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Chapter 16

More applications: Compound
interest and half-life

We have already encountered some applications of exponential functions in
Section 15.2. In this chapter we give two more applications that come from
finance (computing compound interest) and from physics (radioactive decay).

16.1 Compound interest

An important application of the exponential function is given by calculating
the interest and the current value of an investment. We start with a motivating
example in the following note.

Note 16.1

• We invest an initial amount of P = $500 for 1 year at a rate of
r = 6%. The initial amount P is also called the principal.

After 1 year, we receive the principal P together with the interest
r · P generated from the principal. The final amount A after 1
year is therefore

A = $500 + 6% · $500 = $500 · (1 + 0.06) = $530.

• We change the setup of the previous example by taking a quar-
terly compounding. This means that instead of receiving interest

276



16.1. COMPOUND INTEREST 277

on the principal once at the end of the year, we receive the in-
terest 4 times within the year (after each quarter). However, we
now receive only 1

4 of the interest rate of 6%. We break down the
amount received after each quarter.

after first quarter: 500 ·
(

1 +
0.06

4

)

= 500 · 1.015

after second quarter: (500 · 1.015) ·
(

1 +
0.06

4

)

= 500 · 1.0152

after third quarter: (500 · 1.0152) ·
(

1 +
0.06

4

)

= 500 · 1.0153

after fourth quarter: (500 · 1.0153) ·
(

1 +
0.06

4

)

= 500 · 1.0154

=⇒ A ≈ 530.68

Note that in the second quarter, we receive interest on the amount
we had after the first quarter, and so on. So, in fact, we keep re-
ceiving interest on the interest of the interest, etc. For this rea-
son, the final amount received after 1 year A = $530.68 is slightly
higher when compounded quarterly than when compounded an-
nually (where A = $530.00).

• We make yet another variation to the above setup. Instead of
investing money for 1 year, we invest the principal for 10 years at
a quarterly compounding. We then receive interest every quarter
for a total of 4 · 10 = 40 quarters.

after first quarter: 500 ·
(

1 +
0.06

4

)

= 500 · 1.015

after second quarter: (500 · 1.015) ·
(

1 +
0.06

4

)

= 500 · 1.0152

after third quarter: (500 · 1.0152) ·
(

1 +
0.06

4

)

= 500 · 1.0153

...

after fortieth quarter: (500 · 1.01539) ·
(

1 +
0.06

4

)

= 500 · 1.01540

=⇒ A ≈ 907.01
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We state our observations from the previous example in the following
general observation.

Observation 16.2: Value of an investment compounded n times

A principal (=initial amount) P is invested for t years at a rate r and
compounded n times per year. The final amount A is given by

A = P ·
(

1 +
r

n

)n·t
where

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪⎪
⎩

P = principal (=initial) amount
A = final amount
r = annual interest rate
n = number of

compounding periods per year
t = number of years

We can consider performing the compounding in smaller and smaller time
intervals. Instead of quarterly compounding, we may take monthly compound-
ing, or daily, hourly, secondly compounding or compounding in even smaller
time intervals. Note that, in this case, the number of compounding periods n
in the above formula tends to infinity. In the limit when the time intervals go
to zero, we obtain what is called continuous compounding.

Observation 16.3: Value of an investment compounded continuously

A principal amount P is invested for t years at a rate r and with
continuous compounding. The final amount A is given by

A = P · er·t where

⎧

⎪
⎪
⎨

⎪
⎪
⎩

P = principal amount
A = final amount
r = annual interest rate
t = number of years
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Note 16.4

The reason the exponential function appears in the above formula is that the exponential is the
limit of the previous formula in Observation 16.2, when n approaches infinity; compare this with
Equation (13.1) on page 237.

lim
n→∞

(
1 +

r

n

)n
= er

A more detailed discussion of limits will be provided in a calculus course.

Example 16.5

Determine the final amount received on an investment under the given
conditions.

a) $700, compounded monthly, at 4%, for 3 years
b) $2500, compounded semi-annually, at 5.5%, for 6 years
c) $1200, compounded continuously, at 3%, for 2 years

Solution.

a) We can immediately apply the formula in which we substitute the
given values of P = 700, n = 12 (because “monthly” means com-
pounded 12 times per year), r = 4% = 0.04, and t = 3. Therefore,
we calculate

A = 700 ·
(

1 +
0.04

12

)12·3

= 700 ·
(

1 +
0.04

12

)36

≈ 789.09

b) We have P = 2500, n = 2, r = 5.5% = 0.055, and t = 6.

A = 2500 ·
(

1 +
0.055

2

)2·6

≈ 3461.96

c) We have P = 1200, r = 3% = 0.03, t = 2, and we use the formula
for continuous compounding.

