Section 4: Differentiation Rules

The Differentiation Formulas

Derivative of a
Constant

$$
\frac{d}{d x}(c)=0
$$

Function

The Power Rule	$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$ where n is any real number

The Constant
Multiple Rule
$\frac{d}{d x}[c f(x)]=c \frac{d}{d x} f(x)$

The Sum Rule $\quad \frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)$

The Difference
Rule

$$
\frac{d}{d x}[f(x)-g(x)]=\frac{d}{d x} f(x)-\frac{d}{d x} g(x)
$$

The Product Rule	$\frac{d}{d x}[f(x) g(x)]=$
$\frac{d}{d x}[f(x)] \cdot g(x)+\frac{d}{d x}[g(x)] \cdot f(x)$	

The Quotient
Rule

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{\frac{d}{d x}[f(x)] \cdot g(x)-\frac{d}{d x}[g(x)] \cdot f(x)}{[g(x)]^{2}}
$$

$$
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

Or in prime notation

$$
(f g)^{\prime}=f^{\prime} g+g^{\prime} f
$$

Or in prime notation

$$
\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-g^{\prime} f}{g^{2}}
$$

Or, if y is a function of u, and u is a function of x, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

Find the derivative of each of the following functions using the differentiation rules.
Derivative
aa) $f(x)=60 \quad f^{\prime}(x)=0$
1b) $y=\frac{8800^{718}}{369}+\frac{40 \pi}{47}-62768.32$

$$
y^{\prime}=0
$$

The Power Rule: $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \quad$ where n is any real number
aa) $y=x^{5}$

$$
\begin{aligned}
\frac{d y}{d x} & =5 x^{5-1} \\
& =5 x^{4}
\end{aligned}
$$

20) $g(x)=x^{-6} \quad g^{\prime}(x)=-6 x^{-6-1}$

$$
\begin{aligned}
& =-6 x^{-7}
\end{aligned}
$$

The Constant Multiple Rule: $\frac{d}{d x}[c f(x)]=c \frac{d}{d x} f(x)$
30) $y=-4 x \quad y^{\prime}=-4 \frac{d}{d x}(x)$

3b) $p(x)=3 x^{7}$

$$
\begin{aligned}
\frac{d \rho}{d x} & =3 \frac{d}{d d}\left(x^{7}\right) \\
& =3 \cdot 7 x^{6} \\
& =21 x^{6}
\end{aligned}
$$

The Sum Rule: $\frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)$
The Difference Rule: $\frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x} f(x)-\frac{d}{d x} g(x)$

4a) $y=2 x^{\frac{1}{2}}+4 x^{\frac{2}{3}}$

$$
\begin{aligned}
& y^{\prime}=\frac{d}{d x}\left(2 x^{\frac{1}{2}}\right)+\frac{d}{d x}\left(4 x^{\frac{2}{3}}\right) \\
& y^{\prime}=2 \frac{d}{d x}\left(x^{\frac{1}{2}}\right)+4 \frac{d}{d x}\left(x^{\frac{2}{3}}\right) \\
& y^{\prime}=2\left(\frac{1}{2} x^{-\frac{1}{2}}\right)+4\left(\frac{2}{3} x^{-\frac{1}{3}}\right)
\end{aligned}
$$

$$
\text { ac) } y=-2 x^{-4}-5 x^{2}-7 x
$$

$$
\text { 4c) } \begin{aligned}
y & =-2 x^{-4}-5 x^{2}-7 x \\
\frac{d y}{d x} & =8 x^{-5}-10 x^{1}-7
\end{aligned}
$$

4b) $t(x)=2 x^{-5}+4 x+1$

4d) $h(x)=4 x^{-7}-3 x^{-1}$

$$
\begin{aligned}
h^{\prime}(x) & =4 \frac{d}{d x}\left(x^{-7}\right)-3 \frac{d}{d x}\left(x^{-1}\right) \\
& =4\left(-7 x^{-8}\right)-3\left(-1 x^{-2}\right) \\
h^{\prime}(x) & =-28 x^{-8}+3 x^{-2}
\end{aligned}
$$

5. For each exercise below,
i. Simplify and rewrite each term as x^{n} with exponent in the numerator.
ii. Find the derivative.

