1. Find the line passing through $(1,-2,6)$ and parallel to the vector $\langle 5,2,-3\rangle$.

Solution: Recall that the line equation is given as:

$$
\begin{gathered}
x=x_{0}+a t \\
y=y_{0}+b t \\
z=z_{0}+c t
\end{gathered}
$$

or for short

$$
\vec{r}(t)=\left\langle x_{0}+a t, y_{0}+b t, z_{0}+c t\right\rangle .
$$

Thus, the equation of the line is

$$
\begin{array}{r}
x=1+5 t \\
y=-2+2 t \\
z=6-3 t
\end{array}
$$

Note that the components of the direction vector become the coefficients of the t-parameter. Alternatively, you can write the equations as:

$$
\vec{r}(t)=\langle 1+5 t,-2+2 t, 6-3 t\rangle .
$$

2. Find the intersection of this line (described above) with the plane $3 x-2 y+z=29$.

Solution. At the point of intersection of the line with the plane, the x, y, and z coordinates are the same. Thus we plug in the x, y, and z coordinates of the line

$$
\begin{gathered}
x=1+5 t \\
y=-2+2 t \\
z=6-3 t
\end{gathered}
$$

in the plane equation $3 x-2 y+z=29$. We get

$$
\begin{aligned}
3 x-2 y+z & =10 \\
3(1+5 t)-2(-2+2 t)+(6-3 t) & =10 \\
3+15 t+4-4 t+6-3 t & =29 \\
8 t & =16 \\
t & =2 .
\end{aligned}
$$

This means, the intersection occurs on the line when the time parameter t equals 2 . Thus the intersection point is:

$$
\begin{array}{r}
x=1+5 t=1+5 \cdot 2=11 \\
y=-2+2 t=-2+2 \cdot 2=2 \\
z=6-3 t=6-3 \cdot 2=0 .
\end{array}
$$

That is, the intersection point of the line with the given plane is $(x, y, z)=(11,2,0)$.

