Bernoulli Equations

Dr. S. Singh

We will study Bernoulli equations of the shape

$$
y^{\prime}+p(x) y=f(x) y^{n}
$$

where n is any real number except for 0 or 1 .
Observation 1: For $n=0$, the equation is of the form $y^{\prime}+p(x) y=f(x)$ and it stands out as a linear first order equation.
Observation 2: For $n=1$, the equation is of the form $y^{\prime}+p(x) y=f(x) y$; we can rearrange this equation to get $y^{\prime}=(f(x)-p(x)) y$, or $\frac{d y}{y}=(f(x)-p(x)) d x$ which yields to the separation of variables technique. It is also useful to note that this is a linear first order equation.

We will use the three step approach outlined below to solve $y^{\prime}+p(x) y=f(x) y^{n}$.
We begin with the first step by solving the homogenous part of the equation $y^{\prime}+p(x) y=0$. Separating variables will give $\frac{d y}{y}=-p(x) d x$ or $\int \frac{d y}{y}=-\int p(x) d x$ and integrating gives $\ln |y|=-\int p(x) d x$. After solving for y, we get $|y|=e^{-\int p(x) d x}$. Pick one of the solutions, say $y_{1}=e^{-\int p(x) d x}$.

In the second step, we let $y=u y_{1}$, where $u=u(x)$ and differentiate y to get $y^{\prime}=u^{\prime} y_{1}+u y_{1}^{\prime}$. Now substitute for y^{\prime} and y into Bernoulli's equation to obtain an equation in terms of u and x that can be solved by separation of variables. Once you have solved for u do not forget to find y by multiplying u and y_{1}. Recall that $y=u y_{1}$.

A third step is required if we are given an initial condition such as $y\left(x_{0}\right)=y_{0}$. It is recommended that you find the value of the constant with the expression that you obtained for $u(x)$ to avoid extraneous solutions. From $y\left(x_{0}\right)=y_{0}$ or the point $\left(x_{0}, y_{0}\right)$ and $y(x)=u(x) y_{1}(x)$, it follows that $y\left(x_{0}\right)=u\left(x_{0}\right) y_{1}\left(x_{0}\right)$ or $u\left(x_{0}\right)=y_{0} / y_{1}\left(x_{0}\right)$.

Recommended review from calculus: Integration by parts. You may access the text book CalculusVolume2 for an extensive review of integration. Before going to the next page, use integration by parts to evaluate the integral $\int x e^{-x / 2} d x$ which we will use in our example. The expected result is given below.

$$
\int x e^{-x / 2} d y=-2 x e^{-x / 2}-4 e^{-x / 2}+c
$$

Example 1 Solve the initial value equation

$$
y^{\prime}-y=x y^{1 / 2}, y(0)=6 .
$$

We start by observing that $y^{\prime}-y=x y^{1 / 2}$ is a Bernoulli equation of the form $y^{\prime}+p(x) y=f(x) y^{n}$, where $p(x)=-1$, $f(x)=x$ and $n=1 / 2$.

We now proceed with the first step by solving the homogenous equation $y^{\prime}-y=0$. We can use the separation of variables technique to solve $y^{\prime}-y=0$ directly.
Instead, we will use the outline above and pick $y_{1}=e^{-\int p(x) d x}=e^{\int 1 d x}=e^{x+c}=e^{c} e^{x}=c_{1} e^{x}$. Choose some $c_{1} \neq 0$. Since the Bernoulli equation contains the term $y^{1 / 2}$ or equivalently the \sqrt{y}, we must choose $c_{1}>0$ and for convenience we will let $c_{1}=1$. We now have a solution, namely $y_{1}=e^{x}$.

Proceeding to the second step, we form $y=u y_{1}$, and substitute for y_{1} get $y=u e^{x}$. Taking its first derivative, gives us $y^{\prime}=u^{\prime} e^{x}+u e^{x}$. We will now substitute for y and y^{\prime} into the equation $y^{\prime}-y=x y^{1 / 2}$, to transform it into a separable equation.
$y^{\prime}-y=x y^{1 / 2}$ becomes $u^{\prime} e^{x}+u e^{x}-u e^{x}=x\left(u e^{x}\right)^{1 / 2}$, and on simplifying, we get $u^{\prime} e^{x}=x u^{1 / 2} e^{x / 2}$. We can now separate the variables and simplify to get $u^{-1 / 2} d u=x e^{-x / 2} d x$; integrating both sides of $\int u^{-1 / 2} d u=\int x e^{-x / 2} d x$, gives us

$$
2 \sqrt{u}=-2 x e^{-x / 2}-4 e^{-x / 2}+c .
$$

We will now use the initial condition, $y(0)=6$ or more precisely $u(0)=6$. Why? Notice that $u(x)=y(x) e^{x}$, and substituting $x=0$ gives us $u(0)=y(0) e^{0}=6$.

To find the value of c, substitute for $x=0$ and $u=6$ into the equation $2 \sqrt{u}=-2 x e^{-x / 2}-4 e^{-x / 2}+c$, we see that $2 \sqrt{6}=-2(0) e^{0}-4 e^{0}+c$ or $2 \sqrt{6}=-4+c$ and we get that

$$
c=4+2 \sqrt{6}
$$

We now have the equation

$$
2 \sqrt{u}=-2 x e^{-x / 2}-4 e^{-x / 2}+4+2 \sqrt{6}
$$

We will divide by 2 and square both sides of the equation to solve for u to obtain

$$
u=\left(-x e^{-x / 2}-2 e^{-x / 2}+2+\sqrt{6}\right)^{2} .
$$

Since $y=u y_{1}$, we get that

$$
y=e^{x}\left(-x e^{-x / 2}-2 e^{-x / 2}+2+\sqrt{6}\right)^{2},
$$

notice that $e^{x}=\left(e^{x / 2}\right)^{2}$, and it follows that

$$
\begin{aligned}
y & =e^{x}\left[-x e^{-x / 2}-2 e^{-x / 2}+2+\sqrt{6}\right]^{2} \\
& =\left[e^{x / 2}\right)^{2}\left(-x e^{-x / 2}-2 e^{-x / 2}+2+\sqrt{6}\right]^{2} \\
& =\left[e^{x / 2}\left(-x e^{-x / 2}-2 e^{-x / 2}+2+\sqrt{6}\right)\right]^{2}, \text { now distribute and simplify to get } \\
& =\left[-x-2+(2+\sqrt{6}) e^{x / 2}\right]^{2} \\
& =\left[(2+\sqrt{6}) e^{x / 2}-x-2\right]^{2}
\end{aligned}
$$

From above we see that

$$
y=\left[(2+\sqrt{6}) e^{x / 2}-x-2\right]^{2}
$$

Further resources and comments:
There are other approaches that can be used to solve these equations. Additional problems can be found in TrenchText and detailed solutions are provided to the even problems in StudentSolutionsManual.

