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Chapter 9

Roots of polynomials

We have seen in Observation 7.10 on page 117 that every root c of a poly-
nomial f(x) gives a factor (x − c) of f(x). As we would like to use this to
factor polynomials, it will be helpful to know more about the nature of roots
of polynomials. In Section 9.1, we will discuss a statement concerning roots
that are rational numbers (the rational root theorem), while in Section 9.2
we give a general statement about the existence of roots (the fundamental
theorem of algebra).

9.1 Optional section: The rational root theorem

Our first comment concerns rational roots for a polynomial with integer coef-
ficients.

Note 9.1

Consider, for example, the equation 10x3 − 6x2 + 5x− 3 = 0. Let x be
a rational solution of this equation, that is x = p

q is a rational number
such that

10 ·
(p

q

)3

− 6 ·
(p

q

)2

+ 5 ·
p

q
− 3 = 0.

We assume that x = p
q is completely reduced, that is, p and q have

no common factors that can be used to cancel the numerator and de-
nominator of the fraction p

q . Now, simplifying the above equation, and
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150 CHAPTER 9. ROOTS OF POLYNOMIALS

combining terms, we obtain:

10 ·
p3

q3
− 6 ·

p2

q2
+ 5 ·

p

q
− 3 = 0

(multiply by q3) =⇒ 10p3 − 6p2q + 5pq2 − 3q3 = 0

(add 3q3) =⇒ 10p3 − 6p2q + 5pq2 = 3q3

(factor p on the left) =⇒ p · (10p2 − 6pq + 5q2) = 3q3.

Therefore, p is a factor of 3q3 (with the other factor being (10p2−6pq+
5q2)). Since p and q have no common factors, p must be a factor of 3.
That is, p is one of the following integers: p = +1,+3,−1,−3.
Similarly, starting from 10p3 − 6p2q + 5pq2 − 3q3 = 0, we can write

(add +6p2q − 5pq2 + 3q3) =⇒ 10p3 = 6p2q − 5pq2 + 3q3

(factor q on the right) =⇒ 10p3 = (6p2 − 5pq + 3q2) · q.

Now, q must be a factor of 10p3. Since q and p have no common factors, q
must be a factor of 10. In other words, q is one of the following numbers:
q = ±1,±2,±5,±10. Putting this together with the possibilities for
p = ±1,±3, we see that all possible rational roots are the following:

±
1

1
, ±

1

2
, ±

1

5
, ±

1

10
, ±

3

1
, ±

3

2
, ±

3

5
, ±

3

10
.

The observation in the previous example holds for a general polynomial
equation with integer coefficients.

Observation 9.2: Rational root theorem

Consider the equation

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0, (9.1)

where every coefficient an, an−1, . . . , a0 is an integer and a0 ̸= 0, an ̸= 0.
Assume that x = p

q is a rational solution of (9.1) and the fraction x = p
q

is completely reduced. Then a0 is an integer multiple of p, and an is an
integer multiple of q. In particular, if x is an integer root of (9.1), then
a0 is an integer multiple of x (which follows if we apply the above to
the case x = p

1 ).
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In other words:

• Any rational solution of (9.1) can be written as a fraction x = p
q

where p is a factor of a0 and q is a factor of an.
• Any integer solution x of (9.1) is a factor of a0.

We can use this observation to find good candidates for the roots of a
given polynomial.

Example 9.3

a) Find all rational roots of f(x) = 7x3 + x2 + 7x+ 1.

b) Find all real roots of f(x) = 2x3 + 11x2 − 2x− 2.

c) Find all real roots of f(x) = 4x4 − 23x3 − 2x2 − 23x− 6.

