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Chapter 2

Functions via formulas

Most of the time we will discuss functions that take some real numbers as
inputs, and give real numbers as outputs. Such functions are often described
with a formula.

2.1 Functions given by formulas

Here are some examples of functions given by a formula.

Example 2.1

For the given function f , calculate the outputs f(2), f(−3), and f(−1).

a) f(x) = 3x+ 4 b) f(x) =
√
x2 − 3

c) f(x) =

{

5x− 6 , for −1 ≤ x ≤ 1
x3 + 2x , for 1 < x ≤ 5

d) f(x) = x+2
x+3

Solution.

a) We substitute the input values into the function and simplify.

f(2) = 3 · 2 + 4 = 6 + 4 = 10,

f(−3) = 3 · (−3) + 4 = −9 + 4 = −5,

f(−1) = 3 · (−1) + 4 = −3 + 4 = 1.

b) Similarly, we calculate

f(2) =
√
22 − 3 =

√
4− 3 =

√
1 = 1,

17
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f(−3) =
√

(−3)2 − 3 =
√
9− 3 =

√
6,

f(−1) =
√

(−1)2 − 3 =
√
1− 3 =

√
−2 is undefined.

Note that in the last evaluation, we obtained an output of
√
−2. As

you are probably aware,
√
−2 is a complex number. However, at this

point, we will only allow outputs that are real numbers! Since
√
−2

is not a real number (but only a complex number), there is no real
output for f(−1), and we say that f(−1) is undefined.

c) The function f(x) =

{

5x− 6 , for −1 ≤ x ≤ 1
x3 + 2x , for 1 < x ≤ 5

is given as a

piecewise defined function. We have to substitute the values into
the correct branch:

f(2) = 23 + 2 · 2 = 8 + 4 = 12, since 1 < 2 ≤ 5,

f(−3) = undefined, since −3 is not in any of the two branches,

f(−1) = 5 · (−1)− 7 = −5− 6 = −11, since − 1 ≤ −1 ≤ 1.

d) Finally for f(x) = x+2
x+3 , we have:

f(2) =
2 + 2

2 + 3
=

4

5
, f(−3) =

−3 + 2

−3 + 3
=

−1

0
is undefined,

f(−1) =
−1 + 2

−1 + 3
=

1

2
.

Example 2.2

Let f be the function given by f(x) = x2 + 2x − 3. Find the following
function values.

a) f(5) b) f(2) c) f(−2) d) f(0)
e) f(

√
5) f ) f(

√
3 + 1) g) f(a) h) f(a) + 5

i) f(x+ h) j) f(x+ h)− f(x) k) f(x+h)−f(x)
h l) f(x)−f(a)

x−a

Solution.
The first four function values ((a)-(d)) can be calculated directly:

f(5) = 52 + 2 · 5− 3 = 25 + 10− 3 = 32,
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f(2) = 22 + 2 · 2− 3 = 4 + 4− 3 = 5,

f(−2) = (−2)2 + 2 · (−2)− 3 = 4 +−4− 3 = −3,

f(0) = 02 + 2 · 0− 3 = 0 + 0− 3 = −3.

The next two values ((e) and (f)) are similar, but the arithmetic is a bit
more involved.

f(
√
5) =

√
5
2
+ 2 ·

√
5− 3 = 5 + 2 ·

√
5− 3 = 2 + 2 ·

√
5,

f(
√
3 + 1) = (

√
3 + 1)2 + 2 · (

√
3 + 1)− 3

= (
√
3 + 1) · (

√
3 + 1) + 2 · (

√
3 + 1)− 3

=
√
3 ·

√
3 + 2 ·

√
3 + 1 · 1 + 2 ·

√
3 + 2− 3

= 3 + 2 ·
√
3 + 1 + 2 ·

√
3 + 2− 3

= 3 + 4 ·
√
3.

