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Chapter 12

Solving inequalities

In this chapter we use our knowledge of functions to solve inequalities. In
Section 12.1, we study polynomial inequalities and absolute value inequali-
ties, while in Section 12.2 we solve rational inequalities.

12.1 Polynomial and absolute value inequalities

We will develop a general strategy for solving inequalities involving non-
linear functions. Linear inequalities, however, can be solved quite easily by
separating the variable x, while keeping in mind that multiplying or dividing
a negative number reverses the sign of the inequality.

−2x ≤ −6 =⇒ x≥3
but 2x ≤ 6 =⇒ x ≤ 3

Example 12.1

Solve for x.

a) −3x+ 7 > 19 b) 2x+ 5 ≥ 4x− 11
c) 3 < −6x− 4 ≤ 13 d) −2x− 1 ≤ 3x+ 4 < 4x− 20

Solution.
The first three calculations are as follows:

a) −3x+ 7 > 19
(−7)
=⇒ −3x > 12

(÷(−3))
=⇒ x < −4

b) 2x+ 5 ≥ 4x− 11
(−4x−5)
=⇒ −2x ≥ −16

(÷(−2))
=⇒ x ≤ 8

210
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c) 3 < −6x− 4 ≤ 13
(+4)
=⇒ 7 < −6x ≤ 17

(÷(−6))
=⇒ 7

−6 > x ≥ 17
−6 =⇒ −17

6 ≤ x < −7
6

Here, the last implication was obtained by switching the right and left
terms of the inequality. The solution set is the interval [−17

6 ,−
7
6).

For part (d), it is best to consider both inequalities separately.

−2x− 1 ≤ 3x+ 4
(−3x+1)
=⇒ −5x ≤ 5

(÷(−5))
=⇒ x ≥ −1,

3x+ 4 < 4x− 20
(−4x−4)
=⇒ −x < −24

(·(−1))
=⇒ x > 24.

The solution has to satisfy both inequalities x ≥ −1 and x > 24. Both
inequalities are true for x > 24 (since then also x ≥ −1), so that this
is in fact the solution: x > 24.

We now consider inequalities with polynomials of higher degree.

Example 12.2

Solve for x: x2 − 3x− 4 ≥ 0

Solution.
To get an idea of where x2 − 3x − 4 ≥ 0, we graph the left-hand side
function f(x) = x2 − 3x− 4.

-4 -3 -2 -1 0 1 2 3 4 5 6 7
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Note that the output x2 − 3x − 4 is greater or equal to zero when
the graph of f(x) is above or on the x-axis, which is marked in red.
Since the graph is a parabola, the graph can only switch from above to
below the x-axis (and the same from below to above the x-axis) when
it intersects the x-axis. These are the roots of the function.
So, we first find the roots of the polynomial, which, in this case, can be
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done by factoring.

x2 − 3x− 4 = 0 =⇒ (x− 4)(x+ 1) = 0 =⇒ x = 4 or x = −1

From the graph we see that f(x) ≥ 0 when x ≤ −1 or when x ≥ 4 (the
parts of the graph above the x-axis). To show this without using the
calculator, we can check one point in each of the intervals (−∞,−1),
(−1, 4), and (4,∞):

−1 4

Check x = −2: Check x = 0: Check x = 5:
f(−2) = (−2)2 − 3 · (−2)− 4 f(0) = 02 − 3 · 0− 4 f(5) = 52 − 3 · 5− 4

= 4 + 6− 4 = 0− 0− 4 = 25− 15− 4

= 6 ≥ 0 = −4 ! 0 = 6 ≥ 0

TRUE FALSE TRUE

The solution set S is therefore

S = {x|x ≤ −1 or x ≥ 4} = (−∞,−1] ∪ [4,∞).

The numbers −1 and 4 are included in the solution set since this is
where we have equality x2 − 3x − 4 = 0, and the original inequality
x2 − 3x− 4 ≥ 0 includes the equality.

Note 12.3: Solving inequalities

Analyzing the previous example, we use a three-step approach when
dealing with inequalities.

• In step one we find the x where the left-hand side and the right-
hand side of the inequality change from “>” to “<” and vice versa.
In particular, we check where the two sides are equal.