Solution.

a) If x = p
q is a rational root, then p is a factor of 1, that is p = ±1;

and q is a factor of 7, that is q = ±1,±7. The candidates for rational
roots are therefore x = ±1

1 ,±
1
7 . To see which of these candidates

are indeed roots of f we plug these numbers into f via the table
function on the graphing calculator (see Example 4.7). We obtain
the following:

The only root among ±1,±1
7 is x = −1

7 .
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b) We need to identify all real roots of f(x) = 2x3 + 11x2 − 2x− 2. In
general, it is a quite difficult task to find a root of a polynomial of
degree 3, so that it will be helpful if we can find the rational roots
first. If x = p

q is a rational root, then p is a factor of −2, that is
p = ±1,±2; and q is a factor of 2, that is q = ±1,±2. The possible
rational roots x = p

q of f are:

±1, ±2, ±
1

2

Using the calculator, we see that the only rational root is x = 1
2 .

Therefore, by the factor theorem (Observation 7.10), we see that
(x − 1

2) is a factor of f , that is f(x) = q(x) · (x − 1
2). To avoid

fractions in the long division, we rewrite this as

f(x) = q(x) · (x−
1

2
) = q(x) ·

2x− 1

2
=

q(x)

2
· (2x− 1),

so that we may divide f(x) by (2x− 1) instead of (x− 1
2) (note that

this cannot be done with synthetic division). We obtain the following
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quotient:
x2 +6x +2

2x− 1 2x3 +11x2 −2x −2
−(2x3 −x2)

12x2 −2x −2
−(12x2 −6x)

4x −2
−(4x −2)

0

Therefore, f(x) = (x2 + 6x+ 2)(2x− 1), and any root of f is either
a root of x2 +6x+2 or of 2x− 1. We know that the root of 2x− 1 is
x = 1

2 , and that x2+6x+2 has no other rational roots. Nevertheless,
we can identify all other real roots of x2 + 6x+ 2 via the quadratic
formula, (see Proposition 8.14).

x2 + 6x+ 2 = 0

=⇒ x1/2 =
−6 ±

√
62 − 4 · 1 · 2
2

=
−6 ±

√
36− 8

2
=

−6±
√
28

2

=
−6 ±

√
4 · 7

2
=

−6± 2
√
7

2
= −3 ±

√
7

Therefore, the roots of f are precisely the following:

x1 = −3 +
√
7, x2 = −3 −

√
7, x3 =

1

2
.

c) First we find the rational roots x = p
q of f(x) = 4x4 − 23x3 − 2x2 −

23x−6. Since p is a factor of −6 it must be p = ±1,±2,±3,±6, and
since q is a factor of 4 it must be q = ±1,±2,±4. All candidates for
rational roots x = p

q are the following (where we excluded repeated
ways of writing x):

±1, ±2, ±3, ±6, ±
1

2
, ±

3

2
, ±

1

4
, ±

3

4
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Checking all these candidates with the calculator produces exactly
two rational roots: x = 6 and x = −1

4 . Therefore, we may divide
f(x) by both (x − 6) and by (x + 1

4) without remainder. To avoid
fractions, we use the term 4 · (x + 1

4) = (4x + 1) instead of (x + 1
4)

for our factor of f . Therefore, f(x) = q(x) · (x − 6) · (4x + 1). The
quotient q(x) is determined by performing a long division by (x− 6)
and then another long division by (4x+ 1), or alternatively by only
one long division by

(x− 6) · (4x+ 1) = 4x2 + x− 24x− 6 = 4x2 − 23x− 6.

Dividing f(x) = 4x4−23x3−2x2−23x−6 by 4x2−23x−6 produces
the quotient q(x):

x2 +1

4x2 − 23x− 6 4x4 −23x3 −2x2 −23x −6
−(4x4 −23x3 −6x2)

4x2 −23x −6
−(4x2 −23x −6)

0

We obtain the factored expression for f(x) as f(x) = (x2 + 1)(4x+
1)(x − 6). The only remaining real roots we need to find are those
of x2 + 1. However,

x2 + 1 = 0 =⇒ x2 = −1

has no real solution. In other words, there are only complex solutions
of x2 = −1, which are x = i and x = −i (we will discuss complex
solutions in more detail in the next section). Since the problem
requires us to find the real roots of f , our answer is that the only
real roots are x1 = 6 and x2 = −1

4 .
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9.2 The fundamental theorem of algebra

There is a general theorem which tells us when a polynomial has a root. This
theorem is called the fundamental theorem of algebra. Since complex num-
bers play a crucial role in this theorem, we briefly recall the basic notations
concerning complex numbers. A more thorough discussion of complex numbers
will be given in Chapter 23.

