Precalculus

Third Edition (3.0)

Thomas Tradler
 Holly Carley

The pages below contain a single chapter from the Precalculus textbook. The full textbook can be downloaded here:

Precalculus Textbook Download Page

Copyright ©2023 Third Edition, Thomas Tradler and Holly Carley All illustrations other than ${ }^{A T} E X p i c t u r e s ~ a n d ~ D e s m o s ~ g r a p h i n g ~ c a l c u l a t o r ~ p i c t u r e s ~$ were created by Kate Poirier.
Copyright ©2023 Kate Poirier

This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)

This document was created with RTEX. $_{\text {E }}$.
The images of the Desmos graphing calculator were generated from the Desmos website at https://www.desmos.com/calculator

Chapter 2

Functions via formulas

Most of the time we will discuss functions that take some real numbers as inputs, and give real numbers as outputs. Such functions are often described with a formula.

2.1 Functions given by formulas

Here are some examples of functions given by a formula.

Example 2.1

For the given function f, calculate the outputs $f(2), f(-3)$, and $f(-1)$.
a) $f(x)=3 x+4$
b) $f(x)=\sqrt{x^{2}-3}$
c) $f(x)=\left\{\begin{array}{clc}5 x-6 & \text {, for } \quad-1 \leq x \leq 1 \\ x^{3}+2 x & \text {, for } \quad 1<x \leq 5\end{array}\right.$
d) $f(x)=\frac{x+2}{x+3}$

Solution.

a) We substitute the input values into the function and simplify.

$$
\begin{aligned}
f(2) & =3 \cdot 2+4=6+4=10 \\
f(-3) & =3 \cdot(-3)+4=-9+4=-5 \\
f(-1) & =3 \cdot(-1)+4=-3+4=1
\end{aligned}
$$

b) Similarly, we calculate

$$
f(2)=\sqrt{2^{2}-3}=\sqrt{4-3}=\sqrt{1}=1,
$$

$$
\begin{aligned}
& f(-3)=\sqrt{(-3)^{2}-3}=\sqrt{9-3}=\sqrt{6} \\
& f(-1)=\sqrt{(-1)^{2}-3}=\sqrt{1-3}=\sqrt{-2} \text { is undefined. }
\end{aligned}
$$

Note that in the last evaluation, we obtained an output of $\sqrt{-2}$. As you are probably aware, $\sqrt{-2}$ is a complex number. However, at this point, we will only allow outputs that are real numbers! Since $\sqrt{-2}$ is not a real number (but only a complex number), there is no real output for $f(-1)$, and we say that $f(-1)$ is undefined.
c) The function $f(x)=\left\{\begin{array}{cl}5 x-6 & \text {, for }-1 \leq x \leq 1 \\ x^{3}+2 x & \text {, for } 1<x \leq 5\end{array}\right.$ is given as a piecewise defined function. We have to substitute the values into the correct branch:

$$
\begin{aligned}
f(2) & =2^{3}+2 \cdot 2=8+4=12, \text { since } 1<2 \leq 5 \\
f(-3) & =\text { undefined, since }-3 \text { is not in any of the two branches, } \\
f(-1) & =5 \cdot(-1)-7=-5-6=-11, \text { since }-1 \leq-1 \leq 1
\end{aligned}
$$

d) Finally for $f(x)=\frac{x+2}{x+3}$, we have:

$$
\begin{aligned}
f(2) & =\frac{2+2}{2+3}=\frac{4}{5}, \quad f(-3)=\frac{-3+2}{-3+3}=\frac{-1}{0} \text { is undefined, } \\
f(-1) & =\frac{-1+2}{-1+3}=\frac{1}{2} .
\end{aligned}
$$

Example 2.2

Let f be the function given by $f(x)=x^{2}+2 x-3$. Find the following function values.
a) $f(5)$
b) $f(2)$
c) $f(-2)$
d) $f(0)$
e) $f(\sqrt{5})$
f) $f(\sqrt{3}+1)$
g) $f(a)$
h) $f(a)+5$
i) $f(x+h)$
j) $f(x+h)-f(x)$
k) $\frac{f(x+h)-f(x)}{h}$
l) $\frac{f(x)-f(a)}{x-a}$

Solution.