• In step two we check one x in each of the subintervals from step
one to decide whether they satisfy the original inequality or not.

For steps one and two we may also use the graphing calculator to gain
further insights.

• In step three we check which of the endpoints of the intervals are
included in the solution set.
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Example 12.4

Solve for x.

a) x2 + 3x− 10 < 0 b) x3 − 9x2 + 23x− 15 ≤ 0
c) x3 + 15x > 7x2 + 9 d) x4 − x2 ≥ 5(x3 − x)

Solution.

a) We can find the roots of the polynomial on the left by factoring.

x2+3x−10 = 0 =⇒ (x+5)(x−2) = 0 =⇒ x = −5 or x = 2

To see where f(x) = x2 + 3x − 10 is < 0, we graph it with the
calculator and check numbers in each interval where f(x) ̸= 0.

−5 2

Check x = −6: Check x = 0: Check x = 3:
f(−6) f(0) f(3)

= (−6)2 + 3 · (−6)− 10 = 02 + 3 · 0− 10 = 32 + 3 · 3− 10

= 36− 18− 10 = 0 + 0− 10 = 9 + 9− 10

= 8 ≮ 0 = −10 < 0 = 8 ≮ 0

FALSE TRUE FALSE

We see that f(x) < 0 when −5 < x < 2. The numbers −5 and 2 are
not included because the inequality “<” does not include equality.
The solution set is therefore S = {x| − 5 < x < 2} = (−5, 2).
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b) Here is the graph of the function f(x) = x3 − 9x2 + 23x − 15 from
the graphing calculator.

This graph shows that there are two intervals where f(x) ≤ 0 (the
parts of the graph below the x-axis). To determine the exact intervals,
we calculate where f(x) = x3 − 9x2 + 23x − 15 = 0. The graph
suggests that the roots of f(x) are at x = 1, x = 3, and x = 5. This
can be confirmed by a calculation:

f(1) = 13 − 9 · 12 + 23 · 1− 15 = 1− 9 + 23− 15 = 0,

f(3) = 33 − 9 · 32 + 23 · 3− 15 = 27− 81 + 69− 15 = 0,

f(5) = 53 − 9 · 52 + 23 · 5− 15 = 125− 225 + 115− 15 = 0.

Since f is a polynomial of degree 3, the roots x = 1, 3, 5 are all of the
roots of f . (Alternatively, we could have divided f(x), for example,
by x − 1 and used this to completely factor f and with this obtain
all the roots of f .) We next check each interval.

1 3 5

Check x = 0: Check x = 2: Check x = 4: Check x = 6:
f(0) = −15 ≤ 0 f(2) = 3 # 0 f(4) = −3 ≤ 0 f(6) = 16 # 0

TRUE FALSE TRUE FALSE

With this, we can determine the solution set to be the set:

solution set S = {x ∈ R|x ≤ 1, or 3 ≤ x ≤ 5}
= (−∞, 1] ∪ [3, 5].

Note that we include the roots 1, 3, and 5 in the solution set since
the original inequality was “≤” (and not “<”), which includes the
solutions of the corresponding equality.
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c) We rewrite the inequality in a way that has zero on one side so that
we can get a better view of where the corresponding equality holds.

x3 + 15x > 7x2 + 9 =⇒ x3 − 7x2 + 15x− 9 > 0

(Here it does not matter whether we bring the terms to the right
or the left side of the inequality sign! The resulting inequality is
different, but the solution to the problem is the same.) With this,
we now use the graphing calculator to find the graph of the function
f(x) = x3 − 7x2 + 15x− 9.

The graph suggests at least one root (the left-most intersection
point), but possibly one or two more roots. To gain a better un-
derstanding of whether the graph intersects the x-axis on the right,
we rescale the window size of the previous graph.

This viewing window suggests that there are two roots x = 1 and
x = 3. We confirm that these are the only roots with an algebraic
computation. First, we check that x = 1 and x = 3 are indeed roots:

f(1) = 13 − 7 · 12 + 15 · 1− 9 = 1− 7 + 15− 9 = 0,
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f(3) = 33 − 7 · 32 + 15 · 3− 9 = 27− 63 + 45− 9 = 0.

