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Chapter 25

The geometric series

We now study another sequence—the geometric sequence. Our analysis
follows steps similar to the one of the arithmetic sequence in Section 24.2.

25.1 Finite geometric series

We have already encountered examples of geometric sequences in Example
24.2(b) and (c). A geometric sequence is a sequence for which we multiply a
constant number to get from one term to the next, for example:

5,
×4

20,
×4

80,
×4

320,
×4

1280, . . .

Definition 25.1: Geometric sequence

A sequence {an} is called a geometric sequence if any two consecutive
terms have a common ratio r. The geometric sequence is determined
by r and the first value a1. This can be written recursively as:

an = an−1 · r for n ≥ 2

Alternatively, we have the general formula for the nth term of the geo-
metric sequence:

an = a1 · rn−1 (25.1)
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430 CHAPTER 25. THE GEOMETRIC SERIES

Example 25.2

Determine whether the terms below are the first terms of an arithmetic
sequence, a geometric sequence, neither, or both. If they are the terms
of an arithmetic or geometric sequence, then find the general formula
an of the sequence in the form (24.2) or (25.1).

a) 3, 6, 12, 24, 48, . . . b) 100, 50, 25, 12.5, . . .
c) 2, 4, 16, 256, . . . d) 700,−70, 7,−0.7, 0.07, . . .
e) 3, 10, 17, 24, . . . f ) −3,−3,−3,−3,−3, . . .
g) an = n2 h) an =

(
3
7

)n

Solution.

a) First, the differences of two consecutive terms 6−3 = 3 and 12−6 = 6
are different. So, these are not the terms of an arithmetic sequence.
On the other hand, the quotient of two consecutive terms always
gives the same number 6 ÷ 3 = 2, 12 ÷ 6 = 2, 24 ÷ 12 = 2, etc.
Therefore, the common ratio is r = 2, which shows that these are the
terms in a geometric sequence. Furthermore, the first term is a1 = 3,
so the general formula for the nth term is an = 3 · 2n−1.

b) Since the differences 50−100 = −50 and 25−50 = −25 are not the
same, this is not an arithmetic sequence. We see that the common
ratio between two terms is r = 50

100 = 1
2 , so that this is a geometric

sequence. Since the first term is a1 = 100, we have the general term
an = 100 · (12)

n−1.

c) The difference between the first two terms is 4 − 2 = 2, while the
next two terms have a difference 16− 4 = 12. Therefore, this is also
not an arithmetic sequence. Furthermore, the quotient of the first
two terms is 4 ÷ 2 = 2, whereas the quotient of the next two terms
is 16 ÷ 4 = 4. Since these quotients are not equal, this is not a
geometric sequence.

d) This is not an arithmetic sequence, but these are terms of a geometric
sequence. Two consecutive terms have a ratio of r = − 1

10 , and the
first term is a1 = 700. The general term of this geometric sequence
is an = 700 · (− 1

10)
n−1.
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e) The quotient of the first couple of terms is not equal: 10
3 ̸= 17

10 , so this
is not a geometric sequence. The difference between any two terms
is 7 = 10 − 3 = 17 − 10 = 24 − 17, so this is part of an arithmetic
sequence with common difference d = 7. The general formula is
an = a1 + d · (n− 1) = 3 + (n− 1) · 7.

f ) The common ratio is r = (−3) ÷ (−3) = 1, so this is a geometric
sequence with an = (−3) · 1n−1. On the other hand, the common
difference is (−3)− (−3) = 0, so this is also an arithmetic sequence
with an = (−3) + (n− 1) · 0. Of course, both formulas reduce to the
simpler expression an = −3.

g) We write the first terms in the sequence {n2}n≥1:

1, 4, 9, 16, 25, 36, 49, . . .

Calculating the quotients of consecutive terms, we get 4÷ 1 = 4 and
9÷4 = 2.25, so this is not a geometric sequence. Also the difference
of consecutive terms is 4 − 1 = 3 and 9 − 4 = 5, so this is also not
an arithmetic sequence.

h) Writing the first couple of terms in the sequence {(37)
n}, we obtain:

(
3

7

)1

,

(
3

7

)2

,

(
3

7

)3

,

(
3

7

)4

,

(
3

7

)5

, . . .

Thus, we get from one term to the next by multiplying r = 3
7 , so this

is a geometric sequence. The first term is a1 =
3
7 , so an = 3

7 ·
(
3
7

)n−1
.