The first four function values ((a)-(d)) can be calculated directly:

$$
f(5)=5^{2}+2 \cdot 5-3=25+10-3=32
$$

$$
\begin{aligned}
f(2) & =2^{2}+2 \cdot 2-3=4+4-3=5 \\
f(-2) & =(-2)^{2}+2 \cdot(-2)-3=4+-4-3=-3 \\
f(0) & =0^{2}+2 \cdot 0-3=0+0-3=-3
\end{aligned}
$$

The next two values ((e) and (f)) are similar, but the arithmetic is a bit more involved.

$$
\begin{aligned}
f(\sqrt{5}) & =\sqrt{5}^{2}+2 \cdot \sqrt{5}-3=5+2 \cdot \sqrt{5}-3=2+2 \cdot \sqrt{5} \\
f(\sqrt{3}+1) & =(\sqrt{3}+1)^{2}+2 \cdot(\sqrt{3}+1)-3 \\
& =(\sqrt{3}+1) \cdot(\sqrt{3}+1)+2 \cdot(\sqrt{3}+1)-3 \\
& =\sqrt{3} \cdot \sqrt{3}+2 \cdot \sqrt{3}+1 \cdot 1+2 \cdot \sqrt{3}+2-3 \\
& =3+2 \cdot \sqrt{3}+1+2 \cdot \sqrt{3}+2-3 \\
& =3+4 \cdot \sqrt{3} .
\end{aligned}
$$

The last five values ((g)-(l)) are purely algebraic:

$$
\begin{aligned}
f(a) & =a^{2}+2 \cdot a-3, \\
f(a)+5 & =a^{2}+2 \cdot a-3+5=a^{2}+2 \cdot a+2, \\
f(x+h) & =(x+h)^{2}+2 \cdot(x+h)-3 \\
& =x^{2}+2 x h+h^{2}+2 x+2 h-3, \\
f(x+h)-f(x) & =\left(x^{2}+2 x h+h^{2}+2 x+2 h-3\right)-\left(x^{2}+2 x-3\right) \\
& =x^{2}+2 x h+h^{2}+2 x+2 h-3-x^{2}-2 x+3 \\
& =2 x h+h^{2}+2 h, \\
\frac{f(x+h)-f(x)}{h} & =\frac{2 x h+h^{2}+2 h}{h} \\
& =\frac{h \cdot(2 x+h+2)}{h}=2 x+h+2,
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{f(x)-f(a)}{x-a}=\frac{\left(x^{2}+2 x-3\right)-\left(a^{2}+2 a-3\right)}{x-a} \\
& \quad=\frac{x^{2}+2 x-3-a^{2}-2 a+3}{x-a}=\frac{x^{2}-a^{2}+2 x-2 a}{x-a} \\
& =\frac{(x+a)(x-a)+2(x-a)}{x-a}=\frac{(x-a)(x+a+2)}{(x-a)}=x+a+2 .
\end{aligned}
$$

The quotients in the last two examples $2.2(\mathrm{k})$ and (l) will become particularly important in calculus. They are called difference quotients.

Definition 2.3: Difference quotient

Let $y=f(x)$ be a function. We call the expressions

$$
\begin{equation*}
\frac{f(x+h)-f(x)}{h} \quad \text { or } \quad \frac{f(x)-f(a)}{x-a} \tag{2.1}
\end{equation*}
$$

difference quotients for the function f.
We next calculate some more examples of difference quotients.

Example 2.4

Calculate the difference quotient $\frac{f(x+h)-f(x)}{h}$ for
a) $f(x)=x^{2}-4 x$
b) $f(x)=3 x^{2}+8 x-5$

Solution.

a) For $f(x)=x^{2}-4 x$, we get:

$$
\begin{aligned}
f(x+h) & =(x+h)^{2}-4 \cdot(x+h) \\
& =x^{2}+2 x h+h^{2}-4 x-4 h, \\
f(x+h)-f(x) & =\left(x^{2}+2 x h+h^{2}-4 x-4 h\right)-\left(x^{2}-4 x\right) \\
& =x^{2}+2 x h+h^{2}-4 x-4 h-x^{2}+4 x \\
& =2 x h+h^{2}-4 h, \\
\frac{f(x+h)-f(x)}{h} & =\frac{2 x h+h^{2}-4 h}{h} \\
& =\frac{h \cdot(2 x+h-4)}{h}=2 x+h-4
\end{aligned}
$$

b) For $f(x)=3 x^{2}+8 x-5$, we get:

