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Chapter 19

Inverse trigonometric functions

The inverse trigonometric functions are the inverse functions of the y = sin x,
y = cos x, and y = tanx functions restricted to appropriate domains. In this
chapter we give a precise definition of these functions.

19.1 The functions sin−1, cos−1, and tan−1

We start with the inverse to the tangent function y = tan(x).

The function y = tan−1(x)

Note 19.1

Recall that the graph of y = tan(x):
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The graph has vertical asymptotes at x = ±π
2 ,±

3π
2 ,±

5π
2 , . . . . Note that

y = tan(x) is not a one-to-one function in the sense of defintion 6.1 on
page 92. (For example, the horizontal line y = 1 intersects the graph
at x = π

4 , x = π
4 ± π, x = π

4 ± 2π, etc.) However, when we restrict the
function to the domain D = (−π

2 , π
2 ), that is, the red part of the above

graph, then the restricted function is one-to-one, and for this restricted
function, we may take its inverse function.

Definition 19.2: Inverse tangent function

The inverse of the function y = tan(x) with restricted domain D =
(−π

2 , π2 ) and range R = R is called the inverse tangent function. It is
defined by

x = tan(y) ⇐⇒ y = tan−1(x) , for y ∈
(

−
π

2
,
π

2

)

Alternatively, the inverse tangent function is also written as the arc-
tangent function:

y = tan−1(x) = arctan(x)

The arctangent reverses the input and output of the tangent function,
so that the arctangent has domain D = R and range R = (−π

2 , π2 ). The
graph is displayed below.
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= tan−1(x) = arctan(x)

The inverse tangent function has horizontal asymptotes at y = π
2 and

y = −π
2 .
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Note 19.3: tan−1 is odd

We note that the inverse tangent function is an odd function:

tan−1(−x) = − tan−1(x) (19.1)

This can be seen by observing that the tangent y = tan(x) is an odd function (that is tan(−x) =
− tan(x)), and this also is confirmed by the the symmetry of the graph of y = tan−1(x) with
respect to the origin (0, 0).

Note 19.4

The exponent notation of tan−1(x) is unfortunately somewhat inconsistent, since the exponent
can refer to two different concepts. Indeed, writing tan−1(x) = arctan(x) means that we consider
the inverse function of the tan(x) function. However, when we write tan2(x), we mean

tan2(x) = (tan(x))2 = tan(x) · tan(x)

Therefore, tan−1(x) is the inverse function of tan(x) with respect to the composition operation,
whereas tan2(x) is the square with respect to the product in R. Note also that the inverse
function of the tangent with respect to the product in R is y = 1

tan(x) = cot(x), which is the

cotangent.

The next example calculates some inverse tangent function values.

Example 19.5

Compute the inverse tangent function values.

a) tan−1(
√
3) b) tan−1(−1) c) tan−1(4.3)

Solution.

a) We will first show how to compute tan−1(
√
3) without the use of a

calculator, and then more easily with the use of a calculator. Recall
the exact values of the tangent function from Section 17.1:

x 0 = 0◦ π
6 = 30◦ π

4 = 45◦ π
3 = 60◦ π

2 = 90◦

tan(x) 0
√
3
3 1

√
3 undef.

Since, by Definition 19.2, y = tan−1(x) is given by x = tan(y) (for
−π

2 < y < π
2 ), we can rewrite y = tan−1(

√
3) as

√
3 = tan(y). The

above table shows that tan(π3 ) =
√
3 and so, tan−1(

√
3) = y = π

3 =
60◦.
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Alternatively, we can use a calculator. Many calculators will not
display the exact radian measure for the angle, but only an approxi-
mation. Nevertheless, we can use degree measure and then convert
to radian if needed.

b) Similarly, we can compute the other values with the calculator.

We see that tan−1(−1) = −45◦ = −π
4 .

c) For tan−1(4.3), we do not have an exact value that appears in our
table above. However, we can still find an approximate answer using
the calculator, tan−1(4.3) ≈ 76.91.