This is clearly the given sequence, since we may simplify this as

an =
3

7
·
(
3

7

)n−1

=

(
3

7

)1+n−1

=

(
3

7

)n

We can also confirm that this is not an arithmetic sequence.
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Example 25.3

Find the general formula an = a1 · rn−1 of a geometric sequence with
the given properties.

a) r = 4, and a5 = 6400
b) a1 =

2
5 , and a4 = −27

20
c) a5 = 216, a7 = 24, and r is positive

Solution.

a) We know that r = 4, and we still need to find a1. Using a5 = 64000,
we obtain:

6400 = a5 = a1 · 45−1 = a1 · 44 = 256 · a1
(÷256)
=⇒ a1 =

6400

256
= 25

The sequence is therefore given by the formula, an = 25 · 4n−1.

b) The geometric sequence an = a1 · rn−1 has a1 = 2
5 . We calculate r

using the second condition.

−
27

20
= a4 = a1 · r4−1 =

2

5
· r3

(× 5
2 )=⇒ r3 = −

27

20
·
5

2
= −

27

4
·
1

2
=

−27

8
(take 3

√ )
=⇒ r = 3

√

−27

8
=

3
√
−27
3
√
8

=
−3

2

Therefore, an = 2
5 ·
(−3

2

)n−1
.

c) The question provides neither a1 nor r for our formula an = a1 · rn−1.
However, we obtain two equations in the two variables a1 and r:

{

216 = a5 = a1 · r5−1

24 = a7 = a1 · r7−1 =⇒
{

216 = a1 · r4
24 = a1 · r6

In order to solve this, we need to eliminate one of the variables.
Looking at the equations on the right, we see that dividing the top
equation by the bottom equation cancels a1.

216

24
=

a1 · r4

a1 · r6
=⇒

9

1
=

1

r2
(take reciprocal)

=⇒
1

9
=

r2

1
=⇒ r2 =

1

9
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To obtain r, we have to solve this quadratic equation. In general,
there are, in fact, two solutions:

r = ±
√

1

9
= ±

1

3

Since the problem states that r is positive, we see that we need to
take the positive solution r = 1

3 . Plugging r = 1
3 back into either of

the two equations, we may solve for a1. For example, using the first
equation a5 = 216, we obtain:

216 = a5 = a1 ·
(

1

3

)5−1

= a1 ·
(

1

3

)4

= a1 ·
1

34
= a1 ·

1

81
(×81)
=⇒ a1 = 81 · 216 = 17, 496

So, we finally arrive at the general formula for the nth term of the
geometric sequence, an = 17, 496 · (13)

n−1.

We can find the sum of the first k terms of a geometric sequence using
another trick, which is very different from the one we used for the arithmetic
sequence.

Note 25.4: Summing over terms in a geometric sequence

Consider the geometric sequence an = 7 · 10n−1, that is the sequence:

7, 70, 700, 7000, 70, 000, 700, 000, . . .

We want to add the first 5 terms of this sequence.

7 + 70 + 700 + 7000 + 70, 000 = 77, 777

The above example can, of course, easily be computed by hand. In
general, however, much more work is necessary to find a sum of a
geometric sequence, especially if the sequence is more complicated and
we want to add a lot more terms. To get to a general formula, we will
add the terms in the above sum in a different way, which may appear
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to be more complicated than necessary. However, the advantage of the
following calculation is that it is an illustration for a general method,
which allows us to find the sum of terms in any geometric sequence. To
this end, we multiply (1−10) to the sum (7+70+700+7000+70, 000),
and simplify this using the distributive law:

(1− 10) · (7 + 70 + 700 + 7000 + 70, 000)

= 7− 70 + 70− 700 + 700− 7000

+7000− 70, 000 + 70, 000− 700, 000

= 7− 700, 000

The sum in the second line above is called a telescopic sum, which is
a sum where consecutive terms cancel each other. In the above sum
the only remaining terms are the very first and last terms. Dividing by
(1− 10), we obtain:

7 + 70 + 700 + 7000 + 70, 000 =
7− 700, 000

1− 10
=

−699, 993

−9
= 77, 777

An appropriate generalization of the previous note yields a computation
that applies to any geometric sequence.