$$
\begin{aligned}
f(x+h) & =3(x+h)^{2}+8 \cdot(x+h)-5 \\
& =3\left(x^{2}+2 x h+h^{2}\right)+8 x+8 h-5, \\
& =3 x^{2}+6 x h+3 h^{2}+8 x+8 h-5,
\end{aligned}
$$

$$
\begin{aligned}
f(x+h)-f(x) & =\left(3 x^{2}+6 x h+3 h^{2}+8 x+8 h-5\right) \\
& -\left(3 x^{2}+8 x-5\right) \\
& =3 x^{2}+6 x h+3 h^{2}+8 x+8 h-5-3 x^{2}-8 x+5 \\
& =6 x h+3 h^{2}+8 h, \\
\frac{f(x+h)-f(x)}{h} & =\frac{6 x h+3 h^{2}+8 h}{h} \\
& =\frac{h \cdot(6 x+3 h+8)}{h}=6 x+3 h+8
\end{aligned}
$$

Example 2.5

Calculate the difference quotient $\frac{f(x)-f(a)}{x-a}$ for
a) $f(x)=x^{2}-7 x-2$
b) $f(x)=-2 x^{2}+3 x$

Solution.

a) For $f(x)=x^{2}-7 x-2$, we get:

$$
\begin{aligned}
& \frac{f(x)-f(a)}{x-a}=\frac{\left(x^{2}-7 x-2\right)-\left(a^{2}-7 a-2\right)}{x-a} \\
& \quad=\frac{x^{2}-7 x-2-a^{2}+7 a+2}{x-a}=\frac{x^{2}-a^{2}-7 x+7 a}{x-a} \\
& =\frac{(x+a)(x-a)-7(x-a)}{x-a}=\frac{(x-a)(x+a-7)}{(x-a)}=x+a-7 .
\end{aligned}
$$

b) For $f(x)=-2 x^{2}+3 x$, we get:

$$
\begin{aligned}
& \frac{f(x)-f(a)}{x-a}=\frac{\left(-2 x^{2}+3 x\right)-\left(-2 a^{2}+3 a\right)}{x-a} \\
& \quad=\frac{-2 x^{2}+3 x+2 a^{2}-3 a}{x-a}=\frac{-2 x^{2}+2 a^{2}+3 x-3 a}{x-a} \\
& =\frac{-2\left(x^{2}-a^{2}\right)+3 x-3 a}{x-a}=\frac{-2(x+a)(x-a)+3(x-a)}{x-a} \\
& =\frac{(x-a)(-2(x+a)+3)}{(x-a)}=-2(x+a)+3=-2 x-2 a+3 .
\end{aligned}
$$

Here are some difference quotients of a degree 3 polynomial, a rational function, and a square root function.

Example 2.6

Calculate the difference quotient $\frac{f(x+h)-f(x)}{h}$ for
a) $f(x)=x^{3}+2$
b) $f(x)=\frac{1}{x}$
c) $f(x)=\sqrt{2 x+3}$

Solution.

a) We calculate first the difference quotient step by step.

$$
\begin{aligned}
f(x+h) & =(x+h)^{3}+2=(x+h) \cdot(x+h) \cdot(x+h)+2 \\
& =\left(x^{2}+2 x h+h^{2}\right) \cdot(x+h)+2 \\
& =x^{3}+2 x^{2} h+x h^{2}+x^{2} h+2 x h^{2}+h^{3}+2, \\
& =x^{3}+3 x^{2} h+3 x h^{2}+h^{3}+2 .
\end{aligned}
$$

Subtracting $f(x)$ from $f(x+h)$ gives

$$
\begin{aligned}
f(x+h)-f(x) & =\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}+2\right)-\left(x^{3}+2\right) \\
& =x^{3}+3 x^{2} h+3 x h^{2}+h^{3}+2-x^{3}-2 \\
& =3 x^{2} h+3 x h^{2}+h^{3} .
\end{aligned}
$$

With this we obtain:

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{3 x^{2} h+3 x h^{2}+h^{3}}{h} \\
& =\frac{h \cdot\left(3 x^{2}+3 x h+h^{2}\right)}{h}=3 x^{2}+3 x h+h^{2}
\end{aligned}
$$

b) The computation for (b) is similar.

$$
f(x+h)=\frac{1}{x+h}
$$

so that

$$
f(x+h)-f(x)=\frac{1}{x+h}-\frac{1}{x}
$$

We obtain the solution after simplifying the double fraction:

