

Exercise 3. If $f(x) = x^3 + 2x^2 + 4x + 8$

- a) Find a rational root r of the polynomial function using Desmos or graphing calculator.
- b) Use synthetic division to divide f(x) by x r.
- f) Find the remaining two roots by solving the quadratic function. Express f in factored form. What is the characteristic of the roots? (Multiplicity?)
- c) Sketch a graph. How do the roots of the function relate to its graph?

$$x^{1} + 2x^{2} + 4x + 8$$

$$(x^{2} + 2x^{2}) + (4x + 8)$$

$$x^{2} (x + 2) + 4(x + 2)$$

$$(x + 2) (x^{2} + 4)$$
if $(x + 2) (x + 2i) (x - 2i) = 0$

- $\rightarrow f(-2) = 0$
- Exercise 4. If $f(x) = x^3 x^2 10x + 12$
- - a) Find a rational root r of the polynomial function using Desmos or graphing calculator.
 - b) Use synthetic division to divide f(x) by x r.
 - c) Find the remaining two roots by solving the quadratic function. What is the characteristic of the roots? (Rational, irrational, complex?)
 - d) Sketch a graph. How do the roots of the function relate to its graph?

1-1+5,0)

Exercise 5. If $f(x) = x^4 + x^3 - x^2 + x - 2$

- a) Find two rational roots r_1 and r_2 of the polynomial function using Desmos or graphing calculator.
- b) Apply synthetic division twice: First divide f(x) by $x r_1$, then divide the resulting quotient by $x r_2$.
- Find the remaining two roots by solving the quadratic function. What is the characteristic of the roots? (Rational, irrational, complex?)
- d) Sketch a graph. How do the roots of the function relate to its graph?

Exercise 6. Find the polynomial of degree 3 with roots 1, 2, -3, and f(-1) = 8.

- a) Express the polynomial in factored form $f(x) = a(x r_1)(x r_2)(x r_3)$.
- b) Use f(-1) = 8 to solve for a.

a.)
$$f(x) = a(x-1)(x-2)(x+3)$$

b.) $f(-1) = a(-1-1)(-1-2)(-1+3)$ $a = \frac{P}{12} = \frac{2}{3}$
 $8 = a(-2)(-3)(+2)$
 $8 = 12a$ $f(x) = \frac{2}{3}(x-1)(x-2)(x+3)$

Exercise 7. Find a polynomial of degree 4 with real coefficients and roots 2i and 3. Root 3 has multiplicity 2.

SECTION 2.2 SUPPLEMENTARY EXERCISES

For each quadratic function,

- i. Determine the vertex.
- ii. Sketch the graph.
- iii. Determine the domain and the range of the function.
- iv. Find the roots. Determine whether the roots are two real roots, one real root, or two complex roots.

a)
$$f(x) = (x-3)^2 - 1$$

b)
$$f(x) = -(x-1)^2 + 7$$

c)
$$f(x) = \frac{1}{3}(x-8)^2 - 7$$

d)
$$f(x) = -(x-2)^2 + 9$$

e)
$$f(x) = 6(x+5)^2 + 4$$

f)
$$f(x) = \frac{1}{2}(x+5)^2 - 3$$

g)
$$f(x) = -(x-3)^2 - 1$$

h)
$$f(x) = 4(x+7)^2 + 8$$

i)
$$f(x) = 2x^2 + 4x - 5$$

j)
$$f(x) = -x^2 + 4x - 6$$

SECTION 2.3 SUPPLEMENTARY EXERCISES

1. a) Divide
$$x^3 + 2x^2 - 6x - 9$$
 by $x - 2$

b) Divide
$$x^3 + 2x^2 - 6x - 9$$
 by $x + 3$

c) Divide
$$2x^3 - 3x^2 - 5x + 18$$
 by $x + 2$

- 2. Find the zeros of a function
 - a) One zero of $f(x) = x^3 2x^2 9x + 18$ is x = 2. Find the other zeros.
 - b) One zero of $f(x) = 4x^3 + 9x^2 52x + 15$ is x = -5. Find the other zeros.
 - c) Find all the real zeros for $f(x) = x^4 + 4x^3 9x^2 36x$.
 - d) Find all the real zeros for $f(x) = x^4 13x^2 + 36$.
- 3. Find a polynomial of degree 4 with real coefficients and roots i and 2 + i.

Module III

Exponential and Logarithmic Functions

Section 3.1 Exponential Functions and Graphs

For any real number x, an exponential function is a function of the form $f(x) = c \cdot b^x$

Where the base b is a positive real number such that $b \neq 1$ and c is a non-zero real number.

exponential

2× + x²

mber. power

Example 1: Graph the exponential function: $f(x) = 2^x$. What is its domain and range?