Observation 25.5: Geometric series

Let {an} be a geometric sequence whose nth term is given by the
formula an = a1 · rn−1. We furthermore assume that r ̸= 1. Then the
sum a1 + a2 + · · ·+ ak−1 + ak is given by:

k
∑

i=1

ai = a1 ·
1− rk

1− r
(25.2)

Proof. We multiply (1 − r) to the sum (a1 + a2 + · · ·+ ak−1 + ak):

(1 − r) · (a1 + a2 + · · ·+ ak)

= (1 − r) · (a1 · r0 + a1 · r1 + · · ·+ a1 · rk−1)

= a1 · r0 − a1 · r1 + a1 · r1 − a1 · r2 + · · ·+ a1 · rk−1 − a1 · rk

= a1 · r0 − a1 · rk = a1 · (1 − rk)
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Dividing by (1− r), we obtain

a1 + a2 + · · ·+ ak =
a1 · (1− rk)

(1− r)
= a1 ·

1− rk

1− r

This is the formula we wanted to prove.

Example 25.6

Find the value of the geometric series.

a) Find the sum
6∑

n=1
an for the geometric sequence an = 10 · 3n−1.

b) Determine the value of the geometric series:
5∑

k=1

(

−1
2

)k

c) Find the sum of the first 12 terms of the geometric sequence

−3,−6,−12,−24, . . .

Solution.

a) We need to find the sum a1+ a2+ a3+ a4+ a5+ a6, and we do so by
using the formula provided in Equation (25.2). Since an = 10 · 3n−1,
we have a1 = 10 and r = 3, so

6∑

n=1

an = 10 ·
1− 36

1− 3
= 10 ·

1− 729

1− 3
= 10 ·

−728

−2
= 10 · 364 = 3640

b) Again, we use the formula for the geometric series
∑n

k=1 ak = a1 ·
1−rn

1−r , since ak = (−1
2)

k is a geometric series. We may calculate the
first term a1 = −1

2 , and the common ratio is also r = −1
2 . With this,

we obtain:

5
∑

k=1

(

−
1

2

)k

=

(

−
1

2

)

·
1− (−1

2)
5

1− (−1
2)

=

(

−
1

2

)

·
1− ((−1)5 15

25 )

1− (−1
2)

=

(

−
1

2

)

·
1− (− 1

32)

1− (−1
2)

=

(

−
1

2

)

·
1 + 1

32

1 + 1
2

=

(

−
1

2

)

·
32+1
32
2+1
2

=

(

−
1

2

)

·
33
32
3
2

=

(

−
1

2

)

·
33

32
·
2

3
= −

1

2
·
11

16
= −

11

32
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c) Our first task is to find the formula for the provided geometric series
−3,−6,−12,−24, . . . . The first term is a1 = −3 and the common
ratio is r = 2, so that an = (−3) · 2n−1. The sum of the first 12 terms
of this sequence is again given by Equation (25.2):

12
∑

i=1

(−3) · 2i−1 = (−3) ·
1− 212

1− 2
= (−3) ·

1− 4096

1− 2
= (−3) ·

−4095

−1

= (−3) · 4095 = −12, 285

25.2 Infinite geometric series

In some cases, it makes sense to add not only finitely many terms of a geo-
metric sequence, but all infinitely many terms of the sequence! An informal
and intuitive infinite geometric series is exhibited in the next note.

Note 25.7: Summing over all terms in a geometric sequence

Consider the geometric sequence

1,
1

2
,
1

4
,
1

8
,
1

16
, . . .

Here, the common ratio is r = 1
2 , and the first term is a1 = 1, so that

the formula for an is an =
(
1
2

)n−1
. We are interested in summing all

infinitely many terms of this sequence:

1 +
1

2
+

1

4
+

1

8
+

1

16
+ . . .

We add these terms one by one, and picture these sums on the number
line:

0 1 1.5 1.75 2

1 = 1

1 +
1

2
= 1.5
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1 +
1

2
+

1

4
= 1.75

1 +
1

2
+

1

4
+

1

8
= 1.875

1 +
1

2
+

1

4
+

1

8
+

1

16
= 1.9375

We see that adding each term takes the sum closer and closer to the
number 2. More precisely, adding a term an to the partial sum a1 +
· · · + an−1 decreases the distance between 2 and a1 + · · · + an−1 by
half. For this reason, we can, in fact, get arbitrarily close to 2, so it is
reasonable to expect that

1 +
1

2
+

1

4
+

1

8
+

1

16
+ · · · = 2

In the next definition and observation, this equation will be justified
and made more precise.