Review 9.4: Complex numbers

There is no real number whose square is minus 1, that is, there is no x
with x2 = −1. So we denote by i a solution of this equation. This i is
not a real number but a new kind of number called a complex number.
We can think of i as i =

√
−1.

We can then consider numbers of the form a+ bi where a and b are real
numbers. Numbers of this form constitute the set of complex numbers,
denoted by C. a is called the real part and bi is called the imaginary
part of the complex number a + bi.
We can add two complex numbers by adding their real and imaginary
parts to form the real and imaginary parts of the sum. We can multi-
ply two complex numbers by ordinary distribution (FOIL) then use the
property that i2 = −1.

Example 9.5

Here is an example for the subtraction and multiplication of two complex
numbers.

(2− 3i)− (4 + 3i) = (2− 4) + (−3− 3)i = −2− 6i,

(2− 3i) · (4 + 3i) = 8 + 6i− 12i− 9i2 = 8− 6i− 9(−1) = 17− 6i.

We can see that these numbers arise naturally as roots of quadratic equa-
tions, such as, for example x2+6 = 0, which can be written as x2 = −6 and has
a solution given by x =

√
−6 =

√
−1 ·

√
6 = i

√
6. The following fundamental

theorem of algebra guarantees the existence of a root of any polynomial of
degree ≥ 1, as long as we allow complex numbers for our roots.
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Theorem 9.6: Fundamental theorem of algebra

Let f(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 be a polynomial of degree
≥ 1. Then there exists a complex number c which is a root of f .

Let us make two remarks about the fundamental theorem of algebra to
clarify the statement of the theorem.

Note 9.7

• In the above Theorem 9.6, we did not specify what kind of coeffi-
cients a0, . . . an are allowed for the theorem to hold. In fact, to be
precise, the fundamental theorem of algebra states that for any
polynomial f(x) = anxn + an−1xn−1 + · · · + a1x + a0 of degree
≥ 1 where a0, . . . an are complex numbers, the polynomial f has
a root c (which is also a complex number).

• The theorem states that a polynomial f of degree ≥ 1 always has
a complex root c, but, in general, f may not have any real roots.
For example, consider f(x) = x2 + 1, and consider a root c of f ,
that is c2 + 1 = 0. Since, for any real number c, we always have
c2 ≥ 0, so that f(c) = c2+1 ≥ 1, this shows that there cannot be
a real root c of f . However, we can easily check that the complex
number i is a root of f :

f(i) = i2 + 1 = −1 + 1 = 0

Indeed f(x) has the roots i and −i, and can be factored as

(x− i)(x+ i) = x2 + xi− xi− i2 = x2 + 1.

Now, while the fundamental theorem of algebra guarantees a root c of
a polynomial f , we can use the remainder theorem from Observation 7.10
together with the calculator (and also the rational root theorem) to check
possible candidates c for the roots. Once we found a root, we can use the
factor theorem (also from Observation 7.10) to factor f(x) = q(x) · (x− c).
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Example 9.8

Find all (real and complex) roots of the polynomial. Sketch a complete
graph and label all roots.

a) f(x) = x3 + 6x2 + 10x+ 8
b) g(x) = x3 − 6x2 + 10x− 4
c) h(x) = x4 + 2x3 − 6x2 − 3x+ 18

Solution.

a) In order to find a root of f , we use the graph to make a guess for
one of the roots.