A = 1200 · e0.03·2 = 1200 · e0.06 ≈ 1274.20

Instead of asking to find the final amount, we may also ask about any of
the other variables in the above formulas for investments.
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Example 16.6

a) Find the amount P that needs to be invested at 4.275% compounded
annually for 5 years to give a final amount of $3000. (This amount
P is also called the present value of the future amount of $3000 in
5 years.)

b) At what rate do we have to invest $800 for 6 years compounded
quarterly to obtain a final amount of $1200?

c) For how long do we have to invest $1000 at a rate of 2.5% com-
pounded continuously to obtain a final amount of $1100?

d) For how long do we have to invest at a rate of 3.2% compounded
monthly until the investment doubles its value?

Solution.

a) We have the following data: r = 4.275% = 0.04275, n = 1, t = 5,
and A = 3000. We want to find the present value P . Substituting
the given numbers into the appropriate formula, we can solve this for
P .

3000 = P ·
(

1 +
0.04275

1

)1·5

=⇒ 3000 = P · (1.04275)5

(divide by 1.042755)
=⇒ P =

3000

1.042755
≈ 2433.44

Therefore, if we invest $2433.44 today under the given conditions,
then this will be worth $3000 in 5 years.

b) Substituting the given numbers (P = 800, t = 6, n = 4, A = 1200)
into the formula gives:

1200 = 800 ·
(

1 +
r

4

)4·6 (divide by 800)
=⇒

1200

800
=
(

1 +
r

4

)24

=⇒
(

1 +
r

4

)24
=

3

2

Next, we have to get the exponent 24 to the right side. This is done
by taking a power of 1

24 , or in other words, by taking the 24th root,

24

√

3
2 =

(
3
2

) 1
24

.
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(
(

1 +
r

4

)24
) 1

24

=

(
3

2

) 1
24

=⇒
(

1 +
r

4

)24· 1
24

=

(
3

2

) 1
24

=⇒ 1 +
r

4
=

(
3

2

) 1
24

=⇒
r

4
=

(
3

2

) 1
24

− 1

=⇒ r = 4 ·

(
(
3

2

) 1
24

− 1

)

Plugging this into the calculator gives r ≈ 0.06815 = 6.815%. There-
fore, the rate should be about 6.815%.

c) Again, we substitute the given values, P = 1000, r = 2.5% = 0.025,
A = 1100, but now we use the formula for continuous compounding.

1100 = 1000 · e0.025·t =⇒
1100

1000
= e0.025·t =⇒ e0.025·t = 1.1

To solve for the variable t in the exponent, we need to apply the
logarithm. Here, it is most convenient to apply the natural logarithm,
because ln(x) is the inverse of the exponential ex with base e. Thus,
by applying ln to both sides, we see that

ln(e0.025·t) = ln(1.1) =⇒ 0.025 · t · ln(e) = ln(1.1)

Note that we have used that logb(x
n) = n · logb(x) for any number

n as we have seen in Proposition 14.2. Using that ln(e) = 1 (which
is the special case of the second equation in (13.3) on page 243 for
the base b = e), the above becomes

0.025 · t = ln(1.1) =⇒ t =
ln(1.1)

0.025
≈ 3.81

Therefore, we have to wait 4 years until the investment is worth (more
than) $1100.

d) We are given that r = 3.2% = 0.032 and n = 12, but no initial
amount P is provided. We are seeking to find the time t when the
investment doubles. This means that the final amount A is twice the
initial amount P , or as a formula: A = 2 · P . Substituting this into
the investment formula and solving gives the wanted answer.
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2P = P ·
(

1 +
0.032

12

)12·t
(divide by P )

=⇒ 2 =

(

1 +
0.032

12

)12·t

(apply ln)
=⇒ ln(2) = ln

((

1 +
0.032

12

)12·t
)

=⇒ ln(2) = 12 · t · ln
(

1 +
0.032

12

)

(divide by 12 · ln
(
1 + 0.032

12

)
)

=⇒ t =
ln(2)

12 · ln
(

1 + 0.032
12

) ≈ 21.69

So, after approximately 21.69 years, the investment will have doubled
in value.

16.2 Half-life

Recall from Definition 15.8 on page 270 that a function with rate of growth
r is an exponential function f(x) = c · bx with base b = er. Instead of using
the rate of growth, there are other ways to specify the base of an exponential
function. One way to specify the base is given by the notion of half-life. We
give a motivating example in the following note.