The function y = sin−1(x)

Next, we define the inverse sine function.
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Note 19.6

We recall the graph of the y = sin(x) function, and note that it is not
one-to-one.

x

y = sin(x)
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However, when restricting the sine to the domain
[−π

2 , π
2

]

(drawn in the
red part in the above graph), the restricted function is one-to-one. Note
furthermore, that when restricting the domain to

[−π
2 , π

2

]

, the range is
[−1, 1], and therefore we cannot extend this to a larger domain in a
way such that the function remains a one-to-one function. We use the
domain

[−π
2 , π2

]

to define the inverse sine function.

Definition 19.7: Inverse sine function

The inverse of the function y = sin(x) with restricted domain D =
[−π

2 , π
2

]

and range R = [−1, 1] is called the inverse sine function. It is
defined by

x = sin(y) ⇐⇒ y = sin−1(x) , for y ∈
[

−
π

2
,
π

2

]

Alternatively, the inverse sine function is also written as the arcsine
function:

y = sin−1(x) = arcsin(x)

The arcsine reverses the input and output of the sine function, so that
the arcsine has domain D = [−1, 1] and range R =

[−π
2 , π

2

]

. The graph
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of the arcsine is drawn below.
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Note 19.8: sin−1 is odd

The inverse sine function is odd:

sin−1(−x) = − sin−1(x) (19.2)

This can again be seen by observing that the sine y = sin(x) is an odd function (that is,
sin(−x) = − sin(x)), and is also confirmed by the symmetry of the graph with respect to the
origin (0, 0).

We calculate some function values of the inverse sine.

Example 19.9

Compute the inverse sine function values.

a) sin−1
(1

2

)

b) sin−1
(

−
√
3

2

)

c) sin−1(4.3)

Solution.

a) We may either use the definition or a calculator to evaluate the
expressions. Since y = sin−1(12) is equivalent to 1

2 = sin(y), we need
to find such a y with −π

2 ≤ y ≤ π
2 . For this, recall the known values

of the sine.

x 0 = 0◦ π
6 = 30◦ π

4 = 45◦ π
3 = 60◦ π

2 = 90◦

sin(x) 0 1
2

√
2
2

√
3
2 1
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We see that y = π
6 , so that sin−1(12) = y = π

6 = 30◦. Alternatively,
we can obtain the answers using the calculator in degree mode.

b) From the calculator we get that sin−1(−
√
3
2 ) = −60◦ = −π

3 .

c) As for sin−1(4.3), we note that this is undefined, since the sin−1 has
a domain of [−1, 1] and so is only defined for x with −1 ≤ x ≤ 1.

The function y = cos−1(x)

Lastly, we define the inverse cosine.

Note 19.10

Recall the graph of y = cos(x), and note again that the function is not
one-to-one.

x

y = cos(x)
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Again, we need to restrict the cosine to a smaller domain so that the
restricted function becomes one-to-one. By convention, the cosine is
restricted to the domain [0, π] (see the red part above). This provides a
function that is one-to-one, which is used to define the inverse cosine.
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Definition 19.11: Inverse cosine function

The inverse of the function y = cos(x) with restricted domain D = [0, π]
and range R = [−1, 1] is called the inverse cosine function. It is defined
by

x = cos(y) ⇐⇒ y = cos−1(x) , for y ∈ [0, π]

Alternatively, the inverse cosine function is also written as the arcco-
sine function:

y = cos−1(x) = arccos(x)

The arccosine reverses the input and output of the cosine function, so
that the arccosine has domain D = [−1, 1] and range R = [0, π]. The
graph of the arccosine is drawn below.
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Note 19.12: cos−1 is neither even nor odd

The inverse cosine function is neither even nor odd. That is, the function cos−1(−x) cannot be
computed by simply taking ± cos−1(x). But it does have some symmetry given algebraically by
the more complicated relation

cos−1(−x) = π − cos−1(x) (19.3)

Proof of Equation (19.3). We can see that if we shift the graph down by π
2 the resulting function is odd.

