Ordinary Differential Equations Notes

Bernoulli Equations

Dr. S. Singh

We will study Bernoulli equations of the shape

$$y' + p(x)y = f(x)y^n$$

where n is any real number except for 0 or 1.

Observation 1: For n = 0, the equation is of the form y' + p(x)y = f(x) and it stands out as a linear first order equation.

Observation 2: For n = 1, the equation is of the form y' + p(x)y = f(x)y; we can rearrange this equation to get y' = (f(x) - p(x))y, or $\frac{dy}{y} = (f(x) - p(x))dx$ which yields to the separation of variables technique. It is also useful to note that this is a linear first order equation.

We will use the three step approach outlined below to solve $y' + p(x)y = f(x)y^n$.

We begin with the **first step** by solving the homogenous part of the equation y' + p(x)y = 0. Separating variables will give $\frac{dy}{y} = -p(x)dx$ or $\int \frac{dy}{y} = -\int p(x)dx$ and integrating gives $\ln |y| = -\int p(x)dx$. After solving for y, we get $|y| = e^{-\int p(x)dx}$. Pick one of the solutions, say $y_1 = e^{-\int p(x)dx}$.

In the **second step**, we let $y = uy_1$, where u = u(x) and differentiate y to get $y' = u'y_1 + uy'_1$. Now substitute for y' and y into Bernoulli's equation to obtain an equation in terms of u and x that can be solved by separation of variables. Once you have solved for u do not forget to find y by multiplying u and y_1 . Recall that $y = uy_1$.

A **third step** is required if we are given an initial condition such as $y(x_0) = y_0$. It is recommended that you find the value of the constant with the expression that you obtained for u(x) to avoid extraneous solutions. From $y(x_0) = y_0$ or the point (x_0, y_0) and $y(x) = u(x)y_1(x)$, it follows that $y(x_0) = u(x_0)y_1(x_0)$ or $u(x_0) = y_0/y_1(x_0)$.

<u>Recommended review from calculus</u>: Integration by parts. You may access the text book CalculusVolume2 for an extensive review of integration. Before going to the next page, use integration by parts to evaluate the integral $\int xe^{-x/2} dx$ which we will use in our example. The expected result is given below.

$$\int xe^{-x/2}dy = -2xe^{-x/2} - 4e^{-x/2} + c.$$

July 2020

$$y' - y = xy^{1/2}, \ y(0) = 6$$

We start by observing that $y' - y = xy^{1/2}$ is a Bernoulli equation of the form $y' + p(x)y = f(x)y^n$, where p(x) = -1, f(x) = x and n = 1/2.

We now proceed with the **first step** by solving the homogenous equation y' - y = 0. We can use the separation of variables technique to solve y' - y = 0 directly.

Instead, we will use the outline above and pick $y_1 = e^{-\int p(x)dx} = e^{\int 1dx} = e^{x+c} = e^c e^x = c_1 e^x$. Choose some $c_1 \neq 0$. Since the Bernoulli equation contains the term $y^{1/2}$ or equivalently the \sqrt{y} , we must choose $c_1 > 0$ and for convenience we will let $c_1 = 1$. We now have a solution, namely $y_1 = e^x$.

Proceeding to the **second step**, we form $y = uy_1$, and substitute for y_1 get $y = ue^x$. Taking its first derivative, gives us $y' = u'e^x + ue^x$. We will now substitute for y and y' into the equation $y' - y = xy^{1/2}$, to transform it into a separable equation.

 $y' - y = xy^{1/2}$ becomes $u'e^x + ue^x - ue^x = x(ue^x)^{1/2}$, and on simplifying, we get $u'e^x = xu^{1/2}e^{x/2}$. We can now separate the variables and simplify to get $u^{-1/2}du = xe^{-x/2}dx$; integrating both sides of $\int u^{-1/2}du = \int xe^{-x/2}dx$, gives us

$$2\sqrt{u} = -2xe^{-x/2} - 4e^{-x/2} + c.$$

We will now use the initial condition, y(0) = 6 or more precisely u(0) = 6. Why? Notice that $u(x) = y(x)e^x$, and substituting x = 0 gives us $u(0) = y(0)e^0 = 6$.

To find the value of c, substitute for x = 0 and u = 6 into the equation $2\sqrt{u} = -2xe^{-x/2} - 4e^{-x/2} + c$, we see that $2\sqrt{6} = -2(0)e^0 - 4e^0 + c$ or $2\sqrt{6} = -4 + c$ and we get that

$$c = 4 + 2\sqrt{6}.$$

We now have the equation

$$2\sqrt{u} = -2xe^{-x/2} - 4e^{-x/2} + 4 + 2\sqrt{6}$$

We will divide by 2 and square both sides of the equation to solve for u to obtain

$$u = (-xe^{-x/2} - 2e^{-x/2} + 2 + \sqrt{6})^2.$$

Since $y = uy_1$, we get that

$$y = e^{x}(-xe^{-x/2} - 2e^{-x/2} + 2 + \sqrt{6})^{2},$$

notice that $e^x = (e^{x/2})^2$, and it follows that

$$y = e^{x} [-xe^{-x/2} - 2e^{-x/2} + 2 + \sqrt{6}]^{2}$$

= $[e^{x/2})^{2} (-xe^{-x/2} - 2e^{-x/2} + 2 + \sqrt{6}]^{2}$
= $[e^{x/2} (-xe^{-x/2} - 2e^{-x/2} + 2 + \sqrt{6})]^{2}$, now distribute and simplify to get
= $[-x - 2 + (2 + \sqrt{6})e^{x/2}]^{2}$
= $[(2 + \sqrt{6})e^{x/2} - x - 2]^{2}$

From above we see that

$$y = [(2 + \sqrt{6})e^{x/2} - x - 2]^2.$$

Further resources and comments:

There are other approaches that can be used to solve these equations. Additional problems can be found in **TrenchText** and detailed solutions are provided to the even problems in **StudentSolutionsManual**.