The graph suggests that the root may be at x = −4, which is also
easily confirmed by plugging −4 into the function:

f(−4) = (−4)3 + 6 · (−4)2 + 10 · (−4) + 8

= −64 + 96− 40 + 8 = 0

Next, we divide f(x) = x3 + 6x2 + 10x+ 8 by (x+ 4).

x2 +2x +2

x+ 4 x3 +6x2 +10x +8
−(x3 +4x2)

2x2 +10x +8
−(2x2 +8x)

2x +8
−(2x +8)

0
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Therefore, f(x) = (x+4)(x2+2x+2). To find the remaining roots of
f , we use the quadratic formula for the second polynomial x2+2x+2:

x2+2x+2 = 0 =⇒ x = −2±
√
22−4·1·2
2 =

−2±
√
4−8

2 =
−2±

√
−4

2

=
−2±

√
−1

√
4

2 = −2±i·2
2 =

2(−1±i)
2 = −1 ± i

Therefore, there is only one real root −4, and two complex roots
−1 + i and −1 − i. The polynomial can be factored as

f(x) = (x+ 4) · (x− (−1 + i)) · (x− (−1− i))

The complete graph is displayed below. The only real root is shown
at −4.

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

-2

-1

0

1

2

3

4

5

6

x

y

b) We first check the graph of g(x) = x3 − 6x2 + 10x− 4.
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From the graph we suspect that x = 2 is a root, while there are two
more real roots which are not at integer values. We confirm the root
at 2 by direct computation, or by performing a long division by x−2.

x2 −4x +2

x− 2 x3 −6x2 +10x −4
−(x3 −2x2)

−4x2 +10x −4
−(−4x2 +8x)

2x −4
−(2x −4)

0

We find the remaining roots via the quadratic formula. Setting x2 −
4x+ 2 = 0 gives

x =
−(−4)±

√
(−4)2−4·1·2
2 =

4±
√
16−8
2 = 4±

√
8

2

= 4±
√
4
√
2

2 = 4±2·
√
2

2 =
2·(2±

√
2)

2 = 2±
√
2

Therefore, g(x) = (x− 2) · (x− (2+
√
2)) · (x− (2−

√
2)). The roots

of g are 2, 2 +
√
2, 2−

√
2. The complete graph of g is drawn below.

-4 -3 -2 -1 0 1 2 3 4 5 6

-3

-2

-1

0

1

2

3

x

y

2−
√
2 2 2 +

√
2

c) We first graph h(x) = x4+2x3−6x2−3x+18. Note that if we want
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to see a complete graph, we need to zoom out vertically.

Two integer roots of h appear to be at x = −2 and x = −3. Dividing
by, say, x+ 3, gives

x3 −x2 −3x +6

x+ 3 x4 +2x3 −6x2 −3x +18
−(x4 +3x3)

−x3 −6x2 −3x +18
−(−x3 −3x2)

−3x2 −3x +18
−(−3x2 −9x)

6x +18
−(6x +18)

0

Therefore, h(x) = (x+3)(x3−x2−3x+6). To factor x3−x2−3x+6,
we graph it to find possible roots.
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There is a root at x = −2, as we might have already suspected, since
we noted that −2 is a root of h. Next, we performing another long
division.

x2 −3x +3

x+ 2 x3 −x2 −3x +6
−(x3 +2x2)

−3x2 −3x +6
−(−3x2 −6x)

3x +6
−(3x +6)

0

With this, we have h(x) = (x + 3)(x + 2)(x2 − 3x + 3). To find the
roots of the last factor, apply the quadratic formula to x2−3x+3 = 0.

x =
−(−3)±

√
(−3)2−4·1·3
2 =

3±
√
9−12
2

=
3±

√
−3

2 =
3±

√
−1

√
3

2 = 3±i·
√
3

2

Thus, h(x) = (x+ 3) · (x+ 2) ·
(

x− 3+i·
√
3

2

)

·
(

x− 3−i·
√
3

2

)

.

