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Chapter 14

Properties of logarithms and
logarithmic equations

We now study more algebraic properties of the logarithm. We then use this
to solve logarithmic equations.

14.1 Algebraic properties of the logarithms

Recall the well-known identities for exponential expressions.

Review 14.1: Exponential identities

We have the following identities:

bx+y = bx · by

bx−y = bx

by

(bx)n = bnx
(14.1)

Writing the above identities in terms of f(x) = bx, these can also be
expressed as f(x+ y) = f(x)f(y), f(x− y) = f(x)/f(y), and f(nx) =
f(x)n.

Since the logarithm is the inverse function of the exponential, there are
some logarithmic identities that correspond to (14.1).
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Proposition 14.2: Logarithmic identities

The logarithm behaves well with respect to products, quotients, and
exponentiation. Indeed, for all positive real numbers 0 < b ̸= 1, x > 0,
y > 0, and real numbers n, we have:

logb(x · y) = logb(x) + logb(y)

logb(
x
y ) = logb(x)− logb(y)

logb(x
n) = n · logb(x)

(14.2)

In terms of the logarithmic function g(x) = logb(x), the properties in the
table above can be written: g(xy) = g(x)+ g(y), g(x/y) = g(x)− g(y),
and g(xn) = n · g(x).
Furthermore, for another positive real number 0 < a ̸= 1, we have the
change of base formula:

logb(x) =
loga(x)

loga(b)
(14.3)

In particular, we have the formulas from Equation (13.4) on page 243
when taking the base a = 10 and a = e:

logb(x) =
log(x)

log(b)
and logb(x) =

ln(x)

ln(b)

Proof. We start with the first formula logb(x · y) = logb(x) + logb(y). If we call u = logb(x) and
v = logb(y), then the equivalent exponential formulas are bu = x and bv = y. With this, we have

x · y = bu · bv = bu+v.

Rewriting this in logarithmic form, we obtain

logb(x · y) = u+ v = logb(x) + logb(y).

This is what we needed to show.

Next, we prove the formula logb(
x
y
) = logb(x) − logb(y). We abbreviate u = logb(x) and v = logb(y)

as before, and their exponential forms are bu = x and bv = y. Therefore, we have

x

y
=

bu

bv
= bu−v.
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Rewriting this again in logarithmic form, we obtain the desired result.

logb

(x

y

)
= u− v = logb(x)− logb(y)

For the third formula, logb(x
n) = n · logb(x), we write u = logb(x), that is in exponential form bu = x.

Then:
xn = (bu)n = bn·u =⇒ logb(x

n) = n · u = n · logb(x)

For the last formula (14.3), we write u = logb(x), that is, bu = x. Applying the logarithm with base a
to bu = x gives loga(b

u) = loga(x). As we have just shown before, loga(b
u) = u · loga(b). Combining

these identities with the initial definition u = logb(x), we obtain

loga(x) = loga(b
u) = u · loga(b) = logb(x) · loga(b)

Dividing both sides by loga(b) gives the result loga(x)
loga(b) = logb(x).

Example 14.3

Combine the terms using the properties of logarithms so as to write as
one logarithm.

a) 1
2 ln(x) + ln(y) b) 2

3(log(x
2y)− log(xy2))

c) 2 ln(x)− 1
3 ln(y)−

7
5 ln(z) d) 5 + log2(a

2 − b2)− log2(a+ b)

Solution.
Recall that a fractional exponent can also be rewritten with an nth root.

x
1
2 =

√
x and x

1
n = n

√
x =⇒ x

p
q = (xp)

1
q = q

√
xp

We apply the rules from Proposition 14.2.

a) 1
2 ln(x) + ln(y) = ln(x

1
2 ) + ln(y) = ln(x

1
2 y) = ln(

√
x · y)

b) 2
3(log(x

2y)− log(xy2)) = 2
3

(

log
(

x2y
xy2

))

= 2
3

(

log
(

x
y

))

= log

(
(

x
y

) 2
3

)

= log
(

3

√
x2

y2

)

c) 2 ln(x)− 1
3 ln(y)−

7
5 ln(z) = ln(x2)− ln( 3

√
y)− ln( 5

√
z7) = ln

(
x2

3
√
y· 5

√
z7

)

d) 5+ log2(a
2− b2)− log2(a+ b) = log2(2

5)+ log2(a
2− b2)− log2(a+ b)

= log2

(
25·(a2−b2)

a+b

)

= log2

(
32·(a+b)(a−b)

a+b

)

= log2(32 · (a− b))
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Example 14.4

