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Chapter 15

Exponential equations and
applications

We now turn to exponential equations, and discuss the application of popu-
lation growth in Section 15.2. In the next chapter, we will study two more
common applications of exponential functions.

15.1 Exponential equations

Recall from Observation 14.5 that both the exponential and the logarithmic
functions are one-to-one:

bx = by ⇔ x = y

logb(x) = logb(y) ⇔ x = y

In Section 14.2 we used the second equivalence to solve logarithmic equations.
Now we use the first equivalence to solve exponential equations. Note that
we can immediately apply this to exponential equations with a common base.

Example 15.1

Solve for x.

a) 2x+7 = 32 b) 102x−8 = 0.01
c) 72x−3 = 75x+4 d) 53x+1 = 254x−7

Solution.
In these examples, we can always write both sides of the equation as
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262 CHAPTER 15. EQUATIONS AND APPLICATIONS OF exp

an exponential expression with the same base.

a) 2x+7 = 32 =⇒ 2x+7 = 25 =⇒ x+ 7 = 5 =⇒ x = −2

b) 102x−8 = 0.01 =⇒ 102x−8 = 10−2 =⇒ 2x− 8 = −2

=⇒ 2x = 6 =⇒ x = 3

Here it is useful to recall the powers of 10, which were also used to
solve the equation above.

104 = 10, 000
103 = 1000
102 = 100
101 = 10
100 = 1
10−1 = 0.1
10−2 = 0.01
10−3 = 0.001
10−4 = 0.0001

In general (n ≥ 1) :

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

10n = 1 00 · · ·00
︸ ︷︷ ︸

n zeros

10−n = 0.0 · · ·00
︸ ︷︷ ︸

n zeros

1

c) 72x−3 = 75x+4 =⇒ 2x− 3 = 5x+ 4
(−5x+3)
=⇒ −3x = 7

=⇒ x = −
7

3
d) 53x+1 = 254x−7 =⇒ 53x+1 = 52·(4x−7)

=⇒ 3x+ 1 = 2 · (4x− 7)

=⇒ 3x+ 1 = 8x− 14
(−8x−1)
=⇒ −5x = −15

=⇒ x = 3

By a similar reasoning, we can solve equations involving logarithms
whenever the bases coincide.

To solve exponential equations that do not have a common base on both
sides, we need to apply the logarithm, as stated in the following note.
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Note 15.2

An equation between two exponential expressions with the same base
can be simplified using the fact that the exponential is one-to-one.

bf(x) = bg(x) =⇒ f(x) = g(x)

To solve an equation between two exponential expressions with different
bases, we first apply a logarithm and then solve for x. Indeed, using the
identity logb(x

n) = n · logb(x) from (14.2), we can rewrite an exponent
as a coefficient and solve from there:

af(x) = bg(x) =⇒ log(af(x)) = log(bf(x))

=⇒ f(x) · log(a) = g(x) · log(b)

Example 15.3

Solve for x.

a) 3x+5 = 8 b) 132x−4 = 6 c) 5x−7 = 2x

d) 5.1x = 2.72x+6 e) 17x−2 = 3x+4 f ) 72x+3 = 113x−6

Solution.
We solve these equations by applying a logarithm (both log or ln will
work for solving the equation), and then we use the identity logb(x

n) =
n · logb(x) from (14.2).

a) 3x+5 = 8 =⇒ ln 3x+5 = ln 8 =⇒ (x+ 5) · ln 3 = ln 8

=⇒ x+ 5 =
ln 8

ln 3
=⇒ x =

ln 8

ln 3
− 5 ≈ −3.11

b) 132x−4 = 6 =⇒ ln 132x−4 = ln 6 =⇒ (2x− 4) · ln 13 = ln 6

=⇒ 2x− 4 =
ln 6

ln 13
=⇒ 2x =

ln 6

ln 13
+ 4

=⇒ x =
ln 6
ln 13 + 4

2
=

ln 6

2 · ln 13
+ 2 ≈ 2.35

c) 5x−7 = 2x =⇒ ln 5x−7 = ln 2x =⇒ (x− 7) · ln 5 = x · ln 2
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At this point, the calculation will proceed differently than the cal-
culations in parts (a) and (b). Since x appears on both sides of
(x − 7) · ln 5 = x · ln 2, we need to separate terms involving x from
terms without x. That is, we need to distribute ln 5 on the left:

