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Preface

This text, our third edition, contains notes for a course in precalculus as it
is taught at New York City College of Technology, CUNY, where it is offered
under the course number MAT 1375. Our approach is calculator-based. As of
the third edition of this text, we use the Desmos graphing calculator to analyze
and solve many of the examples studied in this course. An introduction to the
Desmos graphing calculator appears in Chapter 4. Moreover, we are very
grateful to be able to include in this edition many wonderful illustrations of
the cartoon characters featured on the cover of this edition. These characters
and images were created by Kate Poirier and provide a charming visualization
of the course content.

Our course in precalculus has the overarching theme of “functions.” This
means that many of the often more algebraic topics studied in prior courses
are revisited under this new function theoretic point of view. However, in
order to keep this text as self-contained as possible, we will recall all of the
results necessary to follow the core of the course even if we assume that the
student has familiarity with the formula or topic at hand. Below is an outline
of the topics of this course:

Part I: Functions and graphs

|
Part II: Polynomials and rational functions

|
Part III: Exponential and logarithmic functions

|
Part IV: Trigonometric functions

|
Part V: Vectors, complex numbers, and sequences

After an introduction to the abstract notion of a function and its graph, we
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study polynomials, rational functions, exponential functions, logarithmic func-
tions, and trigonometric functions. Throughout, we will always assign partic-
ular importance to the corresponding graph of the discussed function which
will be analyzed with the help of the Desmos graphing calculator. In the
fifth and last part of the course, we deviate from the above theme and collect
more algebraically oriented topics that will be needed in calculus or other
advanced mathematics courses or even other science courses. The fifth part
includes a discussion of the 2-dimensional real vector space R2, the algebra
of complex numbers (in particular complex numbers in polar form), and se-
quences and series with focus on the arithmetic and geometric series. The
generalized binomial theorem is discussed in an appendix.

The topics in this book are organized into 25 chapters, each corresponding
to one course lesson. Each chapter ends with a list of exercises the student is
expected to be able to solve. Answers to all exercises are provided at the end
of the book. We cannot overstate the importance of completing these exercises
for a successful completion of this course. These 25 lessons, together with
four scheduled exams and one review session give a total of 30 class sessions,
which is the number of regularly scheduled class meetings in one semester.
Each of the five parts also ends with a review of the topics discussed. This
may be used as a review for any of the exams during the semester.

We would like to thank our colleagues, students, and friends for their
support during the development of this text. In particular, we would like to
thank Kate Poirier for creating the wonderful illustrations for the third edition.
Moreover, we thank Henry Africk, Laurie Caban, Jean Camilien, Leo Chosid,
William Colucci, Samar ElHitti, Johanna Ellner, Natan Ovshey, Satyanand
Singh, Johann Thiel, Wendy Wang, Lin Zhou, Archie Worley, Bette Forester,
Steven Karaszewski, Josue Enriquez, Mohd Nayum Parvez, Akindiji Fadeyi,
Isabel Martinez, Erik Nowak, Sybil Shaver, Faran Hoosain, Kenia Rodriguez,
Albert Jaradeh, and Iftekher Hossain for many useful comments that helped
to improve this text.

Thomas Tradler and Holly Carley
New York City College of Technology, CUNY
August 2023
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Chapter 1

Intervals and functions

In this chapter, we will give a definition of the main topic of this course, the
notion of a function. Before we introduce functions, we review some notation
regarding sets of numbers in Section 1.1.

1.1 Review of number sets

We start with a brief review of number systems and intervals.

Review 1.1: Number systems

The natural numbers (denoted by N) are the numbers

1, 2, 3, 4, 5, . . .

The integers (denoted by Z) are the numbers

. . . ,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, . . .

The rational numbers (denoted by Q) are the fractions a
b

of integers a
and b with b 6= 0. Here are some examples of rational numbers:

3

5
,−2

6
, 17, 0,

3

−8

The real numbers (denoted by R) are the numbers on the real number
line

0 2
3 1−

√
2 2 3 4−1−2−3−4 π

2
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Here are some examples of real numbers:

√
3, π,−2

5
, 18, 0, 6.789

A real number that is not a rational number is called an irrational

number. Here are some examples of irrational numbers:

π,
√
2, 5

2
3 , e

Recall that there is an order relation on the set of real numbers:

4 < 9 reads as 4 is less than 9,
−3 ≤ 2 reads as −3 is less than or equal to 2,
7
6
> 1 reads as 7

6
is greater than 1,

2 ≥ −3 reads as 2 is greater than or equal to −3.

Note 1.2

• Note that 2 < 3, but −2 > −3, which can easily be seen on the
number line.

0 1 2 3 4−1−2−3−4

• Note that 5 ≤ 5 and 5 ≥ 5. However the same is not true when
using the symbol <. We write this as 5 ≮ 5.

We also review some basic notation concerning intervals.

Review 1.3: Intervals

The set of all real numbers x greater than or equal to some number
a and/or less than or equal to some number b is a subset of the real
numbers, which is an interval. There are several ways to write an in-
terval: in interval notation, graph it on the number line, or write it as
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an inequality.

Inequality notation Number line Interval notation

a ≤ x ≤ b a b [a, b]

a < x < b a b (a, b)

a ≤ x < b a b [a, b)

a < x ≤ b a b (a, b]

a ≤ x a [a,∞)

a < x a (a,∞)

x ≤ b b (−∞, b]

x < b b (−∞, b)

Formally, we define the interval [a, b] to be the set of all real numbers
x such that a ≤ x ≤ b:

[a, b] = { x | a ≤ x ≤ b }

There are similar definitions for the other intervals shown in the above
table.

Be careful!

Be sure to write the smaller number a < b first when writing an
interval [a, b]. For example, the interval

[5, 3] = { x | 5 ≤ x ≤ 3 } = {}

would be the empty set!



1.1. REVIEW OF NUMBER SETS 5

Example 1.4

Write the inequality
π < x ≤ 5

in interval notation and graph it on the number line.

Solution.

Interval notation: (π, 5]

On the number line:
π 5

Example 1.5

Write the interval

−3

as an inequality and in interval notation.

Solution.
Inequality notation: −3 ≤ x
Interval notation: [−3,∞)

Example 1.6

Write the interval
(−∞, 2)

as an inequality and graph it on the number line.

Solution.

Inequality notation: x < 2

On the number line:
−1 0 1 2 3
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Note 1.7: Number line notation

In some texts round and square brackets are also used on the number
line to depict an interval. For example, the following depicts the interval
[2, 5).

2 5

1.2 Introduction to functions

We now introduce the notion of a function. An easy and well-known example
of a function is given by the equation of a straight line such as, for example,
y = 5x+4. Note that for each given x we obtain an induced y. (For example,
for x = 3, we obtain y = 5 · 3 + 4 = 19.)

Definition 1.8: Function, domain, codomain

A function f consists: a set D of inputs called the domain, a set C of
possible outputs called the codomain, and an assignment that assigns
to each input x exactly one output y.
A function f with domain D and codomain C is denoted by

f : D → C.

If x is in the domain D (an input), then we denote by f(x) = y the
output that is assigned by f to x.

Sometimes it is of interest to know the set of all elements in the codomain
that actually occur as an output. This set is a subset of the codomain and is
called the range. We have:

Definition 1.9: Range

The range R of a function f is a subset of the codomain of f , given by
all of the outputs of f :

R = {f(x) | x is in the domain of f}
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Note 1.10

Some authors use a slightly different convention in that they use the
term range for what we called the codomain above.

Since we will be dealing with many functions it is convenient to name
various functions (usually with letters f, g, h, etc.). Often we will implicitly
assume that a domain and codomain are given without specifying these explic-
itly. If the range can be determined and the codomain is not given explicitly,
then we take the codomain to be the range. If the range cannot easily be de-
termined and the codomain is not explicitly given, then the codomain should
be taken to be a set which clearly contains the range. For example, in many
instances the codomain can be taken to be the set of all real numbers.

