Sample Questions 2: Dot Product, Cross Product, Planes

1. If \vec{v} and \vec{w} make an angle of 60°, and $\vec{v} \cdot \vec{w}=2$ and $\|\vec{v}\|=4$, find the length of \vec{w}.

Solution: We know $\vec{v} \cdot \vec{w}=\|\vec{v}\|\|\vec{w}\| \cos \theta$. Hence, $2=4\|\vec{w}\| \cos \left(30^{\circ}\right)$. Thus, $2=4\|\vec{w}\| \frac{1}{2}$. Therefore, $\|\vec{w}\|=1$.
2. Find the cross product of $\langle 1,2,3\rangle$ and $\langle 2,1,-3\rangle$.

Solution: We know:

$$
\vec{v} \times \vec{w}=\left\langle v_{2} w_{3}-w_{2} v_{3} \quad, \quad-\left(v_{1} w_{3}-w_{1} v_{3}\right) \quad, \quad v_{1} w_{2}-w_{1} v_{2}\right\rangle
$$

. Plug in the values:

$$
\vec{v} \times \vec{w}=\langle 2 \cdot(-3)-1 \cdot 2,-(1 \cdot(-3)-2 \cdot 3), 1 \cdot 1-2 \cdot 2\rangle=\langle-8,5,-3\rangle
$$

3. Find the sine of the angle betwee the two vectors in the previous question.

Solution: We know $\|\vec{v} \times \vec{w}\|=\|\vec{v}\|\|\vec{w}\| \sin \theta$. Note that

$$
\|\vec{v}\|=\sqrt{1^{2}+2^{2}+3^{2}}=\sqrt{14} \quad\|\vec{w}\|=\sqrt{2^{2}+1^{2}+(-3)^{2}}=\sqrt{14} \quad\|\vec{v} \times \vec{w}\|=\sqrt{(-8)^{2}+5^{2}+(-3)^{2}}=\sqrt{98}=7 \sqrt{2}
$$

Hence: $7 \sqrt{2}=\sqrt{14} \cdot \sqrt{14} \cdot \sin \theta$. From here: $\sin \theta=\frac{7 \sqrt{2}}{14}=\frac{\sqrt{2}}{2}$.
4. Find the ANGLE between the two vectors above.

Solution: We know $\sin \theta=\frac{\sqrt{2}}{2}$. Therefore, $\theta=\arcsin \left(\frac{\sqrt{2}}{2}\right)$. This can be accepted as a final answer, but actually we know more: the angle 45° has $\sin \left(45^{\circ}\right)=\frac{\sqrt{2}}{2}$. Therefore $\theta=45^{\circ}=\frac{\pi}{4}$.
5. Find the equation of the plane through the origin and having normal vector $\langle 2,3,-5\rangle$.

Answer: $2(x-0)+3(y-0)-5(z-0)=0$, or after simplification $2 x+3 y-5 z=0$.