To confirm that these are the only roots (and we have not just missed
one of the roots that might possibly become visible after sufficiently
zooming into the graph), we factor f(x) completely. We divide f(x)
by x− 1:

x2 −6x +9

x− 1 x3 −7x2 +15x −9
−(x3 −x2)

−6x2 +15x −9
−(−6x2 +6x)

9x −9
−(9x −9)

0

and use this to factor f :

f(x) = x3 − 7x2 + 15x− 9 = (x− 1)(x2 − 6x+ 9)

= (x− 1)(x− 3)(x− 3)

This shows that 3 is a root of multiplicity 2, and so f has no other
roots than x = 1 and x = 3. The solution set consists of those
numbers x for which f(x) > 0. We check points in each interval.

1 3

Check x = 0: Check x = 2: Check x = 4:
f(0) = −9 ≯ 0 f(2) = 1 > 0 f(4) = 3 > 0

FALSE TRUE TRUE

From this calculation, as well as from the graph, we see that f(x) > 0
when 1 < x < 3 and when x > 3 (the roots x = 1 and x = 3 are
not included as solutions). We can write the solution set in several
different ways:

solution set S = {x|1 < x < 3 or x > 3} = {x|1 < x}− {3},

or in interval notation:

solution set S = (1, 3) ∪ (3,∞) = (1,∞)− {3}.
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d) Again, we move all terms to one side:

x4 − x2 ≥ 5(x3 − x) (distribute 5) =⇒ x4 − x2 ≥ 5x3 − 5x

(subtract 5x3, add 5x) =⇒ x4 − 5x3 − x2 + 5x ≥ 0.

We graph f(x) = x4 − 5x3 − x2 + 5x with the graphing calculator.

The graph suggests the roots x = −1, 0, 1, and 5. This can be
confirmed by a straightforward calculation.

f(−1) = (−1)4 − 5 · (−1)3 − (−1)2 + 5 · (−1) = 1 + 5− 1− 5 = 0,

f(0) = 04 − 5 · 03 − 02 − 5 · 0 = 0,

f(1) = 14 − 5 · 13 − 12 + 5 · 1 = 1− 5− 1 + 5 = 0,

f(5) = 54 − 5 · 53 − 52 + 5 · 5 = 125− 125− 25 + 25 = 0.

The roots x = −1, 0, 1, and 5 are the only roots, since f is of degree
4. We check points in each interval.

−1 0 1 5

Check x = −2: f(−2) = (−2)4 − 5 · (−2)3 − (−2)2 + 5 · (−2)

= 42 ≥ 0 TRUE

Check x = −0.5: f(−0.5) = (−0.5)4 − 5 · (−0.5)3 − (−0.5)2 − 5 · (−0.5)

≈ −2.1 ! 0 FALSE

Check x = 0.5: f(0.5) = 0.54 − 5 · 0.53 − 0.52 + 5 · 1
≈ 1.7 ≥ 0 TRUE
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Check x = 2: f(2) = 24 − 5 · 23 − 22 + 5 · 5 = −18 ! 0 FALSE

Check x = 6: f(6) = 64 − 5 · 63 − 62 + 5 · 6 = 210 ≥ 0 TRUE

Since the inequality we want to solve is f(x) ≥ 0, which includes
equality, the zeros of f are included in the solution, and so the
solution set is:

S = (−∞,−1] ∪ [0, 1] ∪ [5,∞)

Polynomial inequalities come up, for example, when finding the domain of
functions involving a square root, as we will show in the next example.

Example 12.5

Find the domain of the given functions.

a) f(x) =
√
x2 − 4 b) g(x) =

√
x3 − 5x2 + 6x

Solution.

a) The domain of f(x) =
√
x2 − 4 is given by all x for which the square

root is non-negative. In other words, the domain is given by numbers
x with x2−4 ≥ 0. Graphing the function y = x2−4 = (x+2)(x−2),
we see that this is precisely the case when x ≤ −2 or x ≥ 2.
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Therefore, the domain is Df = (−∞,−2] ∪ [2,∞). This is also
confirmed by the graph of f , which is shown below.

b) For the domain of g(x) =
√
x3 − 5x2 + 6x, we need find those x with

x3 − 5x2 + 6x ≥ 0. To this end, we graph y = x3 − 5x2 + 6x and
check for its roots.