There are many ways that one can describe how a function assigns to an
input an output (all of which may not apply to a specific function): via a table
of values (listing the input-output pairs); via a formula (with the domain and
range explicitly or implicitly given); via a graph (representing input-output
pairs on a coordinate plane); or in words, just to name a few. Examples of
these ways to represent a function will be given below.
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Example 1.11

Define the assignment f by the following table

x 2 5 −3 0 7 4

y 6 8 6 4 −1 8

The assignment f assigns to the input 2 the output 6, which is also
written as

f(2) = 6.

Similarly, f assigns to 5 the number 8, in short f(5) = 8, etc.:

f(5) = 8, f(−3) = 6, f(0) = 4, f(7) = −1, f(4) = 8.

The domain D is the set of all inputs. The domain is therefore

D = {−3, 0, 2, 4, 5, 7}.

The range R is the set of all outputs. The range is therefore

R = {−1, 4, 6, 8}.

The assignment f is indeed a function since each element of the domain
gets assigned exactly one element in the range. Note that for an input
number that is not in the domain, f does not assign an output to it. For
example,

f(1) = undefined.

Note also that f(5) = 8 and f(4) = 8, so that f assigns to the inputs 5
and 4 the same output 8. Similarly, f also assigns the same output to
the inputs 2 and −3. Therefore we see that:

• A function may assign the same output to two different inputs!

Example 1.12

Consider the assignment f that is given by the following table.

x 2 5 −3 0 5 4

y 6 8 6 4 −1 8
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This assignment does not define a function! What went wrong?
Consider the input value 5. What does f assign to the input 5? The
third column states that f assigns to 5 the output 8, whereas the sixth
column states that f assigns to 5 the output −1,

f(5) = 8, f(5) = −1.

However, by the definition of a function, to each input we have to assign
exactly one output. So here, to the input 5 we have assigned two outputs
8 and −1. Therefore, f is not a function.

• A function cannot assign two outputs to one input!

We repeat the two bullet points from the last two examples, which are
crucial for the understanding of a function.

Note 1.13: Same output from inputs versus multiple outputs

• A function may assign the same output to two different inputs!

f(x1) = y and f(x2) = y with x1 6= x2 is allowed!

• A function cannot assign two outputs to one input!

f(x) = y1 and f(x) = y2 with y1 6= y2 is not allowed!

Example 1.14

A university creates a mentoring program which matches each freshman
student with a senior student as his or her mentor. Within this program
it is guaranteed that each freshman gets precisely one mentor, however
two freshmen may receive the same mentor. Does the assignment of
freshmen to mentor, or mentor to freshmen describe a function? If so,
what is its domain, what is its range?

Solution.
Since a senior may mentor several freshman, we cannot take a mentor as
an “input,” as he or she would be assigned to several “output” freshmen
students. So freshman is not a function of mentor.
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On the other hand, we can assign each freshmen to exactly one mentor,
which therefore describes a function.
The domain (the set of all inputs) is given by the set of all freshmen
students. The range (the set of all outputs) is given by the set of all
senior students that are mentors. The function assigns each “input”
freshmen student to his or her unique “output” mentor.

Example 1.15

The rainfall in a city for each of the 12 months is displayed in the
following histogram.

ra
in

fa
ll

[in
]

✻

✲
J F MA MJ J A S O ND month

a) Is the rainfall a function of the month?

b) Is the month a function of the rainfall?

Solution.

a) Each month has exactly one amount of rainfall associated to it.
Therefore, the assignment that associates to a month its rainfall (in
inches) is a function.

b) If we take a certain rainfall amount as our input data, can we as-
sociate a unique month to it? For example, February and March
appear to have the same amount of rainfall. If the months February
and March do indeed have the same amount of rainfall, then, to one
input amount of rainfall we cannot assign a unique month. The month
would therefore not be a function of the rainfall.

One could also argue that the rainfall for any two months in the above
graph would almost certainly be different if the rainfall is measured
to a high enough degree of accuracy, as it is very unlikely that any
two months have the exact amount of rainfall. (What does it even
mean to have the exact same amount of rainfall?) For this setup, one
would conclude that the month is a function of the rainfall.
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Example 1.16

Consider the function f described below.

�

△
♦

©

yellow

green

blue

f

Here, the function f maps the input symbol � to the output color blue.
Other assignments of f are as follows:

f(�) = blue f(△) = yellow

f(♦) = green f(©) = yellow

The domain is the set of symbols D = {�,△,♦,©}, and the range
is the set of colors R = {blue, green, yellow}. Notice, in particular,
that the inputs △ and © both have the same output yellow, which is
certainly allowed for a function.

Example 1.17

Consider the function y = 5x+4 with domain all real numbers and range
all real numbers. Note that for each input x, we obtain an exactly one
induced output y. For example, for the input x = 3 we get the output
y = 5 · 3 + 4 = 19, etc.

Example 1.18

Consider the function y = x2 with domain all real numbers and range
non-negative numbers. The function takes a real number as an input
and squares it. For example if x = −2 is the input, then y = 4 is the
output.
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Example 1.19

For each real number x, denote by ⌊x⌋ the greatest integer that is less
or equal to x. We call ⌊x⌋ the floor of x. For example, to calculate
⌊4.37⌋, note that all integers 4, 3, 2, . . . are less than or equal to 4.37:

. . . ,−3,−2,−1, 0, 1, 2, 3, 4 ≤ 4.37

The greatest of these integers is 4, so that ⌊4.37⌋ = 4. We define the
floor function as f(x) = ⌊x⌋. Here are more examples of function values
of the floor function.

⌊7.3⌋ = 7 ⌊π⌋ = 3 ⌊−4.65⌋ = −5

⌊12⌋ = 12

⌊−26

3

⌋

= ⌊−8.667⌋ = −9

The domain of the floor function is the set of all real numbers, that is
D = R. The range is the set of all integers, R = Z.

Example 1.20

Let A be the area of an isosceles right triangle with base side length
x. Express A as a function of x.

Solution.
Being an isosceles right triangle means that two side lengths are x, and
the angles are 45◦, 45◦, and 90◦ (or in radian measure π

4
, π

4
, and π

2
):

x

x

Recall that the area of a triangle is: area = 1
2

base · height. In this
case, we have base= x, and height= x, so that the area

A =
1

2
x · x =

1

2
x2.

Therefore, the area A(x) = 1
2
· x2.
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Example 1.21

Consider the equation y = x2 + 3. This equation associates to each
input number a exactly one output number b = a2 + 3. Therefore, the
equation defines a function. For example:

To the input 5 we assign the output 52 + 3 = 25 + 3 = 28.

The domain D is all real numbers, D = R. Since x2 is always ≥ 0, we
see that x2 + 3 ≥ 3, and vice versa, every number y ≥ 3 can be written
as y = x2 + 3. (To see this, note that the input x =

√
y − 3 for y ≥ 3

gives the output x2 − 3 = (
√
y − 3)2 + 3 = y − 3 + 3 = y.) Therefore,

the range is R = [3,∞).

Example 1.22

Consider the equation x2 + y2 = 25. Does this equation define y as a
function of x? That is, does this equation assign to each input x exactly
one output y?
An input number x gets assigned to y with x2 + y2 = 25. Solving this
for y, we obtain

y2 = 25− x2 =⇒ y = ±
√
25− x2.

Therefore, there are two possible outputs associated to the input x( 6= 5):

either y = +
√
25− x2 or y = −

√
25− x2.

For example, the input x = 0 has two outputs y = 5 and y = −5.
However, a function cannot assign two outputs to one input x! The
conclusion is that x2 + y2 = 25 does not determine y as a function!