First, we give a definition of an infinite series.

Definition 25.8: Infinite series

An infinite series is given by adding infinitely many terms of a sequence.
We write

∞
∑

n=1

an = a1 + a2 + a3 + . . . (25.3)

To be more precise, the infinite sum is defined as the limit
∞∑

n=1
an := lim

k→∞

(
k∑

n=1
an

)
. Therefore,

an infinite sum is defined precisely when this limit exists.

Observation 25.9: Infinite geometric series

Let {an} be a geometric sequence with an = a1 · rn−1. Then the infinite
geometric series is defined whenever −1 < r < 1. In this case, we
have:

∞
∑

n=1

an = a1 ·
1

1− r
(25.4)
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Proof. Informally, this follows from the formula
∑k

n=1 an = a1 · 1−rk

1−r and the
fact that, for −1 < r < r, the term rk approaches zero when k increases
without bound.

More formally, the proof uses the notion of limits, and proceeds as follows:

∞∑

n=1

an = lim
k→∞

( k∑

n=1

an

)
= lim

k→∞

(
a1 ·

1− rk

1− r

)
= a1 ·

1− lim
k→∞

(rk)

1− r
= a1 ·

1

1− r

Example 25.10

Find the value of the infinite geometric series.

a)
∑∞

j=1 aj , for aj = 5 ·
(
1
3

)j−1
b)

∑∞
n=1 3 · (0.71)

n

c) 500− 100 + 20− 4 + . . . d) 3 + 6 + 12 + 24 + 48 + . . .

Solution.

a) We use formula (25.4) for the geometric series an = 5 · (13)
n−1, that

is a1 = 5 · (13)
1−1 = 5 · (13)

0 = 5 · 1 = 5 and r = 1
3 . Therefore,

∞
∑

j=1

aj = a1 ·
1

1− r
= 5 ·

1

1− 1
3

= 5 ·
1

3−1
3

= 5 ·
1
2
3

= 5 ·
3

2
=

15

2

b) In this case, an = 3 · (0.71)n, so that a1 = 3 · 0.711 = 3 · 0.71 = 2.13
and r = 0.71. Again using formula (25.4), we can find the infinite
geometric series as

∞
∑

n=1

3·(0.71)n = a1·
1

1− r
= 2.13·

1

1− 0.71
= 2.13·

1

0.29
=

2.13

0.29
=

213

29

In the last step, we simplified the fraction by multiplying 100 to both
numerator and denominator, which had the effect of eliminating the
decimals.

c) Our first task is to identify the given sequence as an infinite geo-
metric sequence:

{an} is given by 500,−100, 20,−4, . . .
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Notice that the first term is 500, and each consecutive term is given
by dividing by −5, or in other words, by multiplying by the common
ratio r = −1

5 . Therefore, this is an infinite geometric series, which
can be evaluated as

500− 100 + 20− 4 + · · · =
∞
∑

n=1

an = a1 ·
1

1− r
= 500 ·

1

1− (−1
5)

= 500 ·
1

1 + 1
5

=
500
5+1
5

=
500
6
5

= 500 ·
5

6
=

2500

6
=

1250

3

d) We want to evaluate the infinite series 3+6+12+24+48+ . . . . The
sequence 3, 6, 12, 24, 48, . . . is a geometric sequence with a1 = 3 and
common ratio r = 2. Since r ≥ 1, we see that formula (25.4) cannot
be applied, as (25.4) only applies to −1 < r < 1. However, since we
add larger and larger terms, the series gets larger than any possible
bound, so that the whole sum becomes infinite.

3 + 6 + 12 + 24 + 48 + · · · = ∞

Example 25.11

The fraction 0.55555 . . . may be written as:

0.55555 · · · = 0.5 + 0.05 + 0.005 + 0.0005 + 0.00005 + . . .