Note 16.7

Consider the function f(x) = 200 ·
(
1
2

)x
7 . We calculate the function

values f(x), for x = 0, 7, 14, 21, and 28.

f(0) = 200 ·
(
1

2

) 0
7

= 200 · 1 = 200

f(7) = 200 ·
(
1

2

) 7
7

= 200 ·
1

2
= 100

f(14) = 200 ·
(
1

2

) 14
7

= 200 ·
1

4
= 50
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f(21) = 200 ·
(
1

2

) 21
7

= 200 ·
1

8
= 25

f(28) = 200 ·
(
1

2

) 28
7

= 200 ·
1

16
= 12.5

From this calculation, we can see how the function values of f behave:
starting from f(0) = 200, the function takes half of its value whenever
x is increased by 7. For this reason, we say that f has a half-life of 7.
(The general definition will be given below.) The graph of the function
is displayed below.

x
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We collect the ideas that are displayed in the above example in the defi-
nition and observation below.

Definition 16.8: Half-life

Let f be an exponential function f(x) = c · bx with a domain of all real
numbers, D = R. Then we say that f has a half-life of h if the base is
given by

b =

(
1

2

) 1
h

(16.1)

Note that we can also write h in terms of b. Converting (16.1) into

a logarithmic equation gives 1
h = log 1

2
(b) = log b

log 1
2
, so that h =

log 1
2

log b =

logb
(
1
2

)

.



284 CHAPTER 16. COMPOUND INTEREST AND HALF-LIFE

Observation 16.9: Graphical interpretation of half-life

Let f be the exponential function given for some real constants c > 0
and half-life h > 0, that is

f(x) = c ·

(
(
1

2

) 1
h

)x

= c ·
(
1

2

) x
h

.

Then we can calculate f(x+ h) as follows:

f(x+ h) = c ·
(
1

2

)x+h
h

= c ·
(
1

2

) x
h
+h

h

= c ·
(
1

2

) x
h
+1

= c ·
(
1

2

) x
h

·
(
1

2

)1

=
1

2
· f(x)

To summarize, f has the following property:

f(x+ h) =
1

2
f(x) for all x ∈ R. (16.2)

The above equation shows that whenever we add an amount of h to an
input x, the effect on f is that the function value decreases by half its
previous value. This is also displayed in the graph below.

x

y

c

h 2h 3h 4h

We will sometimes use a different letter for the input variable. In
particular, the function f(x) = c · (12)

x
h is the same as the function

f(t) = c · (12)
t
h .
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Many radioactive isotopes decay with well-known half-lives.1

Example 16.10

a) Chromium-51 has a half-life of 27.7 days.
How much of 3 grams of chromium-51 will
remain after 90 days?

b) An isotope decays within 20 hours from 5
grams to 2.17 grams. Find the half-life of
the isotope.

Solution.

a) We use the above formula y = c·
(
1
2

) t
h , where c = 3 grams is the initial

amount of chromium-51, h = 27.7 days is the half-life of chromium-
51, and t = 90 days is time that the isotope decayed. Substituting
these numbers into the formula for y, we obtain:

y = 3 ·
(

1

2

) 90
27.7

≈ 0.316

Therefore, after 90 days, 0.316 grams of the chromium-51 remains.

b) We have an initial amount of c = 5 grams and a remaining amount
of y = 2.17 grams after t = 20 hours. The half-life can be obtained
as follows.

2.17 = 5 ·
(
1

2

) 20
h (÷5)

=⇒ 0.434 =

(
1

2

) 20
h

(apply ln)
=⇒ ln(0.434) = ln

(

0.5
20
h

)

=⇒ ln(0.434) =
20

h
· ln (0.5)

(× h
ln(0.434) )
=⇒ h =

20 · ln(0.5)
ln(0.434)

≈ 16.6

Therefore, the half-life of the isotope is approximately 16.6 hours.

1Half-lives are taken from http://en.wikipedia.org/wiki/List of radioactive nuclides by half-life

http://en.wikipedia.org/wiki/List_of_radioactive_nuclides_by_half-life
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Note 16.11: Half-life of carbon-14

An important isotope is the radioisotope carbon-14. It decays with a
half-life of 5730 years with an accuracy of ±40 years. For definiteness
we will take 5730 years as the half-life of carbon-14.

The half-life of carbon-14 is 5730 years.

One can use the knowledge of the half-life of carbon-14 in dating or-
ganic materials via the so called carbon dating method. Carbon-14 is
produced by a plant during the process of photosynthesis at a fixed level
until the plant dies. Therefore, by measuring the remaining amount
of carbon-14 in a dead plant, one can determine the date when the
plant died. Furthermore, since humans and animals consume plants,
the same argument can be applied to determine their (approximate)
dates of death.

Example 16.12

a) A dead tree trunk has 86% of its original carbon-14. (Approximately)
how many years ago did the tree die?

b) A dead animal at an archeological site has lost 41.3% of its carbon-
14. When did the animal die?