Write the expressions in terms of elementary logarithms u = logb(x),
v = logb(y), and, in part (c), also w = logb(z). Assume that x, y, z > 0.

a) ln(
√
x5 · y2) b) log

(√√
x · y3

)

c) log2

(

3

√

x2

y
√
z

)

Solution.
In a first step, we rewrite the expression with fractional exponents, and
then apply the rules from Proposition 14.2.

a)

ln(
√
x5 · y2) = ln(x

5
2 · y2) = ln(x

5
2 ) + ln(y2)

=
5

2
ln(x) + 2 ln(y) =

5

2
u+ 2v

b)

log

(√√
x · y3

)

= log

(
(

x
1
2 y3
) 1

2

)

=
1

2
log
(

x
1
2 y3
)

=
1

2

(

log(x
1
2 ) + log(y3)

)

=
1

2

(
1

2
log(x) + 3 log(y)

)

=
1

4
log(x) +

3

2
log(y) =

1

4
u+

3

2
v

c)

log2

(

3

√

x2

y
√
z

)

= log2

(
(

x2

y · z 1
2

) 1
3

)

=
1

3
log2

(
x2

y · z 1
2

)

=
1

3

(

log2(x
2)− log2(y)− log2(z

1
2 )
)

=
1

3

(

2 log2(x)− log2(y)−
1

2
log2(z)

)

=
2

3
log2(x)−

1

3
log2(y)−

1

6
log2(z)

=
2

3
u−

1

3
v −

1

6
w
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14.2 Solving logarithmic equations

We can solve exponential and logarithmic equations by applying logarithms
and exponentials. Since the exponential and logarithmic functions are invert-
ible (they are inverses of each other), these functions necessarily have to be
one-to-one functions. As an algebraic expression, this means that:

Observation 14.5: y = bx and y = logb(x) are one-to-one

The exponential and the logarithmic functions are one-to-one:

bx = by ⇔ x = y (14.4)

logb(x) = logb(y) ⇔ x = y (14.5)

In the following examples, we use the above to solve equations that involve
logarithms.

Example 14.6

Solve for x.

a) log6(3x− 5) = log6(x− 1) b) log2(x+ 5) = log2(x+ 3) + 4
c) log(x) + log(x+ 4) = log(5) d) log3(x− 2) + log3(x+ 6) = 2
e) ln(x+ 2) + ln(x− 3) = ln(7)

Solution.

a) We can use Equation (14.5) as follows.

log6(3x− 5) = log6(x− 1) =⇒ 3x− 5 = x− 1
(−x+5)
=⇒ 2x = 4

=⇒ x = 2

An immediate check shows x = 2 is indeed a solution, since log6(3 ·
2− 5) = log6(1) and log6(2− 1) = log6(1).

b) We have to solve log2(x+5) = log2(x+3)+4. To combine the right-
hand side, recall that 4 can be written as a logarithm, 4 = log2(2

4) =
log2 16. With this remark we can now solve the equation for x.
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log2(x+5) = log2(x+3)+4 =⇒ log2(x+5) = log2(x+3)+log2(16)

=⇒ log2(x+ 5) = log2(16 · (x+ 3)) =⇒ x+ 5 = 16(x+ 3)

=⇒ x+5 = 16x+48
(−16x−5)
=⇒ −15x = 43 =⇒ x = −

43

15

c) We start by combining the logarithms.

log(x) + log(x+ 4) = log(5) =⇒ log(x · (x+ 4)) = log(5)
remove log
=⇒ x(x+ 4) = 5

=⇒ x2 + 4x− 5 = 0

=⇒ (x+ 5)(x− 1) = 0

=⇒ x = −5 or x = 1

Since the equation became a quadratic equation, we ended up with
two possible solutions x = −5 and x = 1. However, since x =
−5 would give a negative value inside a logarithm in our original
equation log(x)+log(x+4) = log(5), we need to exclude this solution.
The only solution is x = 1.

We note that the incorrect solution x = −5 is introduced in the very
first implication, since −5 in fact is a perfectly well-defined solution
of the equation log(x · (x+ 4)) = log(5),

log((−5) · (−5 + 4)) = log((−5) · (−1)) = log(5),

whereas −5 is not a solution of log(x) + log(x + 4) = log(5), since
log(−5) + log(−5 + 4) is undefined.

d) Using that 2 = log3(3
2):

log3(x− 2) + log3(x+ 6) = 2 =⇒ log3((x− 2)(x+ 6)) = log3(3
2)