Note 1.23: Independent versus dependent variable

Note that if y = f(x) then x is called the independent variable and y
is called the dependent variable (since x can be chosen freely, and y
depends on x).
If x = g(y) then y is the independent variable and x is the dependent
variable (since now, y can be chosen freely and x depends on y).
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1.3 Exercises

Exercise 1.1

Give examples of numbers that are

a) natural numbers
b) integers
c) integers but not natural numbers
d) rational numbers
e) real numbers
f) rational numbers but not integers

Exercise 1.2

Which of the following numbers are natural numbers, integers, rational
numbers, or real numbers? Which of these numbers are irrational?

a) 7
3

b) −5 c) 0 d) 17, 000 e) 12
4

f )
√
7 g)

√
25

Exercise 1.3

Complete the table.

Inequality notation Number line Interval notation
2 ≤ x < 5
x ≤ 3

12 17

−2
[−2, 6]
(−∞, 0)

4.5
5 < x ≤

√
30

(13
7
, π)
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Exercise 1.4

The tables below describe assignments between inputs x and outputs
y. Determine which of the given tables describe a function. If they do,
determine their domain and range. Describe which outputs are assigned
to which inputs.
a)

x −5 3 −1 6 0

y 5 2 8 3 7

b)
x 6 17 4 −2 4

y 8 −2 0 3 −1

c)
x 19 7 6 −2 3 −11

y 3 3 3 3 3 3

d)
x 1 2 3 3 4 5

y 5.33 9 13 13 17
√
19

e)
x 0 1 2 2 3 4

y 0 1 2 3 3 4

Exercise 1.5

In a store, every item that is for sale has a price.

a) Does the assignment which assigns to an item its price constitute a
function (in the sense of Definition 1.8 on page 6)?

b) Does the assignment which assigns to a given price all items with
this price constitute a function?

c) In the case where the assignment is a function, what is the domain?

d) In the case where the assignment is a function, what is the range?
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Exercise 1.6

A bank offers wealthy customers a certain amount of interest if they keep
more than 1 million dollars in their account. The amount is described
in the following table.

dollar amount x in the account interest amount

x ≤ $1, 000, 000 $0
$1, 000, 000 < x ≤ $10, 000, 000 2% of x

$10, 000, 000 < x 1% of x

a) Justify that the assignment cash amount to interest defines a function.

b) Find the interest for an amount of:

i) $50, 000 ii) $5, 000, 000 iii) $1, 000, 000
iv) $30, 000, 000 v) $10, 000, 000 vi) $2, 000, 000

Exercise 1.7

Find a formula for a function describing the given inputs and outputs.

a) input : the radius of a circle
output : the circumference of the circle

b) input : the side length in an equilateral triangle
output : the perimeter of the triangle

c) input : one side length of a rectangle, with other side length being 3
output : the perimeter of the rectangle

d) input : the side length of a cube
output : the volume of the cube



Chapter 2

Functions via formulas

Most of the time we will discuss functions that take some real numbers as
inputs, and give real numbers as outputs. Such functions are often described
with a formula.

2.1 Functions given by formulas

Here are some examples of functions given by a formula.

Example 2.1

For the given function f , calculate the outputs f(2), f(−3), and f(−1).

a) f(x) = 3x+ 4 b) f(x) =
√
x2 − 3

c) f(x) =

{
5x− 6 , for −1 ≤ x ≤ 1
x3 + 2x , for 1 < x ≤ 5

d) f(x) = x+2
x+3

Solution.

a) We substitute the input values into the function and simplify.

f(2) = 3 · 2 + 4 = 6 + 4 = 10,

f(−3) = 3 · (−3) + 4 = −9 + 4 = −5,

f(−1) = 3 · (−1) + 4 = −3 + 4 = 1.

b) Similarly, we calculate

f(2) =
√
22 − 3 =

√
4− 3 =

√
1 = 1,

17
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f(−3) =
√

(−3)2 − 3 =
√
9− 3 =

√
6,

f(−1) =
√

(−1)2 − 3 =
√
1− 3 =

√
−2 is undefined.

Note that in the last evaluation, we obtained an output of
√
−2. As

you are probably aware,
√
−2 is a complex number. However, at this

point, we will only allow outputs that are real numbers! Since
√
−2

is not a real number (but only a complex number), there is no real
output for f(−1), and we say that f(−1) is undefined.

c) The function f(x) =

{
5x− 6 , for −1 ≤ x ≤ 1
x3 + 2x , for 1 < x ≤ 5

is given as a

piecewise defined function. We have to substitute the values into
the correct branch:

f(2) = 23 + 2 · 2 = 8 + 4 = 12, since 1 < 2 ≤ 5,

f(−3) = undefined, since −3 is not in any of the two branches,

f(−1) = 5 · (−1)− 7 = −5− 6 = −11, since − 1 ≤ −1 ≤ 1.

d) Finally for f(x) = x+2
x+3

, we have:

f(2) =
2 + 2

2 + 3
=

4

5
, f(−3) =

−3 + 2

−3 + 3
=

−1

0
is undefined,

f(−1) =
−1 + 2

−1 + 3
=

1

2
.

Example 2.2

Let f be the function given by f(x) = x2 + 2x − 3. Find the following
function values.

a) f(5) b) f(2) c) f(−2) d) f(0)

e) f(
√
5) f ) f(

√
3 + 1) g) f(a) h) f(a) + 5

i) f(x+ h) j) f(x+ h)− f(x) k) f(x+h)−f(x)
h

l) f(x)−f(a)
x−a

Solution.
The first four function values ((a)-(d)) can be calculated directly:

f(5) = 52 + 2 · 5− 3 = 25 + 10− 3 = 32,
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f(2) = 22 + 2 · 2− 3 = 4 + 4− 3 = 5,

f(−2) = (−2)2 + 2 · (−2)− 3 = 4 +−4− 3 = −3,

f(0) = 02 + 2 · 0− 3 = 0 + 0− 3 = −3.

The next two values ((e) and (f)) are similar, but the arithmetic is a bit
more involved.

f(
√
5) =

√
5
2
+ 2 ·

√
5− 3 = 5 + 2 ·

√
5− 3 = 2 + 2 ·

√
5,

f(
√
3 + 1) = (

√
3 + 1)2 + 2 · (

√
3 + 1)− 3

= (
√
3 + 1) · (

√
3 + 1) + 2 · (

√
3 + 1)− 3

=
√
3 ·

√
3 + 2 ·

√
3 + 1 · 1 + 2 ·

√
3 + 2− 3

= 3 + 2 ·
√
3 + 1 + 2 ·

√
3 + 2− 3

= 3 + 4 ·
√
3.

The last five values ((g)-(l)) are purely algebraic:

f(a) = a2 + 2 · a− 3,

f(a) + 5 = a2 + 2 · a− 3 + 5 = a2 + 2 · a+ 2,

f(x+ h) = (x+ h)2 + 2 · (x+ h)− 3

= x2 + 2xh+ h2 + 2x+ 2h− 3,

f(x+ h)− f(x) = (x2 + 2xh+ h2 + 2x+ 2h− 3)− (x2 + 2x− 3)

= x2 + 2xh+ h2 + 2x+ 2h− 3− x2 − 2x+ 3

= 2xh+ h2 + 2h,

f(x+ h)− f(x)

h
=

2xh+ h2 + 2h

h

=
h · (2x+ h+ 2)

h
= 2x+ h+ 2,

and

f(x)− f(a)

x− a
=

(x2 + 2x− 3)− (a2 + 2a− 3)

x− a

=
x2 + 2x− 3− a2 − 2a+ 3

x− a
=

x2 − a2 + 2x− 2a

x− a

=
(x+ a)(x− a) + 2(x− a)

x− a
=

(x− a)(x+ a+ 2)

(x− a)
= x+ a + 2.
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The quotients in the last two examples 2.2(k) and (l) will become partic-
ularly important in calculus. They are called difference quotients.

Definition 2.3: Difference quotient

Let y = f(x) be a function. We call the expressions

f(x+ h)− f(x)

h
or

f(x)− f(a)

x− a
(2.1)

difference quotients for the function f .