Noting that the sequence

0.5,
×0.1

0.05,
×0.1

0.005,
×0.1

0.0005,
×0.1

0.00005, . . .

is a geometric sequence with a1 = 0.5 and r = 0.1, we can calculate
the infinite sum as:

0.55555 · · · =
∞
∑

n=1

0.5 · (0.1)n−1 = 0.5 ·
1

1− 0.1
= 0.5 ·

1

0.9
=

0.5

0.9
=

5

9
,

Here we multiplied numerator and denominator by 10 in the last step
in order to eliminate the decimals.
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25.3 Exercises

Exercise 25.1

Which of these sequences is geometric, arithmetic, neither, or both.
Write the sequence in the usual form an = a1 + (n − 1) · d if it is
an arithmetic sequence, and an = a1 · rn−1 if it is a geometric sequence.

a) 7, 14, 28, 56, . . . b) 3,−30, 300,−3000, . . .

c) 81, 27, 9, 3, 1, 13 , . . . d) −7,−5,−3,−1, 1, 3, 5, 7, . . .

e) −6, 2,−2
3 ,

2
9 ,−

2
27 , . . . f ) −2,−2 · 2

3 ,−2 ·
(
2
3

)2
,−2 ·

(
2
3

)3
, . . .

g) 1
2 ,

1
4 ,

1
8 ,

1
16 , . . . h) 2, 2, 2, 2, 2, . . .

i) 5, 1, 5, 1, 5, 1, 5, 1, . . . j) −2, 2,−2, 2,−2, 2, . . .

k) 0, 5, 10, 15, 20, . . . l) 5, 5
3 ,

5
32 ,

5
33 ,

5
34 , . . .

m) 1
2 ,

1
4 ,

1
8 ,

1
16 , . . . n) log(2), log(4), log(8), log(16), . . .

o) an = −4n p) an = −4n

q) an = 2 · (−9)n r) an =
(
1
3

)n

s) an = −
(
5
7

)n
t) an =

(

−5
7

)n

u) an = 2
n v) an = 3n+ 1

Exercise 25.2

A geometric sequence, an = a1 · rn−1, has the given properties. Find the
term an of the sequence.

a) a1 = 3, and r = 5, find a4
b) a1 = 200, and r = −1

2 , find a6
c) a1 = −7, and r = 2, find an (for all n)
d) r = 2, and a4 = 48, find a1
e) r = 100, and a4 = 900, 000, find an (for all n)
f ) a1 = 20, a4 = 2500, find an (for all n)
g) a1 =

1
8 , and a6 =

35

86 , find an (for all n)
h) a3 = 36, and a6 = 972, find an (for all n)
i) a8 = 4000, a10 = 40,

and r is negative, find an (for all n)
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Exercise 25.3

Find the value of the finite geometric series using formula (25.2). Con-
firm the formula either by adding the the summands directly, or alter-
natively by using the calculator.

a) Find the sum
4∑

j=1
aj for the geometric sequence aj = 5 · 4j−1.

b) Find the sum
7∑

i=1
ai for the geometric sequence an =

(
1
2

)n
.

c) Find:
5∑

m=1

(

−1
5

)m

d) Find:
6∑

k=1
2.7 · 10k

e) Find the sum of the first 5 terms of the geometric sequence:

2, 6, 18, 54, . . .

f ) Find the sum of the first 6 terms of the geometric sequence:

−5, 15,−45, 135, . . .

g) Find the sum of the first 8 terms of the geometric sequence:

−1,−7,−49,−343, . . .

h) Find the sum of the first 10 terms of the geometric sequence:

600,−300, 150,−75, 37.5, . . .

i) Find the sum of the first 40 terms of the geometric sequence:

5, 5, 5, 5, 5, . . .
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Exercise 25.4

Find the value of the infinite geometric series.

a)
∑∞

j=1 aj , for aj = 3 ·
(
2
3

)j−1
b)

∑∞
j=1 7 ·

(

−1
5

)j

c)
∑∞

j=1 6 ·
1
3j d)

∑∞
n=1−2 · (0.8)n

e)
∑∞

n=1 (0.99)
n f ) 27 + 9 + 3 + 1 + 1

3 + . . .

g) −2 + 1− 1
2 +

1
4 − . . . h) −6 − 2− 2

3 −
2
9 − . . .

i) 100 + 40 + 16 + 6.4 + . . . j) −54 + 18− 6 + 2− . . .

Exercise 25.5

Rewrite the decimal using an infinite geometric sequence, and then use
the formula for the infinite geometric series to rewrite the decimal as a
fraction (see Example 25.11).

a) 0.44444 . . . b) 0.77777 . . . c) 5.55555 . . .
d) 0.2323232323 . . . e) 39.393939 . . . f ) 0.248248248 . . .
g) 20.02002 . . . h) 0.5040504 . . .
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