The last five values ((g)-(l)) are purely algebraic:

f(a) = a2 + 2 · a− 3,

f(a) + 5 = a2 + 2 · a− 3 + 5 = a2 + 2 · a+ 2,

f(x+ h) = (x+ h)2 + 2 · (x+ h)− 3

= x2 + 2xh+ h2 + 2x+ 2h− 3,

f(x+ h)− f(x) = (x2 + 2xh+ h2 + 2x+ 2h− 3)− (x2 + 2x− 3)

= x2 + 2xh+ h2 + 2x+ 2h− 3− x2 − 2x+ 3

= 2xh+ h2 + 2h,
f(x+ h)− f(x)

h
=

2xh+ h2 + 2h

h

=
h · (2x+ h+ 2)

h
= 2x+ h+ 2,

and

f(x)− f(a)

x− a
=

(x2 + 2x− 3)− (a2 + 2a− 3)

x− a

=
x2 + 2x− 3− a2 − 2a+ 3

x− a
=

x2 − a2 + 2x− 2a

x− a

=
(x+ a)(x− a) + 2(x− a)

x− a
=

(x− a)(x+ a+ 2)

(x− a)
= x+ a + 2.
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The quotients in the last two examples 2.2(k) and (l) will become partic-
ularly important in calculus. They are called difference quotients.

Definition 2.3: Difference quotient

Let y = f(x) be a function. We call the expressions

f(x+ h)− f(x)

h
or

f(x)− f(a)

x− a
(2.1)

difference quotients for the function f .

We next calculate some more examples of difference quotients.

Example 2.4

Calculate the difference quotient f(x+h)−f(x)
h for

a) f(x) = x2 − 4x b) f(x) = 3x2 + 8x− 5

Solution.

a) For f(x) = x2 − 4x, we get:

f(x+ h) = (x+ h)2 − 4 · (x+ h)

= x2 + 2xh+ h2 − 4x− 4h,

f(x+ h)− f(x) = (x2 + 2xh+ h2 − 4x− 4h)− (x2 − 4x)

= x2 + 2xh+ h2 − 4x− 4h− x2 + 4x

= 2xh+ h2 − 4h,
f(x+ h)− f(x)

h
=

2xh+ h2 − 4h

h

=
h · (2x+ h− 4)

h
= 2x+ h− 4

b) For f(x) = 3x2 + 8x− 5, we get:

f(x+ h) = 3(x+ h)2 + 8 · (x+ h)− 5

= 3(x2 + 2xh + h2) + 8x+ 8h− 5,

= 3x2 + 6xh + 3h2 + 8x+ 8h− 5,
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f(x+ h)− f(x) = (3x2 + 6xh + 3h2 + 8x+ 8h− 5)

−(3x2 + 8x− 5)

= 3x2 + 6xh + 3h2 + 8x+ 8h− 5− 3x2 − 8x+ 5

= 6xh+ 3h2 + 8h,
f(x+ h)− f(x)

h
=

6xh + 3h2 + 8h

h

=
h · (6x+ 3h+ 8)

h
= 6x+ 3h+ 8

Example 2.5

Calculate the difference quotient f(x)−f(a)
x−a for

a) f(x) = x2 − 7x− 2 b) f(x) = −2x2 + 3x

Solution.

a) For f(x) = x2 − 7x− 2, we get:

f(x)− f(a)

x− a
=

(x2 − 7x− 2)− (a2 − 7a− 2)

x− a

=
x2 − 7x− 2− a2 + 7a+ 2

x− a
=

x2 − a2 − 7x+ 7a

x− a

=
(x+ a)(x− a)− 7(x− a)

x− a
=

(x− a)(x+ a− 7)

(x− a)
= x+ a− 7.

b) For f(x) = −2x2 + 3x, we get:

f(x)− f(a)

x− a
=

(−2x2 + 3x)− (−2a2 + 3a)

x− a

=
−2x2 + 3x+ 2a2 − 3a

x− a
=

−2x2 + 2a2 + 3x− 3a

x− a

=
−2(x2 − a2) + 3x− 3a

x− a
=

−2(x+ a)(x− a) + 3(x− a)

x− a

=
(x− a)(−2(x+ a) + 3)

(x− a)
= −2(x+ a) + 3 = −2x− 2a+ 3.
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Here are some difference quotients of a degree 3 polynomial, a rational
function, and a square root function.