Solution.

a) Using the function y = c ·
(
1
2

) t
h , where c is the amount of carbon-14

that was produced by the tree until it died, y is the remaining amount
to date, t is the time that has passed since the tree has died, and h
is the half-life of carbon-14. Since 86% of the carbon-14 is left, we
have y = 86% · c. Substituting the half-life h = 5730 of carbon-14,
we can solve for t.

0.86 · c = c ·
(
1

2

) t
5730 (÷c)

=⇒ 0.86 =

(
1

2

) t
5730

(apply ln)
=⇒ ln(0.86) = ln

(

0.5
t

5730

)

=⇒ ln(0.86) =
t

5730
· ln (0.5)



16.3. EXERCISES 287

(× 5730
ln(0.5) )
=⇒

5730

ln(0.5)
· ln(0.86) = t

=⇒ t ≈ 1247

Therefore, the tree died approximately 1247 years ago.

b) Since 41.3% of the carbon-14 is gone, 100% − 41.3% = 58.7% re-

mains. Using y = c ·
(
1
2

) t
h with y = 58.7% · c and h = 5730, we

obtain

0.587 · c = c ·
(
1

2

) t
5730 (÷c)

=⇒ 0.587 =

(
1

2

) t
5730

(apply ln)
=⇒ ln(0.587) = ln

(

0.5
t

5730

)

=⇒ ln(0.587) =
t

5730
· ln (0.5)

(× 5730
ln(0.5) )
=⇒

5730

ln(0.5)
· ln(0.587) = t

=⇒ t ≈ 4404

The animal died 4404 years ago.

16.3 Exercises

Exercise 16.1

An investment of $5000 was locked in for 30 years. According to the
agreed-upon conditions, the investment will be worth $5000 · 1.08t after
t years.

a) How much is the investment worth after 5 years?
b) After how many years will the investment be worth $20, 000?
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Exercise 16.2

Determine the final amount in a savings account under the given con-
ditions.

a) $700, compounded quarterly, at 3%, for 7 years
b) $1400, compounded annually, at 2.25%, for 5 years
c) $1400, compounded continuously, at 2.25%, for 5 years
d) $500, compounded monthly, at 3.99%, for 2 years
e) $5000, compounded continuously, at 7.4%, for 3 years
f) $1600, compounded daily, at 3.333%, for 1 year
g) $750, compounded semi-annually, at 4.9%, for 4 years

Exercise 16.3

a) Find the amount P that needs to be invested at a rate of 5% com-
pounded quarterly for 6 years to give a final amount of $2000.

b) Find the present value P of a future amount of A = $3500 invested
at 6% compounded annually for 3 years.

c) Find the present value P of a future amount of $1000 invested at a
rate of 4.9% compounded continuously for 7 years.

d) At what rate do we have to invest $1900 for 4 years compounded
monthly to obtain a final amount of $2250?

e) At what rate do we have to invest $1300 for 10 years compounded
continuously to obtain a final amount of $2000?

f) For how long do we have to invest $3400 at a rate of 5.125% com-
pounded annually to obtain a final amount of $3700?

g) For how long do we have to invest $1000 at a rate of 2.5% com-
pounded continuously to obtain a final amount of $1100?

h) How long do you have to invest a principal at a rate of 6.75% com-
pounded daily until the investment doubles its value?

i) A certain amount of money has tripled its value while being in a
savings account that has an interest rate of 8% compounded contin-
uously. For how long was the money in the savings account?
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Exercise 16.4

An unstable element decays at a rate of 5.9% per minute. If 40mg of
this element has been produced, how long will it take until 2mg of the
element are left? Round your answer to the nearest thousandth.

Exercise 16.5

A substance decays radioactively with a half-life of 232.5 days. How
much of 6.8 grams of this substance is left after 1 year?

Exercise 16.6

Fermium-252 decays in 10 minutes to 76.1% of its original mass. Find
the half-life of fermium-252.

Exercise 16.7

How long do you have to wait until 15mg of beryllium-7 have decayed
to 4mg if the half-life of beryllium-7 is 53.12 days?

Exercise 16.8

If Pharaoh Ramses II died in the year 1213 BC, then what percent of
the carbon-14 was left in the mummy of Ramses II in the year 2000?

Exercise 16.9

In order to determine the age of a piece of wood, the amount of carbon-
14 was measured. It was determined that the wood had lost 33.1% of
its carbon-14. How old is this piece of wood?

Exercise 16.10

Archaeologists uncovered a bone at an ancient resting ground. It was
determined that 62% of the carbon-14 was left in the bone. How old is
the bone?
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