(x− 7) · ln 5 = x · ln 2 =⇒ x · ln 5− 7 · ln 5 = x · ln 2

Next, we separate the terms with x from those without x by adding
7 · ln 5 and subtracting x · ln 2 to both sides:

=⇒ x · ln 5− x · ln 2 = 7 · ln 5
=⇒ x · (ln 5− ln 2) = 7 · ln 5

=⇒ x =
7 · ln 5

ln 5− ln 2
≈ 12.30

We apply the same solution strategy that we used in (c) for the
remaining parts (d)-(f ).

d) 5.1x = 2.72x+6 =⇒ ln 5.1x = ln 2.72x+6

=⇒ x · ln 5.1 = (2x+ 6) · ln 2.7
=⇒ x · ln 5.1 = 2x · ln 2.7 + 6 · ln 2.7
=⇒ x · ln 5.1− 2x · ln 2.7 = 6 · ln 2.7
=⇒ x · (ln 5.1− 2 · ln 2.7) = 6 · ln 2.7

=⇒ x =
6 · ln 2.7

ln 5.1− 2 · ln 2.7
≈ −16.68

e) 17x−2 = 3x+4 =⇒ ln 17x−2 = ln 3x+4

=⇒ (x− 2) · ln 17 = (x+ 4) · ln 3
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=⇒ x · ln 17− 2 · ln 17 = x · ln 3 + 4 · ln 3
=⇒ x · ln 17− x · ln 3 = 2 · ln 17 + 4 · ln 3
=⇒ x · (ln 17− ln 3) = 2 · ln 17 + 4 · ln 3

=⇒ x =
2 · ln 17 + 4 · ln 3

ln 17− ln 3
≈ 5.80

f ) 72x+3 = 113x−6 =⇒ ln 72x+3 = ln 113x−6

=⇒ (2x+ 3) · ln 7 = (3x− 6) · ln 11
=⇒ 2x · ln 7 + 3 · ln 7 = 3x · ln 11− 6 · ln 11
=⇒ 2x · ln 7− 3x · ln 11 = −3 · ln 7− 6 · ln 11
=⇒ x · (2 · ln 7− 3 · ln 11) = −3 · ln 7− 6 · ln 11

=⇒ x =
−3 · ln 7− 6 · ln 11
2 · ln 7− 3 · ln 11

≈ 6.13

Before we get to specific applications of exponential functions, we pause to
explain how we can identify the base b and the coefficient c of an exponential
function f(x) = c · bx.

Note 15.4

Let f(x) = c ·bx be an exponential function. Then, the parameters c and
b in the function f are uniquely determined by knowing the function
values f(x1) and f(x2) for any two distinct inputs x1 and x2.

Example 15.5

Let f(x) = c · bx. Determine the constant c and base b under the given
conditions.

a) f(0) = 5, f(1) = 20 b) f(0) = 3, f(4) = 48
c) f(2) = 160, f(7) = 5 d) f(−2) = 55, f(1) = 7

Solution.

a) Applying f(0) = 5 to f(x) = c · bx, we get

5 = f(0) = c · b0 = c · 1 = c
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Indeed, in general, we always have f(0) = c for any exponential
function. The base b is then determined by substituting the second
equation f(1) = 20.

20 = f(1) = c · b1 = 5 · b (÷5)
=⇒ b = 4

Therefore, f(x) = 5 · 4x. Note that in the last implication, we used
that the base must be positive.

b) As before, we get 3 = f(0) = c · b0 = c, and

48 = f(4) = c · b4 = 3 · b4 (÷3)
=⇒ 16 = b4

(exponentiate by 1
4 )=⇒ b = 16

1
4 = 2

Recall that 4
√
a = a

1
4 , and so the 4th root can be calculated with the

graphing calculator either via the exponent 1
4 or via the 4th root.

