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Chapter 11

Exploring discontinuities and
asymptotes

We have seen that rational functions have certain features that were not
present in polynomials, such as discontinuities. These discontinuities can
be removable (“holes”), or non-removable (at vertical asymptotes), where the
function can become arbitrarily large, and thus approaches infinity.

It may be perplexing to think about functions approaching an infinite value,
as we do not experience infinities in everyday life. Indeed, a quantity that
approaches an infinite value would probably come with some strange side
effects. For example, it is theorized that gravity approaches an infinite value
at the center of a black hole (often called the singularity), and we definitely
do not recommend to get anywhere near such an object!
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11.1. MORE ON RATIONAL FUNCTIONS 195

In this chapter, we will explore the behavior of functions near an input
xo. In Section 11.1 we look at asymptotes and removable sinqularities for
rational functions, while we look at the general case in Section 11.2.

11.1 More on rational functions

We now explore the asymptotic behavior of rational functions near a discon-
tinuity, as well as the behavior at infinity in more detail. First, we review
how one can recover the formula of a rational function f(z) = % from its
asymptotes and roots.

Example 11.1

The graph of the rational function f(z) = fl% is displayed below, where

p and ¢ are polynomials of degree 2. Assuming that all intercepts and
asymptotes are at integer values as indicated (in red), find these inter-

cepts and asymptotes. Use this information to find a formula for f(x).

Solution.
The intercepts and asymptotes can be read off from the graph:

x-intercepts : (x,y) = (—4,0) and (z,y) = (—1,0)
y-intercept : (xz,y) = (0,2)
vertical asymptotes :

T
horizontal asymptote : y=-1
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Since the z-intercepts determine the roots of the numerator of f, and
the vertical asymptotes determine the roots of the denominator of f, we
see that f must be of the form

(x+4) - (z+1)

fe)=a ey @1

where a is some overall coefficient. The coefficient a can be determined
either via the horizontal asymptote or via the y-intercept. In the first

case, note that the horozintal asymptote of f(z) = a~% isy=a,so
that we conclude a = —1. For the latter case, note that the y-intercept

z+4)-(z+1) . . .
of f(z) =a- % isaty = f(0) =a- 2.‘(‘_11) = a - (—2), which,
according to the graph, has to be equal to 2:

=l — a= —ll

_(_ . (z+4)-(z+1)
Therefore, f(z) = (-1) - T O
Example 11.2
The graph of the rational function f(z) = % is displayed below, where

p is a polynomial of degree 1 and ¢ is a polynomial of degree 3. Assum-
ing that all intercepts and asymptotes are at integer values as indicated
(in red), find these intercepts and asymptotes. Use this information to
find a formula for f(x).

e | —
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Solution.

From the graph, we see that the intercepts and asymptotes are:
x-intercept : (z,y) = (2,0)
y-intercept : (x,y) = (0,-1)
vertical asymptotes : r=-3andr=1landx =14
horizontal asymptote : y=20

Using the z-intercept and the vertical asymptotes, we see that f is of

the form
(z—2)

x)=a-
/(=) (x4+3)-(z—1)-(z—4)
for some coefficient a. Note that the horizontal asymptote is auto-
matically y = 0, since the denominator has a higher degree than the
numerator. To find the coeffient a, we use the y-intercept, which in this
formula is given by y = f(0) = a- m =a- 32 =a- 7. Since the
graph shows a y-intercept at y = —1, it follows that

_1
—1 = e — 6
a 6 a

_ (z—2)
Therefore. f(x) =6- Wﬁm ]

Example 11.3

The graph of the function y = f(x) is displayed below.

\




198 CHAPTER 11. EXPLORING DISCONTINUITIES & ASYMPTOTES

Assume that f(z) = % is a rational function, where p and ¢ are poly-
nomials of degree 2; that all intercepts and asymptotes are at integer
values (indicated in red); and that f has a removable discontinuity at

r= -3
a) Use this information to find a formula for f(x).

b) Find the coordinates of the removable discontinuity.
Solution.

a) The z-intercept is at (2,0), the y-intercept is at (0, 1), the vertical
asymptote is at x = 4, and the horizontal asymptote is at y = 2.

The discontinuity at © = —3 requires a factor of (z + 3) in the
(z—2)-(z+3)
(@—4)-(+3)"
the horizontal asymptote y = 2 we see that a = 2, so that

(x—2)(x+3)
(x—4)-(x+3)

numerator and the denominator, so that f(z) = a - From

flz)=2-

b) To find the y-coordinate of the discontinuity, we may try to plug
x = —3 into the function f. Unfortunately, this does not lead to an
answer, since f(—3) is undefined. However, we can see that for all
x # —3, the function f coincides with g(z) = 2 - =2 after canceling
the factor (z + 3). The graph of g is displayed below.
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Evaluating g at z = —3 gives

._3_2_2.__5_9
—3—4 - 7 7

9(=3)=2

This shows that the coordinates of the discontinuity of f are (z,y) =
(—3,%2). We say that, “as = approaches —3, f(z) approaches %",
which is written as:

10
asr — -3, f(x)— =

This is also called a limit, written as: lim_f(z) = 2.
z——3

O

We also want to study a rational function as x becomes arbitrarily large
(having large positive or large negative values), or, saying it differently, when
x approaches +infinity (x — oo or x — —o0). We already saw the behavior of
some rational functions for this case when we considered horizontal asymp-
totes. More generally, we can describe the behavior of a rational function
when  — £00 as follows.