We next calculate some more examples of difference quotients.

Example 2.4

Calculate the difference quotient f(x+h)−f(x)
h

for

a) f(x) = x2 − 4x b) f(x) = 3x2 + 8x− 5

Solution.

a) For f(x) = x2 − 4x, we get:

f(x+ h) = (x+ h)2 − 4 · (x+ h)

= x2 + 2xh+ h2 − 4x− 4h,

f(x+ h)− f(x) = (x2 + 2xh+ h2 − 4x− 4h)− (x2 − 4x)

= x2 + 2xh+ h2 − 4x− 4h− x2 + 4x

= 2xh+ h2 − 4h,

f(x+ h)− f(x)

h
=

2xh+ h2 − 4h

h

=
h · (2x+ h− 4)

h
= 2x+ h− 4

b) For f(x) = 3x2 + 8x− 5, we get:

f(x+ h) = 3(x+ h)2 + 8 · (x+ h)− 5

= 3(x2 + 2xh + h2) + 8x+ 8h− 5,

= 3x2 + 6xh + 3h2 + 8x+ 8h− 5,
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f(x+ h)− f(x) = (3x2 + 6xh + 3h2 + 8x+ 8h− 5)

−(3x2 + 8x− 5)

= 3x2 + 6xh + 3h2 + 8x+ 8h− 5− 3x2 − 8x+ 5

= 6xh+ 3h2 + 8h,

f(x+ h)− f(x)

h
=

6xh + 3h2 + 8h

h

=
h · (6x+ 3h+ 8)

h
= 6x+ 3h+ 8

Example 2.5

Calculate the difference quotient f(x)−f(a)
x−a

for

a) f(x) = x2 − 7x− 2 b) f(x) = −2x2 + 3x

Solution.

a) For f(x) = x2 − 7x− 2, we get:

f(x)− f(a)

x− a
=

(x2 − 7x− 2)− (a2 − 7a− 2)

x− a

=
x2 − 7x− 2− a2 + 7a+ 2

x− a
=

x2 − a2 − 7x+ 7a

x− a

=
(x+ a)(x− a)− 7(x− a)

x− a
=

(x− a)(x+ a− 7)

(x− a)
= x+ a− 7.

b) For f(x) = −2x2 + 3x, we get:

f(x)− f(a)

x− a
=

(−2x2 + 3x)− (−2a2 + 3a)

x− a

=
−2x2 + 3x+ 2a2 − 3a

x− a
=

−2x2 + 2a2 + 3x− 3a

x− a

=
−2(x2 − a2) + 3x− 3a

x− a
=

−2(x+ a)(x− a) + 3(x− a)

x− a

=
(x− a)(−2(x+ a) + 3)

(x− a)
= −2(x+ a) + 3 = −2x− 2a+ 3.
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Here are some difference quotients of a degree 3 polynomial, a rational
function, and a square root function.

Example 2.6

Calculate the difference quotient f(x+h)−f(x)
h

for

a) f(x) = x3 + 2 b) f(x) =
1

x
c) f(x) =

√
2x+ 3

Solution.

a) We calculate first the difference quotient step by step.

f(x+ h) = (x+ h)3 + 2 = (x+ h) · (x+ h) · (x+ h) + 2

= (x2 + 2xh + h2) · (x+ h) + 2

= x3 + 2x2h+ xh2 + x2h+ 2xh2 + h3 + 2,

= x3 + 3x2h+ 3xh2 + h3 + 2.

Subtracting f(x) from f(x+ h) gives

f(x+ h)− f(x) = (x3 + 3x2h+ 3xh2 + h3 + 2)− (x3 + 2)

= x3 + 3x2h+ 3xh2 + h3 + 2− x3 − 2

= 3x2h+ 3xh2 + h3.

With this we obtain:

f(x+ h)− f(x)

h
=

3x2h + 3xh2 + h3

h

=
h · (3x2 + 3xh + h2)

h
= 3x2 + 3xh + h2.

b) The computation for (b) is similar.

f(x+ h) =
1

x+ h
,

so that

f(x+ h)− f(x) =
1

x+ h
− 1

x
.
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We obtain the solution after simplifying the double fraction:

f(x+ h)− f(x)

h
=

1
x+h

− 1
x

h
=

x−(x+h)
(x+h)·x
h

=

x−x−h
(x+h)·x
h

=

−h
(x+h)·x
h

=
−h

(x+ h) · x · 1
h
=

−1

(x+ h) · x.

c)

f(x+ h) =
√

2(x+ h) + 3 =
√
2x+ 2h+ 3

=⇒ f(x+ h)− f(x) =
√
2x+ 2h+ 3−

√
2x+ 3

=⇒ f(x+h)−f(x)
h

=

√
2x+ 2h+ 3−

√
2x+ 3

h

We can simplify this expression by multiplying both numerator and
denominator with

√
2x+ 2h+ 3 +

√
2x+ 3:

=⇒ f(x+h)−f(x)
h

=
(
√
2x+2h+3−

√
2x+3)·(

√
2x+2h+3+

√
2x+3)

h·(
√
2x+2h+3+

√
2x+3)

=
(
√
2x+2h+3)2−(

√
2x+3)2

h·(
√
2x+2h+3+

√
2x+3)

=
(2x+2h+3)−(2x+3)

h·(
√
2x+2h+3+

√
2x+3)

=
2x+2h+3−2x−3

h·(
√
2x+2h+3+

√
2x+3)

=
2h

h·(
√
2x+2h+3+

√
2x+3)

=
2√

2x+2h+3+
√
2x+3

So far, we have not mentioned the domain and range of the functions
defined above. Indeed, we will often not describe the domain explicitly but
use the following convention:
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Convention 2.7: Standard convention of the domain

Unless stated otherwise, a function f is assumed to allow any real
numbers x as an input for which the output f(x) is a well-defined real
number. We refer to this as the standard convention of the domain.
In this case, both domain and range are then subsets of the set R of
real numbers. The range is, of course, the set of all outputs obtained
by f from the inputs (see also Note 1.10 on page 7).
In particular, under this convention, any polynomial has the domain R
of all real numbers.

Example 2.8

Find the domain of each of the following functions according to the
standard convention of the domain.

a) f(x) = 4x3 − 2x+ 5 b) f(x) = |x|
c) f(x) =

√
x d) f(x) =

√
x− 3

e) f(x) = 1
x−5

f ) f(x) = x−2
x2+8x+15

g) f(x) =

{
x+ 1 , for 2 < x ≤ 4
2x− 1 , for 5 ≤ x
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Solution.

a) There is no problem taking a real number x to the power of any
positive integer. Therefore, f is defined for all real numbers x, and
the domain is written as D = R.

b) Again, we can take the absolute value for any real number x. The
domain is all real numbers, D = R.

c) The square root
√
x is only defined for x ≥ 0 (remember we are not

using complex numbers yet!). Thus, the domain is D = [0,∞).

d) Again, the square root is only defined for non-negative numbers.
Thus, the argument in the square root has to be greater than or
equal to zero: x− 3 ≥ 0. Solving this for x gives

x− 3 ≥ 0
(add 3)
=⇒ x ≥ 3.

The domain is therefore, D = [3,∞).

e) A fraction is defined whenever the denominator is not zero, so in this
case, 1

x−5
is defined whenever x 6= 5. Therefore, the domain is all

real numbers except five, D = R− {5}.

f ) Again, we need to make sure that the denominator does not become
zero, and we disregard the numerator. The denominator is zero ex-
actly when x2 + 8x+ 15 = 0. Solving this for x gives:

x2 + 8x+ 15 = 0 =⇒ (x+ 3) · (x+ 5) = 0

=⇒ x+ 3 = 0 or x+ 5 = 0

=⇒ x = −3 or x = −5.