Characteristics of the exponential graph: $y = c \cdot b^x$

- b>1 growth decay
- The exponential graph is always increasing if b>1; it is always decreasing if 0< b < 1.
- The graph does not cross the x-axis; y = 0 is a horizontal asymptote.
- The graph has the y-intercept (0,1).
- The domain of the exponential function is all real numbers $(-\infty, \infty)$.
- If c > 0, the range of the exponential function is $(0, \infty)$. If c < 0, the range is $(-\infty, 0)$.

Example 2:

- a) Graph the exponential function: $g(x) = \left(\frac{1}{2}\right)^x$. What is its domain and range?
- b) Graph the exponential function: $h(x) = 2^{-x}$. What is its domain and range?
- c) How do the two graphs compare? Why is it so?

					y		
	x	$g(x) = \left(\frac{1}{2}\right)^x$	$h(x)=2^{-x}$		8 7	ΛX	
	-3	8	8		6	7=(克)	+
	-2	4	4		4		
	-1	2	2		3 2		
	0		1		1	>	-
	1		1	-9 -8 -7 -6 -5 -4 -	3 -2 -1	1 2 3 4 5 6 7 8 9	^
	2	4	4		-2	V= 2->	
	3	18	-18		-4	77-5	
0	ain	(-0, w) (0, w)	Prove: (2)*= 2-×	-6 -7 -8 -9		
Kan	ye (0,00)			*		
			$2^{-x} = 2$	$-1 \cdot \times = (2^{-1})$)× =	$\left(\frac{1}{2}\right)^{x}$	

Example 3: Graph the exponential function: $k(x) = -2^x$. What is its domain and range?

	y
x y = k(x)	9 8
-3 -3	7 6
-2 - 4	5 4
-1 -1	3
0 -1	2
1 – 2	X
2 - 4	-2
3 -7	-3
oma:n: (-0,0)	-5 -6 -7
ange: (-00,0)	-8
ange - C - /	
	reflected over x. axis
	reflected over x-axis ch positive and negative.

Section 3.2 Logarithmic Functions and Graphs

If b > 0 and $b \ne 1$, then $y = \log_b x \iff x = b^y$

Exercise 1: Evaluate the logarithms and rewrite each logarithmic relation as an exponential relation.

Evaluate the logarithm	Rewrite in exponential form
log ₃ 9 =?	$\log_3 9 = 2 \Leftrightarrow 3^2 = 9$
log ₃ (1)= ()	3°=1
$\log_3\left(\frac{1}{9}\right) \neq 2$	$3^{-2} = \frac{1}{9}$
$\log_{2}(8) = 3$	$2^3 = 8$
$\log_8 2 = \frac{1}{3}$	$8^{\frac{1}{3}} = 2$
$\log_{\frac{1}{2}} 2 = -$	$\left(\frac{1}{2}\right)^{-1}=2$

 $\sqrt[3]{8} = 8^{\frac{1}{2}}$ $\left(\frac{1}{2}\right)^{x} = 2$

2-1×=21

-X=1

x=-

Exercise 2: Evaluate the logarithms.

a)
$$\log_{10} 1$$
 = 0

e)
$$\log_{10} \left(\frac{1}{10} \right) = -1$$

f)
$$\log_{10}\left(\frac{1}{100}\right) = -2$$

c)
$$\log_{10} 100 = 2$$

g)
$$\log_{10}\left(\frac{1}{1000}\right) = -3$$

d)
$$\log_{10} 1000 = 3$$

Exercise 3: Graph the logarithmic function: $y = \log_2 x$.

Convert logarithm to exponential form; complete the table of values and graph. What is its domain and range?

Exercise 4: Graph the logarithmic function: $y = \log_3 x$.

Convert logarithm to exponential form; complete the table of values and graph. What is its domain and

$y = \log_3 x \iff$	$\chi = 3^{\circ}$	
x	y	
4	-2	
7	-1	
	0	
3	1	
9	2	
Domain: (0,00)		
Range	(-00,00)	

Characteristics of the logarithmic function: $f(x) = \log_b x$

- The function does not cross the y-axis; x = 0 is a vertical asymptote.
- The function has the x-intercept (1, 0).
- The domain of the exponential function is $(0, \infty)$.
- The range of the exponential function is $(-\infty, \infty)$.

Use the link to try the Desmos activity: https://www.desmos.com/calculator/bvh8odgu6n How do the exponential and logarithmic graphs change when the base is >1? When the base is between

0 and 1?				
What is the inv	verse symmetry betwo	een the exponential a	nd the logarithmic funct	ions of the same base?