The asymptotic behavior of a rational function f(z) = %, in the case

where the degree of p is greater than the degree of ¢, can be calculated
by performing a long division. If the long division has a quotient g(x)
and a remainder r(x), then

) ()

Now, since deq(r) <deg(q), the fraction % approaches zero as z

approaches +oo, so that f(z) =~ g(x) for large |x|. Thus, f(z) is
approximately g(z) for large |z|.
If g(x) is a linear function (that is, a polynomial of degree 1), then g is
called the slant asymptote of f.
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Example 11.5

Find the slant asymptote of f(z) = GxSleéf;f_OZHS.

Solution.
We divide the polynomials via a long division:

3z -5

20° + 7z —4| 628  +1la® —40r +18
— (62 +212%  —12x)

—102? —28z +18

—(=102  —35z  +20)

Tx -2

Therefore, f(x) = 3z — 5 + 545>, so that for large |z|, we have

f(z) = 3z — 5. Thus, the slant asymptote of f(z) is y = 3z — 5.

+ 8 « | L L

N r=3%-5
@ = 6x° + 11x% — 40x + 18
22 + Tx — 4

@

Note that the slant asymptote has positive slope, so that it goes to +oco
when x becomes large (that is z — o0), while it goes to —oo when
T — —00.

We also write this as lim f(z) =400 and lim f(z) = —o0. O

r—r—+00 Tr——00

11.2 Optional section: Limits

In Example 11.3 we implicitly calculated the limit as the y-coordinate of the
removable discontinuity. A full treatment of limits is the subject of a course
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in calculus, which will provide many more tools to evaluate limits. For now,
we will only explore some intuition regarding limits mainly stemming from
studying graphs of functions.

Definition 11.6: Limit

Let y = f(z) be a function, which is defined near a number a. We write

asr —a, f(r)—1L

if f(z) approaches L as = approaches a. Alternatively, we also write

lim f(z) =L

Tr—a

and we call L the limit of f as = approaches a.

This definition contains several concepts that were not made precise, such as what it means to
be “near a’, what it means to “approach a number a”, or what it means to “approach L as z
approaches a”.

A precise version of a limit will formally specify that f(z) will be within an arbitrarily small
distance from L for all z close enough to a. This is what is done, for example, in the e-§ definition
of a limit. The details are topics of a course in calculus, and are beyond the scope of this text.

We also consider the case when x approaches a number from one side
only, that is, from the right or from the left:

e if f(x) approaches L as z approaches a from the right, then we
write

asr—a", f(z)—L or lim f(z) =L
r—a

e if f(z) approaches L' as = approaches a from the left, then we
write

asx —a, f(z)—=L or lim f(z) =L
Tr—a—

|
 from left ¢ fromright
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Note 11.7

We note that f(z) approaches L when x approaches a, precisely when
f(x) approaches L when z approaches a from the right and from the
left.

(hm flz) = L) & (Jﬂ f@)=Land lim f(z)= L)

r—a

We explore these concepts in the next examples.

Example 11.8

The graph of y = f(z) is shown below.
s g ......... P 7. ny(x)

Find the limit from the right, the limit from the left, and the (two-sided)
limit as = approaches the following numbers.

a)aszr — 3 b)asz — 5 c)asx — 7 d) as x — —2
Solution.
a) The limits from the right and from the left approaching 3 are
111131+ f(z) = 2 and lirg f(z) = 2. Therefore, we also have
T—r T—o

lim f(z) = 2.

b) The limits from the right and left approaching 5 are lim f(x) = 6

xz—51
and lim f(z) = 4. Since these limits differ, the two-sided limit
T—5~

lim f(x) does not exist.
z—5
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c) The limits approaching 7 are lilrgl+ f(z) =5 and hI? f(z) =5, and
T— T
therefore also lin%f(x) = 5. Note that in this case f(7) is also
T—r

defined and f(7) = 5 coincides with the limit. (We say that f is
continuous at 7.)

d) The limits approaching —2 are equal, lin%Jrf(m) = 3 and
T——
lim f(x) = 3, and therefore lim f(x) = 3. In this case f(—2)
z——27F z—>—2

is also defined but does not coincide with the limit.

O

Example 11.9

Use the graphing calculator to identify the stated limits.