The domain is all real numbers except for −3 and −5, that is D =
R− {−5,−3}.

g) The function is explicitly defined for all 2 < x ≤ 4 and 5 ≤ x.
Therefore, the domain is D = (2, 4] ∪ [5,∞).
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2.2 Exercises

Exercise 2.1

For each of the following functions,

a) f(x) = 3x+ 1 b) f(x) = x2 − x c) f(x) =
√
x2 − 9

d) f(x) = 1
x

e) f(x) = x−5
x+2

f ) f(x) = −x3

calculate the function values

i) f(3) ii) f(5) iii) f(−2) iv) f(0) v) f(
√
13)

vi) f(
√
2 + 3) vii) f(−x) viii) f(x+ 2) ix) f(x) + h x) f(x+ h)

Exercise 2.2

Let f be the piecewise defined function

f(x) =

{
x− 5 , for −4 < x < 3
x2 , for 3 ≤ x ≤ 6

a) State the domain of the function.
Find the function values

b) f(2) c) f(5) d) f(−3) e) f(3)

Exercise 2.3

Let f be the piecewise defined function

f(x) =







|x| − x2 , for x < 2
7 , for 2 ≤ x < 5

x2 − 4x+ 1 , for 5 < x

a) State the domain of the function.
Find the function values

b) f(1) c) f(−2) d) f(3)
e) f(2) f ) f(5) g) f(7)
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Exercise 2.4

Find the difference quotient f(x+h)−f(x)
h

for the following functions:

a) f(x) = 5x b) f(x) = 2x− 6 c) f(x) = x2

d) f(x) = x2 + 5x e) f(x) = x2 − 7 f ) f(x) = x2 + 3x+ 4
g) f(x) = x2 + 4x− 9 h) f(x) = 3x2 − 2x i) f(x) = 4x2 + 6x
j) f(x) = 2x2 − 8x− 3 k) f(x) = −5x2 + 3 l) f(x) = x3

Exercise 2.5

Find the difference quotient f(x)−f(a)
x−a

for the following functions:

a) f(x) = 3x b) f(x) = 4x− 7 c) f(x) = x2 − 3x
d) f(x) = x2 + 4x− 5 e) f(x) = 7x2 + 2x f ) f(x) = 1

x

Exercise 2.6

Find the domains of the following functions.

a) f(x) = x2 + 3x+ 5 b) f(x) = |x− 2| c) f(x) =
√
x− 2

d) f(x) =
√
8− 2x e) f(x) =

√

|x+ 3| f ) f(x) = 1
x+6

g) f(x) = x−5
x−7

h) f(x) = x+1
x2−7x+10

i) f(x) = x
|x−2|

j) f(x) =

{
|x| for 1 < x < 2
2x for 3 ≤ x

k) f(x) =
√
x

x−9
l) f(x) = 5√

x+4
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Functions via graphs

Another way to represent a function is via a graph. Before discussing graphs
in general, we first review a familiar kind of graph, namely the graph of a
linear function.

3.1 Review of graphs of linear functions

We recall the equation of a linear function.

Review 3.1: Linear function

A linear function is a function of the form

f(x) = a · x+ b

for some real numbers a and b where a 6= 0. By the standard convention
of the domain, the domain of f consists of all real numbers, D = R.

Recall that linear functions can be graphed in the x-y plane as a straight
line. In this case, the coefficient a is also denoted by m and has the inter-
pretation of the slope of the line. We review this now.

Review 3.2: Slope-intercept form of the line

The slope-intercept form of the line is the equation

y = m · x+ b (3.1)

28
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Here, m is the slope and (0, b) is the y-intercept of the line.

x

y

m

b

Generally, the slope describes how fast the line grows toward the right.
For any two points P1(x1, y1) and P2(x2, y2) on the line L, the slope m
is given by the following formula (which is m = rise

run
):

Slope:

m =
y2 − y1
x2 − x1

(3.2)

x

y

P2

P1

x1 x2

y1

y2

Note 3.3: Sign of the slope

When the slope m is positive, the line rises toward the right. When the
slope m is negative, the line declines toward the right.

x

y

x

y

x

y

x

y

x

y

m = 2 m = 1
2

m = 0 m = −1
2

m = −2

Below is an example of the graph of a line in slope-intercept form.
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Example 3.4

Graph the line y = 2x+ 3.

Solution.
We calculate the output values y for various input values x. For example,
when x is −2,−1, 0, 1, 2, or 3, we compute

x −2 −1 0 1 2 3

y −1 1 3 5 7 9

In the above table each y value is calculated by substituting the corre-
sponding x value into our equation y = 2x+ 3:

x = −2 =⇒ y = 2 · (−2) + 3 = −4 + 3 = −1
x = −1 =⇒ y = 2 · (−1) + 3 = −2 + 3 = 1
x = 0 =⇒ y = 2 · (0) + 3 = 0 + 3 = 3
x = 1 =⇒ y = 2 · (1) + 3 = 2 + 3 = 5
x = 2 =⇒ y = 2 · (2) + 3 = 4 + 3 = 7
x = 3 =⇒ y = 2 · (3) + 3 = 6 + 3 = 9

In the above calculation, the values for x were arbitrarily chosen. Since
a line is completely determined by knowing two points on it, any two
values for x would have worked for the purpose of graphing the line.
Drawing the above points in the coordinate plane and connecting them
gives the graph of the line y = 2x+ 3:

-4 -3 -2 -1 0 1 2 3 4

-2

-1

0

1

2

3

4

5

6

7

8

9

10

x

y
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Alternatively, note that the y-intercept is (0, 3) (3 is the additive con-
stant in our initial equation y = 2x+3) and the slope m = 2 determines
the rate at which the line grows: for each step to the right, we have to
move two steps up.

Example 3.5

Find the equation of the line in slope-intercept form.

-4 -3 -2 -1 0 1 2 3 4 5 6

-2

-1

0

1

2

3

4

5

x

y

Solution. The y-intercept can be read off the graph giving us that
b = 2. As for the slope, we use formula (3.2) and the two points on the
line P1(0, 2) and P2(4, 0). We obtain

m =
0− 2

4− 0
=

−2

4
= −1

2
.

Thus, the line has the slope-intercept form y = −1
2
x+ 2.

Example 3.6

Find the equation of the line in slope-intercept form.

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-7

-6

-5

-4

-3

-2

-1

0

1

x

y
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Solution.
The y-intercept is b = −4. To obtain the slope we can again use the
y-intercept P1(0,−4). To use (3.2), we need another point P2 on the
line. We may pick any second point on the line, for example, P2(3,−3).
With this, we obtain

m =
(−3)− (−4)

3− 0
=

−3 + 4

3
=

1

3
.

Thus, the line has the slope-intercept form y = 1
3
x− 4.

There is another important way in which we can write the equation of a
line.

Definition 3.7: Point-slope form of the line

From Equation (3.2), we see that for a given slope m and a point
P1(x1, y1) on the line, any other point (x, y) on the line satisfies m =
y−y1
x−x1

. Multiplying (x−x1) on both sides gives what is called the point-

slope form of the line:

y − y1 = m · (x− x1) (3.3)

x

y

P

P1

x1 x

y1

y

Example 3.8

Find the equation of the line in point-slope form (3.3).

-1 0 1 2 3 4 5 6 7 8 9 10 11 12

-1

0

1

2

3

4

5

x

y
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Solution.
We need to identify one point (x1, y1) on the line together with the
slope m of the line so that we can write the line in point-slope form:
y − y1 = m(x − x1). By direct inspection, we identify the two points
P1(5, 1) and P2(8, 3) on the line, and with this we calculate the slope
as:

m =
3− 1

8− 5
=

2

3

Using the point (5, 1) we write the line in point-slope form as follows:

y − 1 =
2

3
(x− 5)

Note that our answer depends on the chosen point (5, 1) on the line.
Indeed, if we choose a different point on the line, such as (8, 3), we
obtain a different equation, (which nevertheless represents the same
line):

y − 3 =
2

3
(x− 8)

Note that we do not need to solve this for y, since we are looking for
an answer in point-slope form.