From the graph above, we calculate the roots of y = x3 − 5x2 + 6x
at x = 0, x = 2, and x = 3. Furthermore, the graph shows that
x3 − 5x2 + 6x ≥ 0 precisely when 0 ≤ x ≤ 2 or 3 ≤ x. The domain
is therefore Dg = [0, 2] ∪ [3,∞).

A similar computation to that for polynomial inequalities also applies to
absolute value inequalities, which we show in the next example.
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Example 12.6

Solve for x: |2x− 3| ≥ 7

Solution.
To analyze |2x− 3| ≥ 7, we graph the function f(x) = |2x− 3|, as well
as the function g(x) = 7.

To see where |2x − 3| ≥ 7, we first find the values where |2x− 3| = 7.
Note that 2x−3 has an absolute value of 7 exactly when 2x−3 is either
7 or −7.

|2x− 3| = 7 =⇒ 2x− 3 = ±7

=⇒ 2x− 3 = 7 =⇒ 2x− 3 = −7
(add 3) =⇒ 2x = 10 (add 3) =⇒ 2x = −4

(divide by 2) =⇒ x = 5 (divide by 2) =⇒ x = −2

We next check in each interval whether |2x− 3| ≥ 7:

−2 5

Check x = −3: Check x = 0: Check x = 6:

|2 · (−3)− 3|
?
≥ 7 |2 · 0− 3|

?
≥ 7 |2 · 6− 3|

?
≥ 7

|− 9|
?
≥ 7 |− 3|

?
≥ 7 |9|

?
≥ 7

9
?
≥ 7 3

?
≥ 7 9

?
≥ 7

TRUE FALSE TRUE

Since the values at x = −2 and x = 5 give equality, the solution set
for |2x− 3| ≥ 7 is given by S = (−∞,−2] ∪ [5,∞).
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12.2 Rational inequalities

Rational inequalities are solved with a similar three-step process that was
used to solve the polynomial and absolute value inequalities before (see Note
12.3 page 212). That is, in step 1, we find possible inputs where the inequality
may change its sign (for example at the x-intercepts). In step 2, we check in
which of the intervals the given inequality is true, and which are thus part of
the solution set. Finally, in step 3, we determine which of the endpoints of
the intervals should be included in the solution set.

Example 12.7

Solve for x.

a) x−1
x−4 ≤ 0 b) 7x−3

6x+5 > 0 c) x2−5x+6
x2−5x ≥ 0

d) 5
x−2 ≤ 3 e) 4

x+5 < 3
x−3

Solution.

a) We first graph the function f(x) = x−1
x−4 .

As shown above, the graph changes from above to below the x-axis
at the x-intercept x = 1, and then changes from below to above the
x-axis at the vertical asymptote at x = 4. Using both x = 1 and
x = 4, we get the three intervals (−∞, 1), (1, 4), and (4,∞), which
we will check as to whether f(x) ≤ 0 or not.

1 4

Check x = 0: Check x = 2: Check x = 5:
0−1
0−4

?
≤ 0 2−1

2−4

?
≤ 0 5−1

5−4

?
≤ 0

−1
−4 = 1

4

?
≤ 0 1

−2

?
≤ 0 4

1

?
≤ 0

FALSE TRUE FALSE
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Since the inequality is x−1
x−4 ≤ 0, we include the root at x = 1 in the

solution set. However, we do not include x = 4, since this is a vertical
asymptote of f and would not give a solution of the inequality, but
would rather give an undefined expression on the left-hand side of
the inequality. The solution set is therefore S = [1, 4).

b) To solve 7x−3
6x+5 > 0, we graph the function f(x) = 7x−3

6x+5 .

x-intercept: 7x− 3 = 0 =⇒ 7x = 3 =⇒ x =
3

7

vertical asymptote: 6x+ 5 = 0 =⇒ 6x = −5 =⇒ x = −
5

6

Note that 3
7 ≈ 0.429 is indicated in the graph. The vertical asymptote

is approximately at −5
6 ≈ −0.833. We can therefore use −1, 0, and

1 to check the inequality f(x) = 7x−3
6x+5 > 0 on the corresponding

intervals (−∞,−5
6), (−

5
6 ,

3
7) and (37 ,∞).