Example 2.6

Calculate the difference quotient f(x+h)−f(x)
h for

a) f(x) = x3 + 2 b) f(x) =
1

x
c) f(x) =

√
2x+ 3

Solution.

a) We calculate first the difference quotient step by step.

f(x+ h) = (x+ h)3 + 2 = (x+ h) · (x+ h) · (x+ h) + 2

= (x2 + 2xh + h2) · (x+ h) + 2

= x3 + 2x2h+ xh2 + x2h+ 2xh2 + h3 + 2,

= x3 + 3x2h+ 3xh2 + h3 + 2.

Subtracting f(x) from f(x+ h) gives

f(x+ h)− f(x) = (x3 + 3x2h+ 3xh2 + h3 + 2)− (x3 + 2)

= x3 + 3x2h+ 3xh2 + h3 + 2− x3 − 2

= 3x2h+ 3xh2 + h3.

With this we obtain:

f(x+ h)− f(x)

h
=

3x2h + 3xh2 + h3

h

=
h · (3x2 + 3xh + h2)

h
= 3x2 + 3xh + h2.

b) The computation for (b) is similar.

f(x+ h) =
1

x+ h
,

so that

f(x+ h)− f(x) =
1

x+ h
−

1

x
.
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We obtain the solution after simplifying the double fraction:

f(x+ h)− f(x)

h
=

1
x+h − 1

x

h
=

x−(x+h)
(x+h)·x

h
=

x−x−h
(x+h)·x

h
=

−h
(x+h)·x

h

=
−h

(x+ h) · x
·
1

h
=

−1

(x+ h) · x
.

c)

f(x+ h) =
√

2(x+ h) + 3 =
√
2x+ 2h+ 3

=⇒ f(x+ h)− f(x) =
√
2x+ 2h+ 3−

√
2x+ 3

=⇒
f(x+h)−f(x)

h =

√
2x+ 2h+ 3−

√
2x+ 3

h

We can simplify this expression by multiplying both numerator and
denominator with

√
2x+ 2h+ 3 +

√
2x+ 3:

=⇒ f(x+h)−f(x)
h =

(
√
2x+2h+3−

√
2x+3)·(

√
2x+2h+3+

√
2x+3)

h·(
√
2x+2h+3+

√
2x+3)

=
(
√
2x+2h+3)2−(

√
2x+3)2

h·(
√
2x+2h+3+

√
2x+3)

=
(2x+2h+3)−(2x+3)

h·(
√
2x+2h+3+

√
2x+3)

= 2x+2h+3−2x−3
h·(

√
2x+2h+3+

√
2x+3)

= 2h
h·(

√
2x+2h+3+

√
2x+3)

= 2√
2x+2h+3+

√
2x+3

So far, we have not mentioned the domain and range of the functions
defined above. Indeed, we will often not describe the domain explicitly but
use the following convention:
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Convention 2.7: Standard convention of the domain

Unless stated otherwise, a function f is assumed to allow any real
numbers x as an input for which the output f(x) is a well-defined real
number. We refer to this as the standard convention of the domain.
In this case, both domain and range are then subsets of the set R of
real numbers. The range is, of course, the set of all outputs obtained
by f from the inputs (see also Note 1.10 on page 7).
In particular, under this convention, any polynomial has the domain R
of all real numbers.

Example 2.8

Find the domain of each of the following functions according to the
standard convention of the domain.

a) f(x) = 4x3 − 2x+ 5 b) f(x) = |x|
c) f(x) =

√
x d) f(x) =

√
x− 3

e) f(x) = 1
x−5 f ) f(x) = x−2

x2+8x+15

g) f(x) =

{

x+ 1 , for 2 < x ≤ 4
2x− 1 , for 5 ≤ x
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Solution.

a) There is no problem taking a real number x to the power of any
positive integer. Therefore, f is defined for all real numbers x, and
the domain is written as D = R.

b) Again, we can take the absolute value for any real number x. The
domain is all real numbers, D = R.

c) The square root
√
x is only defined for x ≥ 0 (remember we are not

using complex numbers yet!). Thus, the domain is D = [0,∞).

d) Again, the square root is only defined for non-negative numbers.
Thus, the argument in the square root has to be greater than or
equal to zero: x− 3 ≥ 0. Solving this for x gives

x− 3 ≥ 0
(add 3)
=⇒ x ≥ 3.