Example 3.9

Find the equation of the line in point-slope form (3.3).

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-4

-3

-2

-1

0

1

2

3

4

x

y

Solution.
We identify two points on the line, P1(1,−3) and P2(−2, 1). Therefore
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the slope is m = 1−(−3)
(−2)−1

= 4
−3

= −4
3
. Using, for example, the point

(1,−3), we write the line in point-slope form as follows:

y − (−3) = −4

3
(x− 1)

Alternatively, we can also write this as y + 3 = −4
3
(x− 1).

3.2 Functions given by graphs

Next, we study graphs more generally. Recall from the above examples that
the graph of a function f is the set of all points (in the coordinate plane) of
the form (x, f(x)), where x is in the domain of f . Here is another example
that shows how we may obtain the graph of a function by computing sample
points and plotting and connecting them in the plane.

Example 3.10

Let y = x2 with domain D = R being the set of all real numbers. We
can graph this after calculating a table as follows:

x −3 −2 −1 0 1 2 3

y 9 4 1 0 1 4 9

-5 -4 -3 -2 -1 0 1 2 3 4 5

-1

0

1

2

3

4

5

6

7

8

9

10

x

y

P (2, 4)

x = 2 input

y = 4

output

Many function values can be read from this graph. For example, for the
input x = 2, we obtain the output y = 4. This corresponds to the point
P (2, 4) on the graph as depicted above.
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In general, an input (placed on the x-axis) gets assigned to an output
(placed on the y-axis) according to where the vertical line at x intersects
with the given graph. This is used in the next example.

Example 3.11

Let f be the function given by the following graph.

-1 0 1 2 3 4 5 6 7 8 9 10

-1

0

1

2

3

4

5

x

y

Here, the dashed lines show that the input x = 3 gives an output of
y = 2. Similarly, we can obtain other output values from the graph:

f(2) = 4, f(3) = 2, f(5) = 2, f(7) = 4.

Note that, in the above graph, a closed point means that the point is
part of the graph, whereas an open point means that it is not part of
the graph.
The domain is the set of all possible input values on the x-axis. Since
we can take any number 2 ≤ x ≤ 7 as an input, the domain is the
interval D = [2, 7]. The range is the set of all possible output values
on the y-axis. Since any number 1 < y ≤ 4 is obtained as an output,
the range is R = (1, 4]. Note in particular that y = 1 is not an output,
since f(5) = 2.

Note 3.12

In the above example we evaluated a function that was given by a graph.
Looking at a drawn graph is by its nature an imprecise representation
of the function. Indeed, it might be possible that, for example, there are
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hidden features of the graph that only become apparent after sufficiently
zooming in on the graph. So, when studying the above example, we
implicitly assumed that there are no hidden features that are not shown
in the graph. An accurate evaluation would require more information
regarding the function, such as, for example, a precise formula of the
function.

Example 3.13

Let f be the function given by the following graph.

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-2

-1

0

1

2

3

4

x

y

Here are some function values that can be read from the graph:

f(−5) = 2, f(−4) = 3, f(−3) and f(−2) are undefined,

f(−1) = 2, f(0) = 1, f(1) = 2, f(2) = −1, f(4) = 0, f(5) = 1.

Note that the output value f(3) is somewhere between −1 and 0, but
we can only read off an approximation of f(3) from the graph.
To find the domain of the function, we need to determine all possible
x-coordinates (or in other words, we need to project the graph onto
the x-axis). The possible x-coordinates are from the interval [−5,−3)
together with the intervals (−2, 2) and [2, 5]. The last two intervals may
be combined. We get the domain:

D = [−5,−3) ∪ (−2, 5].

For the range, we look at all possible y-values. These are given by the
intervals (1, 3] and (0, 3) and [−1, 1]. Combining these three intervals,
we obtain the range

R = [−1, 3].
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Example 3.14

Consider the following graph.

0 1 2 3 4 5 6 7
0

1

2

3

4

x

y

Consider the input x = 4. There are several outputs that we get for
x = 4 from this graph:

f(4) = 1, f(4) = 2, f(4) = 3.

However, in a function, obtaining more than one output from one input
is not allowed! Therefore, this graph is not the graph of a function!

The reason why the previous example is not a function is due to some
input having more than one output: f(4) = 1, f(4) = 2, f(4) = 3.

0 1 2 3 4 5 6 7
0

1

2

3

4

x

y

In other words, there is a vertical line (x = 4) which intersects the graph in
more than one point. This observation is generalized in the following vertical
line test.

Observation 3.15: Vertical Line Test

A graph is the graph of a function precisely when every vertical line
intersects the graph at most once.
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Example 3.16

Consider the graph of the equation x = y2:

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

This does not pass the vertical line test, so y is not a function of x.
However, x is a function of y since, if you consider y to be the input,
each input has exactly one output (it passes the ‘horizontal line’ test).

Example 3.17

Which of the following equations constitute functions of the form y =
f(x)?

a) y =
1

2
x− 1 b) y = 1 c) x = 2

Solution.
We graph each of the three equations.

a)

-3 -2 -1 0 1 2 3
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1
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y

b)

-3 -2 -1 0 1 2 3
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x

y

c)

-3 -2 -1 0 1 2 3

-3

-2
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1

2

3

x

y

From the vertical line test, we see that (a) and (b) are graphs of functions,
while (c) is a vertical line, which is not the graph of a function.
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Example 3.18

Let f be the function given by the following graph.

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
0

1

2

3

4

5

x

y

a) What is the domain of f? b) What is the range of f?
c) For which x is f(x) = 3? d) For which x is f(x) = 2?
e) For which x is f(x) > 2? f) For which x is f(x) ≤ 4?
g) Find f(1) and f(4). h) Find f(1) + f(4).
i) Find f(1) + 4. j) Find f(1 + 4).

Solution.
Most of the answers can be read immediately from the graph.

a) For the domain, we project the graph to the x-axis. The do-
main consists of all numbers from −5 to 5 without −3, that is
D = [−5,−3) ∪ (−3, 5].

b) For the range, we project the graph to the y-axis. The domain con-
sists of all numbers from 1 to 5, that is R = [1, 5].

c) To find x with f(x) = 3 we look at the horizontal line at y = 3:

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
0

1

2

3

4

5

x

y
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We see that there are two numbers x with f(x) = 3:

f(−2) = 3, f(3) = 3.

Therefore, the answer is x = −2 or x = 3.

d) Looking at the horizontal line y = 2, we see that there is only one
x with f(x) = 2; namely f(4) = 2. Note that x = −3 does not solve
the problem, since f(−3) is undefined. The answer is x = 4.

e) To find x with f(x) > 2, the graph has to lie above the line y = 2.

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
0

1

2

3

4

5

x

y

We see that the answer is those numbers x greater than −3 and less
than 4. The answer is therefore the interval (−3, 4).

f ) For f(x) ≤ 4, we obtain all numbers x from the domain that are less
than −1 or greater than or equal to 1. The answer is therefore,

[−5,−3) ∪ (−3,−1) ∪ [1, 5].

Note that −3 is not part of the answer, since f(−3) is undefined.

g) f(1) = 4, and f(4) = 2

h) f(1) + f(4) = 4 + 2 = 6

i) f(1) + 4 = 4 + 4 = 8

j) f(1 + 4) = f(5) = 1
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Example 3.19

The following graph shows the population size in a small city from the
years 2001–2011 in thousands of people.

’01 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09 ’10 ’11

10

20

30

40

year

a) What was the population size in the years 2004 and 2009?
b) In what years did the city have the most population?
c) In what year did the population grow the fastest?
d) In what year did the population decline the fastest?

Solution.
The population size in the year 2004 was approximately 36, 000. In the
year 2009, it was approximately 26, 000. The largest population was in
the year 2006, where the graph has its maximum. The fastest growth
in the population was between the years 2003 and 2004. That is when
the graph has the largest slope. Finally, the fastest decline happened
from the years 2006–2007.