> Function
> $y=\frac{1}{x^{2}}+\frac{1}{x}$

Rewriting the exponents
Derivative

$$
y=x^{-2}+x^{-1}
$$

$$
y^{\prime}=-2 x^{-3}-x^{-2}
$$

$$
\begin{aligned}
& \text { Function } \\
& \text { Rewriting the exponents } \\
& \text { Derivative } \\
& y=\frac{1}{\sqrt{x}}-\sqrt{x} \\
& y=x^{\frac{-1}{2}}-x^{\frac{1}{2}} \\
& y=\frac{1}{\sqrt[3]{x}}+(\sqrt[2]{x})^{3} \\
& y=x^{-\frac{1}{3}}+x^{\frac{3}{2}} \\
& \frac{d y}{d x}=-\frac{1}{3} x^{-\frac{1}{3}-1}+\frac{3}{2} x^{\frac{3}{2}-1} \\
& \frac{d y}{d x}=-\frac{1}{3} x^{-\frac{4}{3}}+\frac{3}{2} x^{\frac{1}{2}} \\
& y=\left(x^{\frac{2}{3}}\right)^{\frac{5}{8}} \\
& y=x^{\frac{10}{24}}=x^{\frac{5}{12}} \\
& y^{\prime}(x)=\frac{5}{12} x^{\frac{5}{12}-1} \\
& y^{\prime}(x)=\frac{5}{12} x^{-\frac{7}{12}} \\
& y=\frac{x^{3}}{x^{2}}+\frac{3 x^{2}}{x^{2}}+\frac{6}{x^{2}}+\frac{7 x^{-3}}{x^{2}} \quad y^{\prime}=1+2+6\left(-2 x^{-2-1}\right)+7\left(-5 x^{-5-1}\right) \\
& y=\frac{x^{3}+3 x^{2}+6+7 x^{-3}}{x^{2}} \quad y=x+3+6 x^{-2}+7 x^{-5} \\
& y^{\prime}=1-12 x^{-3}-35 x^{-6} \\
& y=\frac{2 x^{3}-x^{2}+3 x-5}{\sqrt{x}} \quad y=2 x^{3-\frac{1}{2}}-x^{2-\frac{1}{2}}+3 x^{1-\frac{1}{2}}-5 x^{-\frac{1}{2}} \\
& y=2 x^{\frac{5}{2}}-x^{\frac{3}{2}}+3 x^{\frac{1}{2}}-5 x^{-\frac{1}{2}} \frac{d y}{d x}=5 x^{\frac{3}{2}}-\frac{3}{2} x^{\frac{1}{2}}+\frac{3}{2} x^{-\frac{1}{2}}+\frac{5}{2} x^{-\frac{3}{2}}
\end{aligned}
$$

The Product Rule: $\frac{d}{d x}[f(x) g(x)]=\frac{d}{d x}[f(x)] \cdot g(x)+\frac{d}{d x}[g(x)] \cdot f(x)$
or
$(f g)^{\prime}=f^{\prime} g+g^{\prime} f \quad u^{\prime} v+u v^{\prime}$
ba) $y=x^{4}(2 x+3)$
bb) $g(x)=(3 x-7)\left(x^{2}+6 x\right)$

$f=x^{4}$	$g=2 x+3$
$f^{\prime}=4 x^{3}$	$g^{\prime}=2$

$$
\begin{aligned}
\frac{d y}{d x} & =f^{\prime} s+f g^{\prime} \\
& =\left(4 x^{3}\right)(2 x+3)+\left(x^{4}\right)(2) \\
& =8 x^{4}+12 x^{3}+2 x^{4} \\
& =10 x^{4}+12 x^{3}
\end{aligned}
$$

The Quotient Rule: $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{\frac{d}{d x}[f(x)] \cdot g(x)-\frac{d}{d x}[g(x)] \cdot f(x)}{[g(x)]^{2}}$
or

* f is always numerator S is always denominator

Ta) $y=\frac{x}{3 x+1}$

$f=x$	$g=3 x+1$
$f^{\prime}=1$	$g^{\prime}=3$

$$
\begin{aligned}
& y^{\prime}=\frac{f^{\prime} s-f_{s}}{9^{2}} \\
& y^{\prime}=\frac{(1)(3 x+1)-(x)(3)}{(3 x+1)^{2}} \\
& y^{\prime}=\frac{3 x+1-3 x}{(3 x+1)^{2}} \\
& y^{\prime}=\frac{1}{(3 x+1)^{2}}
\end{aligned}
$$

7b) $q(x)=\frac{9 x^{2}}{3 x^{2}-2 x}$

$$
\begin{array}{l|l}
f=9 x^{2} & g=3 x^{2}-2 x \\
\hline f^{\prime}=18 x & g^{\prime}=6 x-2
\end{array}
$$

$$
\begin{aligned}
q^{\prime}(x) & =\frac{f^{\prime} s-f_{s}^{\prime}}{s^{2}} \\
& =\frac{(18 x)\left(3 x^{2}-2 x\right)-\left(9 x^{2}\right)(6 x-2)}{\left(3 x^{2}-2 x\right)^{2}} \\
& =\frac{54 x^{3}-36 x^{2}-54 x^{3}+18 x^{2}}{\left(3 x^{2}-2 x\right)^{2}} \\
& =\frac{-18 x^{2}}{\left(3 x^{2}-2 x\right)^{2}}=\frac{-18 x^{2}}{x^{2}(3 x-2)^{2}} \\
& =-\frac{18}{(3 x-2)^{2}}
\end{aligned}
$$