=⇒ (x− 2)(x+ 6) = 32

=⇒ x2 + 4x− 12 = 9

=⇒ x2 + 4x− 21 = 0

=⇒ (x+ 7)(x− 3) = 0

=⇒ x = −7 or x = 3

We exclude x = −7, since we would obtain a negative value inside
a logarithm, so that the solution is x = 3.
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e) We combine the left-hand side of ln(x+2)+ ln(x−3) = ln(7) to get

ln((x+ 2) · (x− 3)) = log(7) =⇒ (x+ 2) · (x− 3) = 7

=⇒ x2 − 3x+ 2x− 6 = 7

=⇒ x2 − x− 13 = 0

To solve this, we need to use the quadratic formula (8.1).

x2 − x− 13 = 0 =⇒ x =
−(−1)±

√

(−1)2 − 4 · 1 · (−13)

2 · 1

=
1±

√
1 + 52

2
=

1±
√
53

2

To see which of these are actual solutions of ln(x+ 2)+ ln(x− 3) =

ln(7), note that we have to plug x = 1±
√
53

2 into x+ 2 and x− 3 and
make sure these are positive:

1 +
√
53

2
+ 2 ≈ 6.14 > 0 and

1 +
√
53

2
− 3 ≈ 1.14 > 0

1−
√
53

2
+ 2 ≈ −1.14 < 0 and

1−
√
53

2
− 3 ≈ −6.14 < 0

Thus, 1−
√
53

2 is not a solution (since, for example, ln(1−
√
53

2 + 2) is

undefined), and the only solution is x = 1+
√
53

2 .

In Examples 14.6 (c)–(e) our calculations showed that the given equalities
had two possible solutions. After checking these with the original equation,
we saw that one was an actual solution (making the equation true), while
the other was not (and therefore was rejected). In general, it may turn out
that all of the possible solutions are actual solutions, or none of the possible
solutions are actual solutions. This is demonstrated in the next example.
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Example 14.7

Solve for x.

a) log3(x+ 1) + log3(7− x) = log3(12)
b) log5(x− 7) + log5(2− x) = log5(4)

Solution.

a) Combining the logarithms gives log3((x+1)(7−x)) = log3(12), which
implies

(x+ 1)(7− x) = 12 =⇒ 7x− x2 + 7− x = 12

=⇒ 0 = x2 − 6x+ 5

=⇒ 0 = (x− 1)(x− 5)

=⇒ x = 1, x = 5

Since both give positive arguments in the logarithms, we have, in-
deed, two solutions x = 1 and x = 5.

b) We get log5((x− 7)(2− x)) = log5(4), and thus (x− 7)(2− x) = 4,
which can be rewritten as 2x − x2 − 14 + 7x = 4, and thus as
0 = x2− 9x+18. Factoring yields 0 = (x− 3)(x− 6), which has the
two possible solutions x = 3 and x = 6. However, 3 is not a solution,
since 2− 3 = −1 < 0; and 6 is not a solution since 2− 6 = −4 < 0.
We conclude that there is no solution.
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14.3 Exercises

Exercise 14.1

Combine the terms and write your answer as one logarithm.

a) 3 ln(x) + ln(y) b) log(x)− 2
3 log(y)

c) 1
3 log(x)− log(y) + 4 log(z) d) log(xy2z3)− log(x4y3z2)

e) 1
4 ln(x)−

1
2 ln(y) +

2
3 ln(z) f ) − ln(x2 − 1) + ln(x− 1)

g) 5 ln(x) + 2 ln(x4)− 3 ln(x) h) log5(a
2 + 10a+ 9)− log5(a+ 9) + 2

Exercise 14.2

Write the expressions in terms of elementary logarithms u = logb(x),
v = logb(y), and w = logb(z) (whichever are applicable). Assume that
x, y, z > 0.

a) log(x3 · y) b) log( 3
√
x2 · 4

√

y7) c) log
(√

x · 3
√
y
)

d) ln
(

x3

y4

)

e) ln
(

x2
√
y·z2

)

f ) log3

(√
x·y3√

z

)

g) log2

(
4√
x3·z
y3

)

h) log
(

100 5√z
y2

)

i) ln

(

3

√√
y·z4
e2

)

Exercise 14.3

Solve for x without using a calculator.

a) ln(2x+ 4) = ln(5x− 5) b) ln(x+ 6) = ln(x− 2) + ln(3)
c) log2(x+ 5) = log2(x) + 5 d) log(x) + 1 = log(5x+ 380)
e) log(x+ 5) + log(x) = log(6) f ) log2(x) + log2(x− 6) = 4
g) log6(x) + log6(x− 16) = 2 h) log5(x− 24) + log5(x) = 2
i) log4(x) + log4(x+ 6) = 2 j) log2(x+ 3) + log2(x+ 5) = 3
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