Comparing the Graphs of $y = b^x$ and $y = \log_b x$ $(b > 0, b \ne 1)$				
	$y = b^x$	$y = \log_b x$		
Domain	$(-\infty,\infty)$	(0,∞)		
Range	(0,∞) ∠	$(-\infty,\infty)$		
<i>x</i> -intercept	None	(1,0)		
y-intercept	(0,1)	None		
Contains points	(0,1),(1,b)	(1,0),(<i>b</i> ,1)		
Asymptote	x-axis or horizontal line $y = 0$	y-axis or vertical line $x = 0$		
Example $\frac{b}{>} 1$ (Always increasing)	$y = 2^x$	$y = \log_2 x$		
Example $0 < b < 1$ (Always decreasing)	$y = \left(\frac{1}{2}\right)^x$	$y = \log_{1/2} x$		

Section 3.3 Properties of Logarithms

Properties of Logarithms

	Properties of Exponents	Corresponding Properties of Logarithms
Product Property	$\boldsymbol{b}^{\boldsymbol{x}+\boldsymbol{y}} = \boldsymbol{b}^{\boldsymbol{x}} \cdot \boldsymbol{b}^{\boldsymbol{y}}$	$\log_b(x\cdot y) = \log_b x + \log_b y$
Quotient Property	$oldsymbol{b^{x-y}} = rac{oldsymbol{b^x}}{oldsymbol{b^y}}$	$\log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y$
Power Property	$(\boldsymbol{b}^{\boldsymbol{x}})^n = \boldsymbol{b}^{n\boldsymbol{x}}$	$\log_b(x^n) = n \cdot \log_b x$
	$b^1 = b$	$\log_b(b) = 1$
	$b^0 = 1$	$\log_b(1) = 0$

Exercise 1: Use the properties of logarithm and the values $\log_5 3 \approx 0.683$ and $\log_5 7 \approx 1.209$ to evaluate each of the following. (What is the value of $\log_5 5$?)

a)
$$\log_5 21 = \log_5 (7.3) = \log_5 (7) + \log_5 (3) = \log_5 (7) =$$

b)
$$\log_5 \frac{3}{7} = \log_5 (3) - \log_5 (7) \approx .683 - 1.209 \approx -.526$$
 (n (e) = 1

logh(b)=)

c)
$$\log_5 35 = \log_5 (7.5) = \log_5 (7) + \log_5 (5)$$

$$\approx 1.209 + 1 \approx 2.209$$

d)
$$\log_5 \frac{15}{7} = \log_7(15) - \log_5(7) = \log_5(3) + \log_7(5) - \log_7(7)$$

 $1683 + 1 - 1.209 = 1474$

The logarithm with base 10 is called the common logarithm denoted by $\log_{10}\,$ or $\,\log$

$$\log_{10} x = \log x$$

The logarithm with base e is called the natural logarithm denoted by \log_e or \ln

$$\log_{e} x = \ln x$$

The Number e

The **natural base** e is a mathematical constant defined as the value $\left(1+\frac{1}{n}\right)^n$ as n approaches ∞ . Its value is approximately

$$e \approx 2.71828182845$$

Properties of log and In

log	In
$\log(x \cdot y) = \log x + \log y$	$\ln(x \cdot y) = \ln x + \ln y$
$\log\left(\frac{x}{y}\right) = \log x - \log y$	$ \ln\left(\frac{x}{y}\right) = \ln x - \ln y $
$\log x^n = n \log x$	$\ln x^n = n \ln x$
$\log 10 = 1$	$\ln e = 1$
$\log 1 = 0$	ln 1 = 0

Exercise 2: Expand using the properties of logarithms. Assume x and y are positive.

a)
$$\log_{3}\left(\frac{9\sqrt{x}}{y^{2}}\right) = \log_{3}\left(9\sqrt{x}\right) - \log_{3}\left(y^{2}\right) = \log_{3}\left(9\right) + \log_{3}\left(\sqrt{x}\right) - \log_{3}\left(y^{2}\right)$$

$$= 2 + \log_{3}\left(x^{2}\right) - \log_{3}\left(y^{2}\right)$$

$$= 2 + \log_{3}\left(x^{2}\right) - \log_{3}\left(y^{2}\right)$$

$$= \log\left(x+3\right) - \log\left(\log n\right)$$

$$= \log\left(x+3\right) - 2$$
c) $\ln\left(\frac{6e^{4}}{4}\right) = \ln\left(6\right) + \ln\left(e^{4}\right) - \ln\left(4\right)$

$$= \ln\left(6\right) + 4\ln\left(e\right) - \ln\left(2^{2}\right)$$

$$= \ln\left(6\right) + 4 - 2\ln\left(2\right)$$

$$\neq e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{n} = 2^{n} = 1$$