The domain is therefore, D = [3,∞).

e) A fraction is defined whenever the denominator is not zero, so in this
case, 1

x−5 is defined whenever x ̸= 5. Therefore, the domain is all
real numbers except five, D = R− {5}.

f ) Again, we need to make sure that the denominator does not become
zero, and we disregard the numerator. The denominator is zero ex-
actly when x2 + 8x+ 15 = 0. Solving this for x gives:

x2 + 8x+ 15 = 0 =⇒ (x+ 3) · (x+ 5) = 0

=⇒ x+ 3 = 0 or x+ 5 = 0

=⇒ x = −3 or x = −5.

The domain is all real numbers except for −3 and −5, that is D =
R− {−5,−3}.

g) The function is explicitly defined for all 2 < x ≤ 4 and 5 ≤ x.
Therefore, the domain is D = (2, 4] ∪ [5,∞).
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2.2 Exercises

Exercise 2.1

For each of the following functions,

a) f(x) = 3x+ 1 b) f(x) = x2 − x c) f(x) =
√
x2 − 9

d) f(x) = 1
x e) f(x) = x−5

x+2 f ) f(x) = −x3

calculate the function values

i) f(3) ii) f(5) iii) f(−2) iv) f(0) v) f(
√
13)

vi) f(
√
2 + 3) vii) f(−x) viii) f(x+ 2) ix) f(x) + h x) f(x+ h)

Exercise 2.2

Let f be the piecewise defined function

f(x) =

{

x− 5 , for −4 < x < 3
x2 , for 3 ≤ x ≤ 6

a) State the domain of the function.
Find the function values

b) f(2) c) f(5) d) f(−3) e) f(3)

Exercise 2.3

Let f be the piecewise defined function

f(x) =

⎧

⎨

⎩

|x|− x2 , for x < 2
7 , for 2 ≤ x < 5

x2 − 4x+ 1 , for 5 < x

a) State the domain of the function.
Find the function values

b) f(1) c) f(−2) d) f(3)
e) f(2) f ) f(5) g) f(7)
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Exercise 2.4

Find the difference quotient f(x+h)−f(x)
h for the following functions:

a) f(x) = 5x b) f(x) = 2x− 6 c) f(x) = x2

d) f(x) = x2 + 5x e) f(x) = x2 − 7 f ) f(x) = x2 + 3x+ 4
g) f(x) = x2 + 4x− 9 h) f(x) = 3x2 − 2x i) f(x) = 4x2 + 6x
j) f(x) = 2x2 − 8x− 3 k) f(x) = −5x2 + 3 l) f(x) = x3

Exercise 2.5

Find the difference quotient f(x)−f(a)
x−a for the following functions:

a) f(x) = 3x b) f(x) = 4x− 7 c) f(x) = x2 − 3x
d) f(x) = x2 + 4x− 5 e) f(x) = 7x2 + 2x f ) f(x) = 1

x

Exercise 2.6

Find the domains of the following functions.

a) f(x) = x2 + 3x+ 5 b) f(x) = |x− 2| c) f(x) =
√
x− 2

d) f(x) =
√
8− 2x e) f(x) =

√

|x+ 3| f ) f(x) = 1
x+6

g) f(x) = x−5
x−7 h) f(x) = x+1

x2−7x+10 i) f(x) = x
|x−2|

j) f(x) =

{

|x| for 1 < x < 2
2x for 3 ≤ x

k) f(x) =
√
x

x−9 l) f(x) = 5√
x+4
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