Example 3.20

Graph the piecewise defined function described by the following formula:

f(x) =







x+ 3 , for −3 ≤ x < −1
x2 , for −1 < x < 1
3 , for 2 < x ≤ 3

Solution.
We have to graph all three functions y = x + 3, y = x2, and y = 3,
and then restrict them to their respective domain. Graphing the three
functions, we obtain the following tables and associated graphs, which
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we draw in one x-y plane:

y = x+ 3 y = x2 y = 3

-4 -3 -2 -1 0 1 2 3 4
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y = x+ 3

-4 -3 -2 -1 0 1 2 3 4
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y = x2
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y = 3

-4 -3 -2 -1 0 1 2 3 4

-2

-1

0

1

2

3

4

x

y

y = 3

y = x2

y = x+ 3

However, we need to cut off the functions according to their specific
input domain that is given by the original function.
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Note that the open and closed circles at the endpoints of each branch
correspond to the “<” and “≤” rules in the original description of the
function.
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3.3 Exercises

Exercise 3.1

Find the slope and y-intercept of the line with the given data. Using the
slope and y-intercept, write the equation of the line in slope-intercept
form.

a)

-5 -4 -3 -2 -1 0 1 2 3 4 5
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b)
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c)
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d)

-5 -4 -3 -2 -1 0 1 2 3 4 5
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e)
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f )

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2
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y
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Exercise 3.2

Find the equation of the line in point-slope form (3.3) using the indicated
point P .

a)
-1 0 1 2 3 4 5 6 7 8
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b)
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P

c)
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d)
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Exercise 3.3

Below are three graphs for the functions f , g, and h.

function f :
0 1 2 3 4 5 6 7

0

1

2

3

4

x

y = f(x)

function g :
-1 0 1 2 3 4 5 6 7 8

0

1

2

3

4

x

y = g(x)

function h :

-3 -2 -1 0 1 2 3 4

-2

-1

0

1

2

x

y = h(x)

a) Find the domain and range of f .
b) Find the domain and range of g.
c) Find the domain and range of h.

Find the following function values:

d) f(1) e) f(2) f ) f(3) g) f(4) h) f(5) i) f(6) j) f(7)
k) g(0) l) g(1) m) g(2) n) g(3) o) g(4) p) g(6) q) g(13.2)

r) h(−2) s) h(−1) t) h(0) u) h(1) v) h(2) w) h(3) x) h(
√
2)
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Exercise 3.4

Use the vertical line test to determine which of the following graphs are
the graphs of functions.

a)
0 1 2 3 4 5
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b)
0 1 2 3 4 5
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c)
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d)
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Exercise 3.5

Let f be the function given by the following graph.

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8
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a) What is the domain of f? b) What is the range of f?
c) For which x is f(x) = 0? d) For which x is f(x) = 2?
e) For which x is f(x) ≤ 1? f) For which x is f(x) > 0?
g) Find f(2) and f(5). h) Find f(2) + f(5).
i) Find f(2) + 5. j) Find f(2 + 5).
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Exercise 3.6

The graph below displays the number of students admitted to a college
during the years 1995 to 2007.

’95 ’96 ’97 ’98 ’99 ’00 ’01 ’02 ’03 ’04 ’05 ’06 ’07

3000

4000

5000

6000

year

a) How many students were admitted in the year 2000?
b) In what years were the most students admitted?
c) In what years did the number of admitted students rise fastest?
d) In what year(s) did the number of admitted students decline?

Exercise 3.7

Consider the function described by the following formula:

f(x) =







x2 + 1 , for −2 < x ≤ 0
x− 1 , for 0 < x ≤ 2
−x+ 4 , for 2 < x ≤ 5

What is the domain of the function f? Graph the function f .



Chapter 4

Basic functions and transformations

We now give an introduction to the Desmos graphing calculator that can be
used to graph functions given by formulas. We also graph a list of basic
functions and observe how these graphs change when adding or multiplying
constants to their inputs or outputs.

4.1 Basics of the Desmos graphing calculator

To get started, visit the Desmos graphing calculator at the URL

https://www.desmos.com/calculator

48

https://www.desmos.com/calculator
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Note 4.1

Graphing a function is straightforward in Desmos, say y = x2. Simply
type y = x2 into the input field on the top left.

Moreover, we can easily locate local maxima and local minima of a
function (the peaks and valleys of its graph), as well as its x- and
y-intercepts by simply clicking on the graph.
The x-intercepts are also commonly called zeros or roots of the function.
In other words, a root or a zero of a function f is a number c for which
f(c) = 0.

We demonstrate this in the next example.

Example 4.2

Graph the function y = x3 − 2x2 − 4x+ 4.

a) Approximate the x-intercepts and the y-intercept of the function.

b) Approximate the (local) maximum and minimum. A (local) maximum
or minimum is also called a (local) extremum.

Solution.

a) Enter the function in Desmos and click on the x-intercepts (points
where the graph intersects with the x-axis) and the y-intercept (the
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point where the graph intersects with the y-axis).

There are three x-intercepts and one y-intercept:

x-intercepts: (x, y) ≈ (−1.709, 0), (x, y) ≈ (0.806, 0)

(x, y) ≈ (2.903, 0)

y-intercept: (x, y) = (0, 4)

Note that the y-intercept is precisely at (0, 4), whereas the x-
intercepts are only approximated.

b) Similarly, we obtain the local maximum and the local minimum.

local max: (x, y) ≈ (−0.667, 5.481), local min: (x, y) = (2,−4)

One can check (using methods from calculus) that the local minimum is
precisely at (2,−4), whereas the local maximum is only approximated.
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Example 4.3

For the two functions below, find all intercepts and all extrema. Approx-
imate your answer to the nearest thousandth.

a) f(x) = x4 − 2x3 − 4x2 + 4x+ 3 b) f(x) = x3 − 9x2 − x

Solution.

a) Graphing the function in Desmos, we can read off the coordinates of
the wanted points (the intercepts and extrema) by clicking on them.

x-intercepts: (x, y) ≈ (−1.517, 0), (x, y) ≈ (−0.552, 0),

(x, y) ≈ (1.287, 0), (x, y) ≈ (2.782, 0)

y-intercept: (x, y) = (0, 3)

local maximum: (x, y) ≈ (0.409, 3.858)

local mininima: (x, y) ≈ (−1.111,−2.115), (x, y) ≈ (2.202,−5.430)

Here, Desmos already rounded coordinates to the nearest thou-
sandth. For example, the maximum with one more digit is (x, y) ≈
(0.4088, 3.8580), which rounds to (0.409, 3.858).

b) Graphing f(x) = x3 − 9x2 − x shows that we don’t have a complete
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view of all the points of interest in the initial viewing window.

Zooming in and out (by using the plus and minus symbols on the
graph or by scrolling on the screen), we can get a closer view of the
wanted points.

Note that by zooming in, Desmos may display more than three digits
after the decimal point. Rounding to the nearest thousandth gives
the following answers.

x-intercepts: (x, y) ≈ (−0.110, 0), (x, y) = (0, 0),

(x, y) ≈ (9.110, 0)

y-intercept: (x, y) = (0, 0)

local maximum: (x, y) ≈ (−0.055, 0.028)

local mininimum: (x, y) ≈ (6.055,−114.028)
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Note 4.4: Zooming

Besides zooming in and out, the display window can also be set man-

ually via the Graph Settings menu (click on the wrench symbol ).

The home button resets the window to a size in which the x is
approximately between −10 and 10, and with a matching scale for y.
There is also a possibility to rescale each axis individually. To this
end, hover the pointer over the axis that needs to be rescaled and press
and hold the shift key. The axis will appear in blue, and can then be
rescaled (click and move the pointer in the wanted direction). Below is
the rescaled graph for y = x3 − 9x2 − x.