−5
6

3
7

Check x = −1: Check x = 0: Check x = 1:
7·(−1)−3
6·(−1)+5

?
> 0 7·0−3

6·0+5

?
> 0 7·1−3

6·1+5

?
> 0

−10
−1 = 10

?
> 0 −3

5

?
> 0 4

11

?
> 0

TRUE FALSE TRUE

For the solution set, we do not include the root of f since the inequal-
ity is strict f(x) > 0, and we never include the vertical asymptote of
f . The solution set is therefore

S =
(

−∞,−5
6

)

∪
(
3
7 ,∞

)
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c) Here is the graph of x2−5x+6
x2−5x in the standard window.

Factoring numerator and denominator, we can determine vertical
asymptotes, holes, and x-intercepts.

x2 − 5x+ 6

x2 − 5x
=

(x− 2)(x− 3)

x(x− 5)

The vertical asymptotes are at x = 0 and x = 5, the x-intercepts are
at x = 2 and x = 3. To see where x2−5x+6

x2−5x ≥ 0, we check numbers in
each of the corresponding intervals.

0 2 3 5

Check x = −1: f(−1) =
(−1)2−5·(−1)+6
(−1)2−5·(−1) = 12

6 ≥ 0 TRUE

Check x = 1: f(1) = 12−5·1+6
12−5·1 = 2

−4 ! 0 FALSE

Check x = 2.5: f(2.5) = 2.52−5·2.5+6
2.52−5·2.5 = −0.25

−6.25 ≥ 0 TRUE

Check x = 4: f(4) = 42−5·4+6
42−5·4 = 2

−4 ! 0 FALSE

Check x = 6: f(6) = 62−5·6+6
62−5·6 = 12

6 ≥ 0 TRUE

Combining all of the above information, we obtain the solution set:

solution set S = (−∞, 0) ∪ [2, 3] ∪ (5,∞)
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Notice that the x−intercepts x = 2 and x = 3 are included in the
solution set, whereas the values x = 0 and x = 5 associated with the
vertical asymptotes are not included, since the fraction is not defined
for x = 0 and x = 5.

d) To find the numbers x where 5
x−2 ≤ 3, we can graph the two functions

on the left- and right-hand side of the inequality.

However, this can sometimes be confusing, and we recommend rewrit-
ing the inequality so that one side becomes zero. Then, we graph
the function on the other side of the new inequality.

5

x− 2
≤ 3 ⇐⇒

5

x− 2
− 3 ≤ 0 ⇐⇒

5− 3(x− 2)

x− 2
≤ 0

⇐⇒
5− 3x+ 6

x− 2
≤ 0 ⇐⇒

11− 3x

x− 2
≤ 0

Therefore, we graph the function f(x) = 11−3x
x−2 .

The vertical asymptote is x = 2, and the x-intercept found is thus

11− 3x = 0 =⇒ 11 = 3x =⇒ x =
11

3
≈ 3.667.
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We check the inequality 11−3x
x−2 ≤ 0 at 0, 3, and 4.

2 11
3

Check x = 0: Check x = 3: Check x = 4:

11−3·0
0−2

?
≤ 0 11−3·3

3−2

?
≤ 0 11−3·4

4−2

?
≤ 0

11
−2

?
≤ 0 2

1

?
≤ 0 −1

2

?
≤ 0

TRUE FALSE TRUE

This, together with the fact that f is undefined at 2 and f(113 ) = 0,
gives the following solution set:

S =
(

−∞, 2
)

∪
[11

3
,∞
)

e) We want to find those numbers x for which 4
x+5 < 3

x−3 . One way to do
this is given by graphing both functions f1(x) =

4
x+5 and f2(x) =

3
x−3 ,

and by trying to determine where f1(x) < f2(x). The graphs of f1
and f2 are displayed below. Note that it may sometimes not be
completely obvious to determine in which intervals f1 is greater than
f2.