Therefore, f(x) = 3 · 2x.

c) When f(0) is not given, it is easiest to solve for b first. We can see
this as follows. Since 160 = f(2) = c · b2 and 5 = f(7) = c · b7, the
quotient of these equations eliminates c.

160

5
=

c · b2

c · b7
=

1

b5
=⇒ 32 = b−5

(exponentiate by (− 1
5 ))=⇒ b = 32−

1
5 =

1

32
1
5

=
1

2
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Then c is determined by any of the original equations.

160 = f(2) = c · b2 = c ·
(1

2

)2
= c ·

1

4
=⇒ c = 4 · 160 = 640

Therefore, f(x) = 640 ·
(
1
2

)x
.

d) This solution is similar to part (c).

55

7
=

f(−2)

f(1)
=

c · b−2

c · b1
=

1

b3
=⇒ b3 =

7

55

=⇒ b =
( 7

55

) 1
3 ≈ 0.503

55 = f(−2) = c · b−2 = c ·
(( 7

55

) 1
3
)−2

= c ·
( 7

55

)−2
3

=⇒ c =
55

(
7
55

)−2
3

= 55 ·
( 7

2
3

55
2
3

)

= 55
1
3 · 7

2
3 =

3
√
55 · 72 = 3

√
2695 ≈ 13.916

Therefore, f(x) = 3
√
2695 ·

(

3

√

7
55

)x

.

15.2 Applications of exponential functions

Exponential functions express situations where the growths of a quantity is
proportional to the amount of the quantity at a given time. This makes expo-
nential functions an important toy model for many applications. In this text
we will use exponential functions to model the following:

• population growths or decline

• compound interest on an investment

• radioactive decay
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In this section we will focus on population growth and decline, and we will
study compound interest and radioacitve decay in the next chapter.

Example 15.6

The mass of a bacteria sample is 2 · 1.02t grams after t hours.

a) What is the mass of the bacteria sample after 4 hours?
b) When will the mass reach 10 grams?

Solution.

a) The formula for the mass y in grams after t hours is y(t) = 2 · 1.02t.
Therefore, after 4 hours, the mass in grams is:

y(4) = 2 · 1.024 ≈ 2.16

b) We are seeking the number of hours t for which y = 10 grams.
Therefore, we have to solve:

10 = 2 · 1.02t (÷2)
=⇒ 5 = 1.02t

We need to solve for the variable in the exponent. In general, to solve
for a variable in the exponent requires an application of a logarithm
on both sides of the equation.

5 = 1.02t
(apply log)
=⇒ log(5) = log(1.02t)

Recall an important property that we can use to solve for t:

log(xt) = t · log(x) (15.1)

Using (15.1), we can now solve for t as follows:

log(5) = log(1.02t) =⇒ log(5) = t · log(1.02)
(divide by log(1.02))

=⇒ t =
log(5)

log(1.02)
≈ 81.3

After approximately 81.3 hours, the mass will be 10 grams.
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Example 15.7

The population size of a country was 12.7 million in the year 2010, and
14.3 million in the year 2020.

a) Assuming an exponential growth for the population size, find the
formula for the population depending on the year t.

b) What will the population size be in the year 2025, assuming the
formula holds until then?

c) When will the population reach 18 million?

Solution.

a) The growth is assumed to be exponential, so that y(t) = c · bt de-
scribes the population size depending on the year t, where we set
t = 0 corresponding to the year 2010. Then the example describes
y(0) = c as c = 12.7, which we assume in units of millions of people.
To find the base b, we substitute the data of t = 10 and y(t) = 14.3
into y(t) = c · bt.