That is to say the function with the rule cos−1(x)− π
2 is odd:

cos−1(−x)−
π

2
= −(cos−1(x)−

π

2
),

which yields 19.3 upon distributing and adding π
2 .
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Another, more formal approach, is as follows. The right relation of (21.12) on page 367 states that we have
the relation cos(π − y) = − cos(y) for all y. Let −1 ≤ x ≤ 1, and denote by y = cos−1(x). This means
that y is the number 0 ≤ y ≤ π with cos(y) = x. Then we have

−x = − cos(y) = cos(π − y) (by Equation (21.12))

Applying cos−1 to both sides gives:

cos−1(−x) = cos−1(cos(π − y)) = π − y

The last equality follows, since cos and cos−1 are inverse to each other, and 0 ≤ y ≤ π, so that
0 ≤ π − y ≤ π are also in the range of the cos−1. Rewriting y = cos−1(x) gives the wanted result:

cos−1(−x) = π − cos−1(x)

Example 19.13

Compute the inverse cosine function values.

a) cos−1
(
√
2

2

)

b) cos−1
(

−
1

2

)

c) cos−1(4.3)

Solution.

a) Evaluating these expressions by hand requires the use of specific
values of the cosine function. We recall the known values of the
cosine.

x 0 = 0◦ π
6 = 30◦ π

4 = 45◦ π
3 = 60◦ π

2 = 90◦

cos(x) 1
√
3
2

√
2
2

1
2 0

Since y = cos−1(x) is given by x = cos(y) for 0 ≤ y ≤ π, we see

that for y = cos−1(
√
2
2 ), we need a y with

√
2
2 = cos(y). According to

the above table, we get y = π
4 , so that cos−1(x) = y = π

4 = 45◦.

Alternatively, we can obtain the answer with the calculator.



19.2. EXERCISES 341

b) Using the calculator, we obtain cos−1(−1
2) = 120◦ = 2π

3 . Note that
this is not the same as the negative of cos−1(12) = 60◦, but the
identity (19.3) holds: cos−1(−1

2) = 180◦ − cos−1(12), that is, 120◦ =
180◦ − 60◦.

c) cos−1(4.3) is undefined, since the domain of y = cos−1(x) is D =
[−1, 1].

19.2 Exercises

Exercise 19.1

Graph the function with the calculator. Use both radian and degree
mode to display your graph. Zoom to an appropriate window for each
mode to display a graph which includes the main features of the graph.

a) y = sin−1(x) b) y = cos−1(x) c) y = tan−1(x)

Exercise 19.2

Find the exact value of the inverse trigonometric function.

a) tan−1(
√
3) b) sin−1(12) c) cos−1(12) d) tan−1(0)

e) cos−1(
√
2
2 ) f ) cos−1(−

√
2
2 ) g) sin−1(−1) h) tan−1(−

√
3)

i) cos−1(−
√
3
2 ) j) sin−1(−

√
2
2 ) k) sin−1(−

√
3
2 ) l) tan−1(− 1√

3
)

Exercise 19.3

Find the inverse trigonometric function value using the calculator. Ap-
proximate your answer to the nearest hundredth.

• For parts (a)-(f ), write your answer in radian mode.

a) cos−1(0.2) b) sin−1(−0.75) c) cos−1(13)
d) tan−1(100, 000) e) tan−1(−2) f ) cos−1(−2)
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• For parts (g)-(l), write your answer in degree mode.

g) cos−1(0.68) h) tan−1(−1) i) sin−1(
√
2+

√
6

4 )

j) tan−1(100, 000) k) cos−1(
√

2−
√
2

2 ) l) tan−1(2 +
√
3−

√
6−

√
2)
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