The complete graph is shown below.

x

y

−2−3

h(x) has roots at −3, −2, 3+i·
√
3

2 , 3−i·
√
3

2 .

As we have seen in the last example, we can use the roots to factor a
polynomial completely so that all factors are polynomials of degree 1. Fur-
thermore, in this example, we had a complex root, a + ib, and its complex
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conjugate a− ib was also a root. These observations hold more generally, as
we state now.

Observation 9.9: Factors and roots of polynomials

(1) Every polynomial f(x) = anxn+an−1xn−1+ · · ·+a1x+a0 of degree
n can be factored as

f(x) = an · (x− c1) · (x− c2) · · · · · (x− cn). (9.2)

This follows, since we can find a root c1 of f (as guaranteed by
the fundamental theorem of algebra), and use it to factor f(x) =
(x− c1) · g(x). We do the same for g(x) and repeat until we arrive
at (9.2).

(2) In particular, every polynomial of degree n has at most n roots.
(However, these roots may be real or complex.)

(3) The factor (x− c) for a root c could appear multiple times in (9.2),
that is, we may have (x− c)k as a factor of f . The multiplicity of a
root c is the number of times k that a root appears in the factored
expression for f , as in (9.2).

(4) If f(x) = anxn+an−1xn−1+ · · ·+a1x+a0 has only real coefficients
a0, . . . , an, and c = a + bi is a complex root of f , then the complex
conjugate c̄ = a− bi is also a root of f .

Proof. If x is any root, then anxn+an−1xn−1+ · · ·+a1x+a0 = 0. Applying the complex
conjugate to this and using that u · v = ū · v̄ gives anx̄n+an−1x̄n−1+ · · ·+a1x̄+a0 = 0.
Since the coefficients aj are real, we have that aj = aj , so that anx̄n + an−1x̄n−1 + · · ·+
a1x̄+ a0 = 0. This shows that the complex conjugate x̄ is a root of f as well.

Example 9.10

For a chosen real number C , let f be the function (dependent on the
C):

f(x) = 4x3 − 16x2 + 9x+ C

a) Find the number C so that the polynomial f(x) has a root at 3.

b) Find all remaining roots of f(x) and write them in simplest radical
form.
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Solution.

a) For 3 to be a root of f , we know that x−3 has to be a factor of f(x).
We therefore perform a long division by f(x)÷ (x− 3).

4x2 −4x −3

x− 3 4x3 −16x2 +9x +C
−(4x3 −12x2)

−4x2 +9x +C
−(−4x2 +12x)

−3x +C
−(−3x +9)

C − 9

Thus, x− 3 is a factor of f(x) exactly when the remainder C − 9 is
zero, that is, C = 9. We thus have that

f(x) = 4x3 − 16x2 + 9x+ 9

b) From (a), we know that f factors as f(x) = (x − 3)(4x2 − 4x − 3).
We can use the quadratic formula to find the remaining roots of f by
setting 4x2 − 4x− 3 = 0.

=⇒ x =
−(−4)±

√

(−4)2 − 4 · 4 · (−3)

2 · 4

=
4±

√
16 + 48

8
=

4±
√
64

8
=

4± 8

8

=⇒ x1 =
4 + 8

8
=

12

8
=

3

2
, x2 =

4− 8

8
=

−4

8
= −

1

2

We get that the roots of f are 3, 3
2 and −1

2 .