.ox—1 . x|z =2 . T+5 .
o) Im =27 B lim——— 9 lim =73 d limz" Il
Solution.

a) We plug numbers into the graphing calculator that approach 1 from
the right and from the left. Suitable numbers from the right are: 1.1,
1.01, 1.001, etc. Suitable numbers from the left are: 0.9, 0.99, 0.999,

etc.
p— .
+ L e & « F
;
oo :
Y x —1 _
a
x—1 2 =
* Vx —1
1.1 2.0488088
1.01 2.0049876
1.001 2.0004999
@ 1
3
x—1
% Vx -1
0.9 1.9486833
0.99 1.9949874
“  0.999 1.9994999 0 1 2
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These evaluations appear to indicate that f(z) approaches 2 as x
approaches 1.

Note that we only used the graphing calculator to get an idea what
the limit might be. A precise evaluation of the limit will require a
more thorough analysis of the function at x = 1. Such an analysis
is beyond the scope of this exercise. Nevertheless, we will provide
this analysis for one case (that is for part (a) of this example) in the
hope that it might help some readers, but will not do so for parts (b)
and (c). Note that for z # 1:

r—1  (z-1)(Voz+1) (z-1)H2+1) _ il
V-1 (Ve-1)(z+1) r—1 B
Therefore, the function y = /241 coincides with y = f(z) for x # 1,

but does not have a discontinuity at z = 1. Evaluatingy = /z+1 at
x=1givesy =v1+1=1+1=2, which shows that lirq f(z) =2.
T—r

fx) =

b) Evaluating % to the right and left of 2 gives:

+ Lo & « £
@ X |x—2] =+
S 5 i
,//
x|x—2| a
X x—2
N
2.1 2.1 b
2,01 2.01 \
2.001 2.001 . 5
1.9 -1.9
1.99 -1.99
1.999 —1.999
- ;
. Jz—2 . Jz—2 .
Therefore, lim % = 2 and lim % = —2. As these limits

z—2+ T—2~

. g dxr—2 .
differ, lm% % does not exist.
xr—r

Tr—
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c) We evaluate Zt2 close to —3.
z+3
+ - &
N _x+5
v Y= x+3
x+95
x x+3
=29 21
-2.99 201
—2.999 2001
-31 -19
—3.01 —-199
i —3.001 —1999

From this, it is reasonable to

205

« F
10
+
\h—
10 0 10
-10
conclude that lim £ = 400 and

z——g+ T+3

lim i—ig = —00, so that lim %2 does not exist. Note that this also
z——3~ z——3 T+3
aligns with our knowledge about the vertical asymptote at x = —3.

d) Note that y = 22 - In(z) is only defined for = > 0, since this is where

In(z) is defined.

x?‘ - ln(x)

0.1

0.01

0.001

0.0001

0.00001

E -

—0.023025851

—4.60517 x 1074

—6.907755 x 1070

-9.21034x 1078

—1.151293 x 1077

«

Moreover, when = — 0T, we know that 22 approaches 0, but In(z) ap-
proaches —oo. Interestingly, from the values shown the calculators,
it appears that this product approaches lim+ 2?2 -In(x) = 0.

x—0

O
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11.3 Exercises

Below are the graphs of rational functions whose numerators and de-
nominators are polynomials of degree 2. All intercepts and asymptotes
are at integer values, indicated in red. Find all intercepts and asymp-
totes, and find a formula for each function.

°) | \
\
N
S . §
\ \
\ \
1 \
b) |
R
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Below are the graphs of rational functions whose numerators are poly-
nomials of degree 1 and whose denominators are polynomials of degree
3. All intercepts and asymptotes are at integer values indicated in red.
Find all intercepts and asymptotes, and find a formula for each function.

=== === wil WAV | NI .. -
e N Y N S N
A
T 1 ° —f
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Find the domain of each rational function below. ldentify the removable
discontinuities and find their z- and y-coordinates.

_ (z=3)(z—4) _ 3(z+2)(z—5)
a) f(2) = Groen) b) f(2) = e
_ 7(x—2) _ x?46248
C) f(x) T (z+3)(z—2)(z—6) d) f(x) - :c?isz
- $2— X
e) f(:E) = x§i$26 f) f(l‘) = $3+;2_—|—2:;

Find the slant asymptote of the rational function.

3 2_ _ 3_ 2 —
a) f(a) = Bppg2e=tl  b) f(x) = o gettesnt
0 flz) = BFRe=E= d) flo) = et

The graph of the function y = f(x) is shown below.

.5,

Find the limits of f(x) as = approaches the values indicated below.

a)x — 2% b) z — 2~ c)x— 2
d) z — —3* e) z — —3~ f)z — =3
gz — —1" h) 2 — —1~ )xr——1

i) x— 4t k) z — 4~ )z — 4
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Choose inputs that approach the given value from the indicated side
(right or left). (Note that there is not just one unique answer for this

part of the problem!)
Then, use the graphing calculator to compute the corresponding output

values and guess what the limit might be.

o —

a -3 o r3—1 o
a) lim 2 b) lim c) lim
) 23— 123l ) e+ VE-l ) z—2— T2
. 3 2 o 3 2 o —
d) lim % 155“’? e) lim % 155“’? f) lim 2=
r z——5— T z—4— T

r——5+
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