14.3 = 12.7 · b10 =⇒
14.3

12.7
= b10 =⇒

(14.3

12.7

) 1
10

= (b10)
1
10 = b

=⇒ b =
(14.3

12.7

) 1
10 ≈ 1.012

The formula for the population size is y(t) ≈ 12.7 · 1.012t.

b) We calculate the population size in the year 2025 by setting t =
2025− 2010 = 15:

y(15) = 12.7 · 1.01215 ≈ 15.2

c) We seek t so that y(t) = 18. We solve for t using the logarithm.

18 = 12.7 · 1.012t =⇒
18

12.7
= 1.012t

=⇒ log
( 18

12.7

)

= log(1.012t)
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=⇒ log
( 18

12.7

)

= t · log(1.012)

=⇒ t =
log
(

18
12.7

)

log(1.012)
≈ 29.2

Adding 29.2 years to the year 2010, we see that the population will
reach 18 million in the year 2039.

In many instances the exponential function f(x) = c · bx is given via a rate
of growth r.

Definition 15.8: Rate of growth

An exponential function with a rate of growth r is a function f(x) = c·bx
with base

b = er

Note 15.9

Some textbooks use a different convention than the one given in Definition 15.8 for the rate
of growth. Indeed, sometimes a function with rate of growth r is defined as an exponential
function with base b = 1 + r, whereas we use a base b = er . Since er can be expanded as

er = 1+ r+ r2

2 + . . . , this shows that the two versions only vary by a difference of order 2 (that

is they differ by r2

2 plus higher powers of r), and so, for small r, the base 1 + r and the base er

are approximately equal.

Example 15.10

The number of PCs that are sold in the US in the year 2021 is approxi-
mately 350 million. Assuming that the number grows exponentially at a
constant rate of 3.6% per year, how many PCs will be sold in the year
2027?

Solution.
Since the rate of growth is r = 3.6% = 0.036, we obtain a base of
b = er = e0.036. Therefore, we will model the number of PCs sold (in
millions of PCs) by the function y(t) = c · (e0.036)t = c · e0.036·t. If we
set t = 0 for the year 2021, we find that c = 350, so the number of
sales is given by y(t) = 350 · e0.036·t. Since the year 2027 corresponds
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to t = 2027 − 2021 = 6, we can calculate the number of sales in the
year 2027 as

y(4) = 350 · e0.036 ≈ 434.

Approximately 434 million PCs will be sold in the year 2027.

Example 15.11

The size of an ant colony is decreasing at a rate of 1% per month. How
long will it take until the colony has reached 80% of its original size?

Solution.
Since the population size is decreasing, the rate is negative, that is
r = −1% = −0.01. We therefore obtain the base b = er = e−0.01. We
have a colony size of y(t) = c · e−0.01·t after t months, where c is the
original size. We need to find t so that the size is at 80% of its original
size c, that is, y(t) = 80% · c = 0.8 · c.

0.8 · c = c · e−0.01·t (÷c)
=⇒ 0.8 = e−0.01·t

=⇒ ln(0.8) = ln(e−0.01·t)

=⇒ ln(0.8) = −0.01 · t · ln(e)
︸︷︷︸

=1

=⇒ t =
ln(0.8)

−0.01
≈ 22.3

After approximately 22.3 months, the ant colony has decreased to 80%
of its original size.
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Example 15.12

a) The number of flu cases in the fall was increasing at a rate of 9.8%
per week. How long did it take for the number of flu cases to double?

b) The number of flu cases in the spring was decreasing at a rate of
15% per week. How long did it take for the number of flu cases to
decrease to a quarter of its size?