As before, we recommend rewriting the inequality so that one side
of the inequality becomes zero:

4

x+ 5
<

3

x− 3
⇐⇒

4

x+ 5
−

3

x− 3
< 0

⇐⇒
4(x− 3)− 3(x+ 5)

(x+ 5)(x− 3)
< 0

⇐⇒
4x− 12− 3x− 15

(x+ 5)(x− 3)
< 0
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Simplifying this, we get the inequality: x−27
(x+5)(x−3) < 0. We therefore

graph the function f(x) = x−27
(x+5)(x−3) .

The vertical asymptotes of f(x) = x−27
(x+5)(x−3) are x = −5 and x = 3.

The x-intercept is (27, 0). We next check the corresponding intervals.
−5 3 27

Check x = −6: f(−6) =
(−6)−27

((−6)+5)·((−6)−3) =
−33
9 < 0 TRUE

Check x = 0: f(0) = 0−27
(0+5)·(0−3) =

−27
−15 = 27

15 ≮ 0 FALSE

Check x = 4: f(4) = 4−27
(4+5)·(4−3) =

−23
9 < 0 TRUE

Check x = 28: f(28) = 28−27
(28+5)·(28−3) =

1
825 ≮ 0 FALSE

Note that the graph of f is indeed above the x-axis for x > 27.

Therefore, the solution set is

solution set S = {x|x < −5, or 3 < x < 27} = (−∞,−5) ∪ (3, 27).

Here, the x-intercept x = 27 is not included in the solution set since
the inequality had a “<” and not “≤” sign.
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12.3 Exercises

Exercise 12.1

Solve for x.

a) 5x+ 6 ≤ 21 b) 3 + 4x > 10x
c) 2x+ 8 ≥ 6x+ 24 d) 9− 3x < 2x− 13
e) −5 ≤ 2x+ 5 ≤ 19 f ) 15 > 7− 2x ≥ 1
g) 3x+ 4 ≤ 6x− 2 ≤ 8x+ 5 h) 5x+ 2 < 4x− 18 ≤ 7x+ 11

Exercise 12.2

Solve for x.

a) x2 − 5x− 14 > 0 b) x2 − 2x ≥ 35
c) x2 − 4 ≤ 0 d) x2 + 3x− 3 < 0
e) 2x2 + 2x ≤ 12 f ) 3x2 < 2x+ 1
g) x2 − 4x+ 4 > 0 h) x3 − 2x2 − 5x+ 6 ≥ 0
i) x3 + 4x2 + 3x+ 12 < 0 j) −x3 − 4x < −4x2

k) x4 − 10x2 + 9 ≤ 0 l) x4 − 5x3 + 5x2 + 5x < 6
m) x4 − 5x3 + 6x2 > 0 n) x5 − 6x4 + x3 + 24x2 − 20x ≤ 0

o) x5 − 15x4 + 85x3 − 225x2 + 274x− 120 ≥ 0,
p) x11 − x10 + x− 1 ≤ 0

Exercise 12.3

Find the domain of the functions below.

a) f(x) =
√
x2 − 8x+ 15 b) f(x) =

√
9x− x3

c) f(x) =
√

(x− 1)(4− x) d) f(x) =
√

(x− 2)(x− 5)(x− 6)

e) f(x) = 5√
6−2x

f ) f(x) = 1√
x2−6x−7
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Exercise 12.4

Solve for x.
a) |2x+ 7| > 9 b) |6x+ 2| < 3

c) |5− 3x| ≥ 4 d) |− x− 7| ≤ 5

e) |1− 8x| ≥ 3 f ) 1 >
∣
∣2 + x

5

∣
∣

Exercise 12.5

Solve for x.

a) x+2
x+4 ≥ 0 b) x−5

2−x > 0 c) 9x−11
7x+15 ≤ 0 d) 13x+4

6x−1 ≥ 0

e) 7x−2
3x+8 < 0 f ) 4x−4

x2−4 ≥ 0 g) x−2
x2−4x−5 < 0 h) x2−9

x2−4 ≥ 0

i) x−3
x+3 ≤ 4 j) 1

x+10 > 5 k) 2
x−2 ≤ 5

x+1 l) x2

x+4 ≤ x
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