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{\frac{1}{x+h}-\frac{1}{x}}{h}=\frac{\frac{x-(x+h)}{(x+h) \cdot x}}{h}=\frac{\frac{x-x-h}{(x+h) \cdot x}}{h}=\frac{\frac{-h}{(x+h) \cdot x}}{h} \\
& =\frac{-h}{(x+h) \cdot x} \cdot \frac{1}{h}=\frac{-1}{(x+h) \cdot x} .
\end{aligned}
$$

c)

$$
\begin{aligned}
f(x+h) & =\sqrt{2(x+h)+3}=\sqrt{2 x+2 h+3} \\
\Longrightarrow f(x+h)-f(x) & =\sqrt{2 x+2 h+3}-\sqrt{2 x+3} \\
\Longrightarrow \frac{f(x+h)-f(x)}{h} & =\frac{\sqrt{2 x+2 h+3}-\sqrt{2 x+3}}{h}
\end{aligned}
$$

We can simplify this expression by multiplying both numerator and denominator with $\sqrt{2 x+2 h+3}+\sqrt{2 x+3}$:

$$
\begin{aligned}
\Longrightarrow \frac{f(x+h)-f(x)}{h} & =\frac{(\sqrt{2 x+2 h+3}-\sqrt{2 x+3}) \cdot(\sqrt{2 x+2 h+3}+\sqrt{2 x+3})}{h \cdot(\sqrt{2 x+2 h+3}+\sqrt{2 x+3})} \\
& =\frac{(\sqrt{2 x+2 h+3})^{2}-(\sqrt{2 x+3})^{2}}{h \cdot(\sqrt{2 x+2 h+3}+\sqrt{2 x+3})} \\
& =\frac{(2 x+2 h+3)-(2 x+3)}{h \cdot(\sqrt{2 x+2 h+3}+\sqrt{2 x+3})} \\
& =\frac{2 x+2 h+3-2 x-3}{h \cdot(\sqrt{2 x+2 h+3}+\sqrt{2 x+3})} \\
& =\frac{2 h}{h \cdot(\sqrt{2 x+2 h+3}+\sqrt{2 x+3})} \\
& =\frac{2}{\sqrt{2 x+2 h+3}+\sqrt{2 x+3}}
\end{aligned}
$$

So far, we have not mentioned the domain and range of the functions defined above. Indeed, we will often not describe the domain explicitly but use the following convention:

Convention 2.7: Standard convention of the domain

Unless stated otherwise, a function f is assumed to allow any real numbers x as an input for which the output $f(x)$ is a well-defined real number. We refer to this as the standard convention of the domain.
In this case, both domain and range are then subsets of the set \mathbb{R} of real numbers. The range is, of course, the set of all outputs obtained by f from the inputs (see also Note 1.10 on page 7).
In particular, under this convention, any polynomial has the domain \mathbb{R} of all real numbers.

Example 2.8

Find the domain of each of the following functions according to the standard convention of the domain.
a) $f(x)=4 x^{3}-2 x+5$
b) $f(x)=|x|$
c) $f(x)=\sqrt{x}$
d) $f(x)=\sqrt{x-3}$
e) $f(x)=\frac{1}{x-5}$
f) $f(x)=\frac{x-2}{x^{2}+8 x+15}$
g) $f(x)=\left\{\begin{array}{cll}x+1 & \text {, for } \quad 2<x \leq 4 \\ 2 x-1 & \text {, for } \quad 5 \leq x\end{array}\right.$

Solution.

a) There is no problem taking a real number x to the power of any positive integer. Therefore, f is defined for all real numbers x, and the domain is written as $D=\mathbb{R}$.
b) Again, we can take the absolute value for any real number x. The domain is all real numbers, $D=\mathbb{R}$.
c) The square root \sqrt{x} is only defined for $x \geq 0$ (remember we are not using complex numbers yet!). Thus, the domain is $D=[0, \infty)$.
d) Again, the square root is only defined for non-negative numbers. Thus, the argument in the square root has to be greater than or equal to zero: $x-3 \geq 0$. Solving this for x gives

$$
x-3 \geq 0 \quad \stackrel{\text { (add 3) }}{\Longrightarrow} \quad x \geq 3
$$