Note that, alternatively, we could have factored 4x2 − 4x − 3 =
(2x − 3)(2x + 1) = 4(x − 3

2)(x + 1
2), resulting in the same roots

x1 =
3
2 and x2 = −1

2 .
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Example 9.11

Find a polynomial f with the following properties:

a) f has degree 3; the roots of f are precisely 4, 5, 6; and the leading
coefficient of f is 7

b) f has degree 3 with real coefficients; f has roots 3i, −5 (and possibly
other roots as well); and f(0) = 90

c) f has degree 4 with complex coefficients; f has roots i+ 1, 2i, 3

d) f has roots that are determined by the following graph of f :

-1 0 1 2 3 4 5 6

-2

-1

0

1

2

3

4

x

y

Solution.

a) In general a polynomial f of degree 3 is of the form f(x) = m · (x−
c1)·(x−c2)·(x−c3). Identifying the roots and the leading coefficient,
we obtain the polynomial

f(x) = 7 · (x− 4) · (x− 5) · (x− 6)

b) A polynomial f of degree 3 is of the form f(x) = m ·(x−c1) ·(x−c2) ·
(x−c3). Roots of f are 3i and −5, and since the coefficients of f are
real, it follows from Observation 9.9(4) that the complex conjugate
−3i is also a root of f . Therefore, f(x) = m·(x+5)·(x−3i)·(x+3i).
To identify m, we use the last condition f(0) = 90.

90 = m · (0 + 5) · (0− 3i) · (0 + 3i) = m · 5 · (−9)i2 = m · 5 · 9 = 45m

Dividing by 45, we obtain m = 2, so that

f(x) = 2 · (x+ 5) · (x− 3i) · (x+ 3i) = 2 · (x+ 5) · (x2 + 9),

which clearly has real coefficients.
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c) Since f is of degree 4, it can be written as f(x) = m · (x− c1) · (x−
c2) · (x− c3) · (x− c4). Three of the roots are identified as i+ 1, 2i,
and 3:

f(x) = m · (x− (1 + i)) · (x− 2i) · (x− 3) · (x− c4)

However, we have no further information on the fourth root c4 or the
leading coefficient m. (Note that Observation 9.9(4) cannot be used
here, since we are not assuming that the polynomial has real coeffi-
cients. Indeed f cannot have real coefficients since then, besides the
complex roots 1 + i and 2i, their complex conjugates 1 − i and −2i
would also be roots of f , giving us 5 roots of f . However, a poly-
nomial of degree 4 cannot have 5 roots.) We can therefore choose
any number for these remaining variables. For example, a possible
solution to the problem is given by choosing m = 3 and c4 = 2, for
which we obtain:

f(x) = 3 · (x− (1 + i)) · (x− 2i) · (x− 3) · (x− 2)

d) f is of degree 5, and we know that the leading coefficient is 1. The
graph is zero at x = 1, 2, 3, and 4, so that the roots are 1, 2, 3, and 4.
Moreover, since the graph just touches the root x = 4, this must be a
multiple root, that is, it must occur more than once (see Section 8.3
for a discussion of multiple roots and their graphical consequences).
We obtain the following solution:

f(x) = (x− 1)(x− 2)(x− 3)(x− 4)2

Note that the root x = 4 is a root of multiplicity 2.

Note 9.12

By Observation 9.9(4), polynomials with real coefficients have complex
roots that come in complex conjugate pairs. To find the product of the
corresponding factors, an appropriate grouping may help to simplify the
computation.
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For example, when multiplying (x−(2+3i))(x−(2−3i)), we can group
the x and 2, and then use the binomial formula (a+ b)(a− b) = a2 − b2

to evaluate:

(x− (2 + 3i))(x− (2− 3i)) = ((x− 2)− 3i)((x− 2) + 3i)

= (x− 2)2 − 9i2 = (x− 2)2 + 9

9.3 Exercises

Exercise 9.1

a) Find all rational roots of f(x) = 2x3 − 3x2 − 3x+ 2.
b) Find all rational roots of f(x) = 3x3 − x2 + 15x− 5.
c) Find all rational roots of f(x) = 6x3 + 7x2 − 11x− 12.
d) Find all real roots of f(x) = 6x4 + 25x3 + 8x2 − 7x− 2.
e) Find all real roots of f(x) = 4x3 + 9x2 + 26x+ 6.

