$$
\begin{aligned}
& \frac{\text { Lorg Division }}{x^{2}+x+1} \\
& \begin{array}{c}
\frac{x-1) x^{3}+0 x^{2}+0 x-1}{+\left(-x^{3}+x^{2}\right) \downarrow} \\
\frac{+x^{2}+0 x}{+\left(-x^{2}+x\right) \downarrow} \\
+(-x-1
\end{array}
\end{aligned} \quad \begin{aligned}
& \frac{x^{3}}{x}=x^{2} \\
& \frac{x^{2}(x-1)=x^{3}-x^{2}}{x}=x
\end{aligned} \quad \rightarrow \frac{x(x-1)=x^{2}-x}{\frac{x}{x}=1} \begin{gathered}
\rightarrow 1(x-1)=x-1 \\
\rightarrow \frac{x^{3}-1}{x-1}=x^{2}+x+1+\frac{0}{x-1} \\
=x^{2}+x+1
\end{gathered}
$$

Synthetic Drvision

$$
\begin{aligned}
& x-1=0 \\
& x=1 \\
& 1100-1 \\
& x^{2} \quad x \subset y 1 x^{2}+\mid x+1 \\
& =x^{2}+x+1
\end{aligned}
$$

Recall from Mat 1375

$$
f(x)=\frac{1}{x-a}, a \in \mathbb{R}
$$

Left side

$$
\lim _{x \rightarrow a^{-}} \frac{1}{x-a}=-\infty
$$

$$
\begin{aligned}
& \text { Risht side } \\
& \lim _{x \rightarrow a+} \frac{1}{x+a}=\infty
\end{aligned}
$$

horizontal
$\frac{1}{x-a}$ is translation of $\frac{1}{x}$
$f(x-a)$ is $f(x)$ moved
a spaces to the right