The Chain Rule: $\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) \cdot g^{\prime}(x)$

Derivative of the composite function $f(g(x))$

Derivative of the outside function f

Derivative of the inside function g

If y is a function of u, and u is a function of x, then the chain rule is $\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}$
8. Find the derivative using the Chain Rule

How?
a) $y=\left(x^{2}+3\right)^{8}$
b) $s(x)=2(5 x-500)^{1000}$

$$
\begin{aligned}
& x \rightarrow\left(x^{2}+3\right)^{8} \\
& x \rightarrow u=x^{2}+3
\end{aligned}
$$

$$
\frac{d y}{d x}=f^{\prime}(u) \cdot u^{\prime}
$$

$$
=8 u^{7} \cdot u^{\prime}
$$

$$
=8\left(x^{2}+3\right)^{7} \cdot\left(x^{2}+3\right)^{\prime}
$$

$$
=8\left(x^{2}+3\right)^{7}(2 x)
$$

$$
\frac{d y}{d x}=16 x\left(x^{2}+3\right)^{7}
$$

c) $y=\sqrt{3 x+1}=(3 x+1)^{\frac{1}{2}}$
d) $y=\frac{8}{\sqrt{5 x^{2}+1}}=8\left(5 x^{2}+1\right)^{-1}$

$$
\begin{aligned}
x & \rightarrow(3 x+1)^{\frac{1}{2}} \\
x & \rightarrow u=3 x+1 \\
& \rightarrow f(u)=u^{\frac{1}{2}}
\end{aligned}
$$

$$
y^{\prime}=f^{\prime}(u) \cdot u^{\prime}
$$

$$
=\frac{1}{2} u^{-\frac{1}{2}} \cdot 3
$$

$$
=\frac{1}{2}(3 x+1)^{-\frac{1}{2}} \cdot 3
$$

$$
=\frac{3}{2}(3 x+1)^{-\frac{1}{2}}
$$

$$
y^{\prime}=\frac{3}{2 \sqrt{3 x+1}}
$$

9. Find the derivative using combination rules
a) $y=-4 x^{2}\left(2 x^{3}-14\right)^{4}$
b) $y=x^{3} \cdot \sqrt{x^{2}+3}$
c) $y=\frac{\sqrt{x^{2}+3}}{x^{3}}$

SECTION 4 SUPPLEMENTARY EXERCISES

1) Find the derivative using the Power Rule. Rewrite each term as an exponent if necessary.
a) $f(x)=5 x^{-3}+3 x^{-6}-2$
b) $m(x)=x^{\frac{-3}{2}}+3 x^{\frac{1}{6}}$
f) $y=\frac{x^{3}-4 x^{2}+8}{x^{2}}$ (Do not use quotient rule!)
c) $y=6 \sqrt{x}-\sqrt[3]{x}$
g) $f(x)=\frac{5 x^{2}-2 x+1}{x}$ (Do not use quotient rule!)
d) $y=\frac{2}{\sqrt[3]{x}}+9 x$
e) $s(t)=t^{2}+\frac{5}{t^{2}}$
2) Find the derivative using the Product or Quotient Rule.
a) $h(t)=(4 t+3)(t-7)$
b) $y=3 x \sqrt{x+5}$
c) $p(x)=\frac{x+5}{x^{2}-9}$
d) $y=\frac{x^{2}}{\sqrt{x+8}}$
3) Find the derivative using the Chain Rule and combination rules.
a) $v(x)=(2-4 x)^{100}$
b) $v(x)=-x^{3}(2-4 x)^{100}$
c) $y=\sqrt{x^{2}+3 x+4}$
4) Find the slope of the tangent line to the curve $f(x)=-3 x^{2}+x$ at the point $(2,-10)$ using the differentiation formulas, and find the equation of the tangent line.
5) Find the slope of the tangent line to the curve $f(x)=x^{3}$ at the point ($-2,-8$) using the differentiation formulas, and find the equation of the tangent line.

6) Find the slope of the tangent line to the curve $f(x)=\frac{1}{x-6}$ at the point (5,-1) using the differentiation formulas, and find the equation of the tangent line.