Exercise 9.2

Find a root of the polynomial by guessing possible candidates of the
root.

a) f(x) = x5 − 1 b) f(x) = x4 − 1 c) f(x) = x3 − 27
d) f(x) = x3 + 1000 e) f(x) = x4 − 81 f ) f(x) = x3 − 125
g) f(x) = x5 + 32 h) f(x) = x777 − 1 i) f(x) = x2 + 64

Exercise 9.3

Find the roots of the polynomial and use it to factor the polynomial
completely.

a) f(x) = x3 − 7x+ 6 b) f(x) = x3 − x2 − 16x− 20
c) f(x) = x3 − 7x2 + 17x− 20 d) f(x) = x3 + x2 − 5x− 2
e) f(x) = 2x3 + x2 − 7x− 6 f ) f(x) = 12x3 + 49x2 − 2x− 24
g) f(x) = x3 − 3x2 + 9x+ 13 h) f(x) = x4 − 5x2 + 4
i) f(x) = x4 − 1 j) f(x) = x5 − 6x4 + 8x3 + 6x2 − 9x
k) f(x) = x3 − 27 l) f(x) = x4 + 2x2 − 15
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Exercise 9.4

Find the exact roots of the polynomial; write the roots in simplest radical
form, if necessary. Sketch a graph of the polynomial with all roots
clearly marked.

a) f(x) = x3 − 2x2 − 5x+ 6 b) f(x) = x3 + 5x2 + 3x− 4
c) f(x) = −x3 + 5x2 + 7x− 35 d) f(x) = x3 + 7x2 + 13x+ 7
e) f(x) = 2x3 − 8x2 − 18x− 36 f ) f(x) = x4 − 4x2 + 3
g) f(x) = −x4 + x3 + 24x2 − 4x− 80 h) f(x) = 7x3 − 11x2 − 10x+ 8
i) f(x) = −15x3 + 41x2 + 15x− 9 j) f(x) = x4 − 6x3 + 6x2 + 4x

Exercise 9.5

Find a real number C so that the polynomial has a root as indicated.
Then, for this choice of C , find all remaining roots of the polynomial.

a) f(x) = x3 + 6x2 + 5x+ C has root at x = 1
b) f(x) = x3 − 4x2 − 2x+ C has root at x = −2
c) f(x) = x3 − x2 − 9x+ C has root at x = 3
d) f(x) = x3 + 8x2 + 5x+ C has root at x = −1
e) f(x) = x3 − 5x2 + 15x+ C has root at x = 2

Exercise 9.6

Find a polynomial f that fits the given data.

a) f has degree 3. The roots of f are precisely 2, 3, 4. The leading
coefficient of f is 2.

b) f has degree 4. The roots of f are precisely −1, 2, 0, −3. The
leading coefficient of f is −1.

c) f has degree 3. f has roots −2, −1, 2, and f(0) = 10.

d) f has degree 4. f has roots 0, 2, −1, −4, and f(1) = 20.

e) f has degree 3. The coefficients of f are all real. The roots of f are
precisely 2 + 5i, 2− 5i, 7. The leading coefficient of f is 3.

f ) f has degree 3. The coefficients of f are all real. f has roots i, 3,
and f(0) = 6.
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g) f has degree 4. The coefficients of f are all real. f has roots 5 + i
and 5− i of multiplicity 1, the root 3 of multiplicity 2, and f(5) = 7.

h) f has degree 4. The coefficients of f are all real. f has roots i and
3 + 2i.

i) f has degree 6. f has complex coefficients. f has roots 1 + i, 2 + i,
4− 3i of multiplicity 1 and the root −2 of multiplicity 3.

j) f has degree 5. f has complex coefficients. f has roots i, 3, −7 (and
possibly other roots).

k) f has degree 3. The roots of f are determined by its graph:
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l) f has degree 4. The coefficients of f are all real. The leading
coefficient of f is 1. The roots of f are determined by its graph:
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m) f has degree 4. The coefficients of f are all real. f has the following
graph:
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