The domain is therefore, $D=[3, \infty)$.
e) A fraction is defined whenever the denominator is not zero, so in this case, $\frac{1}{x-5}$ is defined whenever $x \neq 5$. Therefore, the domain is all real numbers except five, $D=\mathbb{R}-\{5\}$.
f) Again, we need to make sure that the denominator does not become zero, and we disregard the numerator. The denominator is zero exactly when $x^{2}+8 x+15=0$. Solving this for x gives:

$$
\begin{aligned}
x^{2}+8 x+15=0 & \Longrightarrow(x+3) \cdot(x+5)=0 \\
& \Longrightarrow x+3=0 \text { or } x+5=0 \\
& \Longrightarrow x=-3 \text { or } x=-5 .
\end{aligned}
$$

The domain is all real numbers except for -3 and -5 , that is $D=$ $\mathbb{R}-\{-5,-3\}$.
g) The function is explicitly defined for all $2<x \leq 4$ and $5 \leq x$. Therefore, the domain is $D=(2,4] \cup[5, \infty)$.

2.2 Exercises

Exercise 2.1

For each of the following functions,
a) $f(x)=3 x+1$
b) $f(x)=x^{2}-x$
c) $f(x)=\sqrt{x^{2}-9}$
d) $f(x)=\frac{1}{x}$
e) $f(x)=\frac{x-5}{x+2}$
f) $f(x)=-x^{3}$
calculate the function values
i) $f(3)$
ii) $f(5)$
iii) $f(-2)$
iv) $f(0)$
v) $f(\sqrt{13})$
vi) $f(\sqrt{2}+3)$
vii) $f(-x)$
viii) $f(x+2)$
ix) $f(x)+h$
x) $f(x+h)$

Exercise 2.2

Let f be the piecewise defined function

$$
f(x)=\left\{\begin{array}{ccc}
x-5 & , \text { for } & -4<x<3 \\
x^{2} & , \text { for } & 3 \leq x \leq 6
\end{array}\right.
$$

a) State the domain of the function.

Find the function values
b) $f(2)$
c) $f(5)$
d) $f(-3)$
e) $f(3)$

Exercise 2.3

Let f be the piecewise defined function

$$
f(x)=\left\{\begin{array}{ccc}
|x|-x^{2} & , \text { for } & x<2 \\
7 & , \text { for } & 2 \leq x<5 \\
x^{2}-4 x+1 & , \text { for } & 5<x
\end{array}\right.
$$

a) State the domain of the function.

Find the function values
b) $f(1)$
c) $f(-2)$
d) $f(3)$
e) $f(2)$
f) $f(5)$
g) $f(7)$

Exercise 2.4

Find the difference quotient $\frac{f(x+h)-f(x)}{h}$ for the following functions:
a) $f(x)=5 x$
b) $f(x)=2 x-6$
c) $f(x)=x^{2}$
d) $f(x)=x^{2}+5 x$
e) $f(x)=x^{2}-7$
f) $f(x)=x^{2}+3 x+4$
g) $f(x)=x^{2}+4 x-9$
h) $f(x)=3 x^{2}-2 x$
i) $f(x)=4 x^{2}+6 x$
j) $f(x)=2 x^{2}-8 x-3$
k) $f(x)=-5 x^{2}+3$
l) $f(x)=x^{3}$

Exercise 2.5

Find the difference quotient $\frac{f(x)-f(a)}{x-a}$ for the following functions:
a) $f(x)=3 x$
b) $f(x)=4 x-7$
c) $f(x)=x^{2}-3 x$
d) $f(x)=x^{2}+4 x-5$
e) $f(x)=7 x^{2}+2 x$
f) $f(x)=\frac{1}{x}$

Exercise 2.6

Find the domains of the following functions.
a) $f(x)=x^{2}+3 x+5$
b) $f(x)=|x-2|$
c) $f(x)=\sqrt{x-2}$
d) $f(x)=\sqrt{8-2 x}$
e) $f(x)=\sqrt{|x+3|}$
f) $f(x)=\frac{1}{x+6}$
g) $f(x)=\frac{x-5}{x-7}$
h) $f(x)=\frac{x+1}{x^{2}-7 x+10}$
i) $f(x)=\frac{x}{|x-2|}$
j) $f(x)= \begin{cases}|x| & \text { for } 1<x<2 \\ 2 x & \text { for } 3 \leq x\end{cases}$
k) $f(x)=\frac{\sqrt{x}}{x-9}$
l) $f(x)=\frac{5}{\sqrt{x+4}}$

