x+1) \cdot \sin x d x=\int u \cdot d v=u v-\int v d u \\
& =(2 x+1) \cdot(-\cos x)-\int(-\cos x) \cdot 2 d x \\
& =-(2 x+1) \cdot(\cos x)+2 \int \cos x d x \\
& =-(2 x+1) \cdot(\cos x)+2 \sin x+C
\end{aligned}
$$

- The integration of rational functions can be solved by partial fraction decomposition.
(1) $\int \frac{3 x+5}{(x-1)(x+3)} d x$

Find constants A, B so that $\frac{3 x+5}{(x-1)(x+3)}=\frac{A}{x-1}+\frac{B}{x+3}$. Multiply the common denominator $(x-1)(x+3)$:

$$
3 \cdot x+5=A(x+3)+B(x-1)=(A+B) \cdot x+(3 A-B)
$$

Compare coefficients:

$$
\left\{\begin{array}{l}
A+B=3 \\
3 A-B=5
\end{array}\right.
$$

Solve the system of equation: $A=2, B=1$. Thus

$$
\begin{aligned}
\int \frac{3 x+5}{(x-1)(x+3)} d x & =\int \frac{A}{x-1}+\frac{B}{x+3} d x=\int \frac{2}{x-1}+\frac{1}{x+3} d x \\
& =2 \ln |x-1|+\ln |x+3|+C
\end{aligned}
$$

(2) $\int \frac{7 x^{2}+13 x}{(x-1)\left(x^{2}+4\right)} d x$

Find constants A, B, C so that

$$
\frac{7 x^{2}+13 x}{(x-1)\left(x^{2}+4\right)}=\frac{A}{x-1}+\frac{B x+C}{x^{2}+4} .
$$

The rest of the solution is similar to (1). For your reference, the answer is posted below.

$$
\int \frac{7 x^{2}+13 x}{(x-1)\left(x^{2}+4\right)} d x=4 \ln |x-1|+\frac{3}{2} \ln \left(x^{2}+4\right)+8 \tan ^{-1}\left(\frac{x}{2}\right)+C
$$

