Math 2675: Calculus III

Sample Questions 2: Dot Product, Cross Product, Planes

1. If \vec{v} and \vec{w} make an angle of 60° , and $\vec{v} \cdot \vec{w} = 2$ and $\|\vec{v}\| = 4$, find the length of \vec{w} . Solution: We know $\vec{v} \cdot \vec{w} = \|\vec{v}\| \|\vec{w}\| \cos \theta$. Hence, $2 = 4 \|\vec{w}\| \cos(30^{\circ})$. Thus, $2 = 4 \|\vec{w}\| \frac{1}{2}$. Therefore, $\|\vec{w}\| = 1$.

Find the cross product of (1, 2, 3) and (2, 1, −3).
Solution: We know:

$$\vec{v} \times \vec{w} = \left\langle v_2 w_3 - w_2 v_3 \quad , \quad -(v_1 w_3 - w_1 v_3) \quad , \quad v_1 w_2 - w_1 v_2 \right\rangle$$

. Plug in the values:

$$\vec{v} \times \vec{w} = \left\langle 2 \cdot (-3) - 1 \cdot 2, -(1 \cdot (-3) - 2 \cdot 3), 1 \cdot 1 - 2 \cdot 2 \right\rangle = \langle -8, 5, -3 \rangle$$

3. Find the sine of the angle betwee the two vectors in the previous question. Solution: We know $\|\vec{v} \times \vec{w}\| = \|\vec{v}\| \|\vec{w}\| \sin \theta$. Note that

$$\|\vec{v}\| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14} \qquad \|\vec{w}\| = \sqrt{2^2 + 1^2 + (-3)^2} = \sqrt{14} \qquad \|\vec{v} \times \vec{w}\| = \sqrt{(-8)^2 + 5^2 + (-3)^2} = \sqrt{98} = 7\sqrt{2}$$

Hence: $7\sqrt{2} = \sqrt{14} \cdot \sqrt{14} \cdot \sin \theta$. From here: $\sin \theta = \frac{7\sqrt{2}}{14} = \frac{\sqrt{2}}{2}$.

4. Find the ANGLE between the two vectors above.

Solution: We know $\sin \theta = \frac{\sqrt{2}}{2}$. Therefore, $\theta = \arcsin\left(\frac{\sqrt{2}}{2}\right)$. This can be accepted as a final answer, but actually we know more: the angle 45° has $\sin(45^\circ) = \frac{\sqrt{2}}{2}$. Therefore $\theta = 45^\circ = \frac{\pi}{4}$.

5. Find the equation of the plane through the origin and having normal vector $\langle 2, 3, -5 \rangle$. Answer: 2(x-0) + 3(y-0) - 5(z-0) = 0, or after simplification 2x + 3y - 5z = 0.