Solution.

a) The rate of change is r = 9.8% = 0.098 per week, so that the number
of flu cases is an exponential function with base b = e0.098. Therefore,
f(x) = c · e0.098·x denotes the number of flu cases, with c being the
initial number of cases at the time corresponding to x = 0. In order
for the number of flu cases to double, f(x) has to reach twice its
initial size, that is:

f(x) = 2c =⇒ 2c = c · e0.098·x
(÷c)
=⇒ 2 = e0.098·x
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=⇒ ln(2) = ln(e0.098·x)

=⇒ ln(2) = 0.098 · x ln(e)

=⇒ x =
ln(2)

0.098
≈ 7.07

Therefore, it took about 7.07 weeks until the number of flu cases
doubled.

b) Since the number of flu cases was decreasing, the rate of growth is
negative, r = −15% = −0.15 per week, so that we have an expo-
nential function with base b = er = e−0.15. To reach a quarter of its
initial number of flu cases, we set f(x) = c · e−0.15·x equal to 1

4c.

1

4
c = c · e−0.15·x (÷c)

=⇒
1

4
= e−0.15·x

=⇒ ln(
1

4
) = −0.15 · x · ln(e)

=⇒ x =
ln(14)

−0.15
≈ 9.24

It therefore took about 9.24 weeks until the number of flu cases de-
creased to a quarter.

15.3 Exercises

Exercise 15.1

Solve for x without using a calculator.

a) 6x−2 = 36 b) 23x−8 = 16
c) 105−x = 0.0001 d) 55x+7 = 1

125
e) 2x = 64x+1 f ) 4x+3 = 32x

g) 134+2x = 1 h) 3x+2 = 27x−3

i) 257x−4 = 52−3x j) 95+3x = 278−2x
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Exercise 15.2

Solve for x. First find the exact answer as an expression involving
logarithms. Then approximate the answer to the nearest hundredth
using a calculator.

a) 4x = 57 b) 9x−2 = 7 c) 2x+1 = 31
d) 3.82x+7 = 63 e) 5x+5 = 8x f ) 3x+2 = 0.4x

g) 1.022x−9 = 4.35x h) 4x+1 = 5x+2 i) 93−x = 4x−6

j) 2.47−2x = 3.83x+4 k) 49x−2 = 92x−4 l) 1.95−3x−4 = 1.24−7x

Exercise 15.3

Assuming that f(x) = c ·bx is an exponential function, find the constants
c and b from the given conditions.

a) f(0) = 4, f(1) = 12 b) f(0) = 5, f(3) = 40
c) f(0) = 3200, f(6) = 0.0032 d) f(3) = 12, f(5) = 48
e) f(−1) = 4, f(2) = 500 f ) f(2) = 3, f(4) = 15

Exercise 15.4

The number of downloads of a certain software application was 8.4
million in the year 2017 and 13.6 million in the year 2022.

a) Assuming an exponential growth for the number of downloads, find
the formula for the downloads depending on the year t.

b) Assuming the number of downloads will follow the formula from part
(a), what will the number of downloads be in the year 2026?

c) In what year will the number of downloaded applications reach the
25 million barrier?

Exercise 15.5

The population size of a city was 79, 000 in the year 1998 and 136, 000
in the year 2013. Assume that the population size follows an exponential
function.

a) Find the formula for the population size.
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b) What is the population size in the year 2030?

c) What is the population size in the year 2035?

d) When will the city reach its expected maximum capacity of one million
residents?

Exercise 15.6

The population of a city decreases at a rate of 2.3% per year. After how
many years will the population be at 90% of its current size? Round
your answer to the nearest tenth.

Exercise 15.7

A big company plans to expand its franchise and, with this, its number of
employees. For tax reasons, it is most beneficial to expand the number
of employees at a rate of 5% per year. If the company currently has
4730 employees, how many years will it take until the company has
6000 employees? Round your answer to the nearest hundredth.

Exercise 15.8

An ant colony has a population size of 4000 ants and is increasing at a
rate of 3% per week. How long will it take until the ant population has
doubled? Round your answer to the nearest tenth.

Exercise 15.9

The size of a beehive is decreasing at a rate of 15% per month. How
long will it take for the beehive to be at half of its current size? Round
your answer to the nearest hundredth.

Exercise 15.10

If the population size of the world is increasing at a rate of 0.5% per
year, how long does it take until the world population doubles in size?
Round your answer to the nearest tenth.
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