Note 4.5

Desmos only approximates its answers, such as intercepts, maxima, and
minima. It is our task to correctly interpret and confirm any answers
inferred from Desmos.
For example, graphing y = (x− 2)2 +0.0001 appears to show a root at
(2, 0). Nevertheless, a closer look reveals that this function does not

have a root at (2, 0).



54 CHAPTER 4. BASIC FUNCTIONS AND TRANSFORMATIONS

We next show how to graph piecewise defined functions with Desmos.

Example 4.6

Graph the piecewise defined function from Example 3.20 with Desmos.

y =







x+ 3 , for −3 ≤ x < −1
x2 , for −1 < x < 1
3 , for 2 < x ≤ 3

Solution.
A piecewise defined function is entered in Desmos with a set bracket
{}, separating each branch with a comma. Each branch is entered as
“condition:function value”; for example, the top branch in our example
is entered as −3 ≤ x < −1 : x + 3. Combining the three branches, we
obtain:

y = { −3 ≤ x < −1 : x+ 3 , −1 < x < 1 : x2 , 2 < x ≤ 3 : 3 }

Although there are no open or closed circles at the endpoints of the line
segments, Desmos does interpret these endpoints correctly. This can
be seen by clicking on the endpoint of a branch.

We can add the missing endpoints manually by entering the coordinates
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for each point.

To adjust properties of the point such as its color or it being depicted

as open or closed, we click the Edit List button on top of the panel,
then click on the big (in this case blue) circle to the left of the entered
point. We can then set the style and color of the point.

Performing this for each endpoint, we obtain the following graph.
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Our last example in this section shows how to easily compute function
values and how to create tables in Desmos.

Example 4.7

Consider the functions

f(x) = x3 − 4x2 + 5

and g(x) =

{
2x , for x ≤ 2

4− x , for 2 < x < 5

Compute the function values

f(2), f(4), g(1), g(2), g(6).

Solution.
First, graph both functions f and g.

A direct way of computing function values is given by simply entering
the wanted expression. Note that undefined function values (such as
g(6)) are indeed stated as undefined.
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Another way to calculate function values comes from generating a table.

Press the “Add Item” button on top, and click on “table”.

Modify the table by replacing y1 with f(x1). We can also compute
multiple function values, such as f(x1) and g(x1), by putting g(x1) next
to f(x1). Below x1, we enter the desired inputs.

Thus, f(2) = −3, f(4) = 5, g(1) = 2, g(2) = 4, and g(6) is undefined.

4.2 Optional section: Exploring Desmos further

We now explore sliders in Desmos and we revisit the domain and range of a
function, as well as the vertical line test. We also give an example of finding
intersection points of two graphs.
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Example 4.8

Explore the equation of a line y = m · x+ b for various values of m and
b using sliders.

Solution.
We enter y = mx+ b into Desmos.

We want m and b to be interpreted as constants, but these constants
can be adjusted. This is precisely what sliders provide in Desmos. We
therefore add the sliders m and b.
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Changing the values for m and b, we instantly see the effect on its graph.

Example 4.9

Find the (approximate) domain and range of the following functions.

a) f(x) =
√
x− 3 + 4 b) f(x) = x2 + 8x− 7

Solution.

a) Enter y =
√
x− 3+4 into Desmos. Note that the square-root symbol

can be entered by typing the letters sqrt, or alternatively, first show

the keyboard by clicking and then clicking the square-root
symbol.
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We see that the function starts from some vertex, and then increases
as x increases. To find the vertex, click on it.

Thus, the domain and range appear to be D = [3,∞) and R = [4,∞).

b) Similarly, we can graph the function y = x2 +8x− 7 and read off its
domain and range. Note that there is no restriction on the inputs x,
so that the domain is all real numbers.

From the graph, the domain and range are therefore D = R and
R = [−23,∞).
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Example 4.10

Graph each of the following equations. Determine whether the graph is
the graph of a function or not.

a) (x− 3)2 + (y − 5)2 = 16 b) 3x2 + y3 + 5xy = 7

Solution.

a) Graphing (x− 3)2 + (y − 5)2 = 16 shows that we obtain a circle.

To see if this is the graph of a function, we can use the vertical line
test (from Observation 3.15). The y-axis (which is the vertical line at
x = 0) intersects the circle at two points. This shows that the circle
is not the graph of a function. Indeed, if we solve the equation for y,
we get:

(x− 3)2 + (y − 5)2 = 16 =⇒ (y − 5)2 = 16− (x− 3)2

=⇒ y − 5 = ±
√

16− (x− 3)2

=⇒ y = 5±
√

16− (x− 3)2

This shows that the circle is made up of two parts, the upper half-
circle y = 5 +

√

16− (x− 3)2 and the lower half-circle y = 5 −
√

16− (x− 3)2, each of which is the graph of a function.
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b) We can easily enter more complicated equations into Desmos.

The vertical line at x = −2 intersects the graph at three points,
which shows that it is not the graph of a function.

Note 4.11: Equation of the circle

We recall that the equation

(x− h)2 + (y − k)2 = r2

always forms a circle in the plane. Indeed, this equation describes a
circle with center C(h, k) and radius r.
This can easily be explored in Desmos using sliders; see Exercise 4.6
below.
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In the last example of this section we solve an equation by determining
the intersection of two graphs.

Example 4.12

Solve the equation

x2 − 3x+ 2 = x3 + 2x2 − 1

Approximate your answer to the nearest thousandth.

Solution.
We can solve the equation by graphing the left-hand side y = x2−3x+2
and the right-hand side y = x3 + 2x2 − 1, and by determining those
values of x where both sides are equal. This occurs precisely at the
intersection of the two graphs. Graphing both functions and clicking on
the intersection, we obtain:

The intersection is at (x, y) ≈ (0.711, 0.372). Therefore, the two sides of
the equation are equal for x ≈ 0.711 (in which case both the left-hand
side and right-hand side are approximately 0.372). Therefore, x ≈ 0.711
is the approximate solution.

4.3 Graphs of basic functions and transformations

It will be useful to study the shape of graphs of some basic functions, which
may then be taken as building blocks for more advanced and complicated
functions.
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Observation 4.13: Basic function

We start by examining the following functions, which we will sometimes
refer to as basic functions:

y = |x|, y = x2, y = x3, y =
√
x, y =

1

x

We can either graph these functions by hand by calculating a table, or
by using the graphing calculator.

• We begin with the absolute value function y = |x|. The domain
of y = |x| is all real numbers, D = R.
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• Similarly, we obtain the graph for y = x2, which is a parabola.
The domain of the function y = x2 is D = R.
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• Here is the graph for y = x3. The domain is D = R.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y



4.3. GRAPHS OF BASIC FUNCTIONS AND TRANSFORMATIONS 65

• Next we graph y =
√
x. The domain is D = [0,∞).
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• Finally, here is the graph for y = 1
x
. The domain is D = R−{0}.
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These graphs together with the line y = mx+ b studied in Section 3.1
are our basic building blocks for more complicated graphs in the next
sections. Note in particular, that the graph of y = x is the diagonal
line.

x

y

y = mx+ c

c x

y
y = x

For a given function (such as one of the basic functions above), we now
study how the graph of the function changes when performing elementary
operations, such as adding, subtracting, or multiplying a constant number to
the input or output. We will study the behavior in five specific transformations.
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Adding or subtracting a constant to the output

Consider the following graphs:

y = x2 y = x2 + 2 y = x2 − 2
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We see that the function y = x2 is shifted up by 2 units, respectively down
by 2 units. In general, we have:

Observation 4.14: Adding or subtracting a constant to the output

Consider the graph of a function y = f(x). Then, the graph of y =
f(x) + c is that of y = f(x) shifted up or down by c.

• If c is positive, the graph is shifted up; if c is negative, the graph
is shifted down.

Adding or subtracting a constant to the input

Next, we consider the transformation of y = x2 given by adding or subtracting
a constant to the input x.

y = x2 y = (x+ 1)2 y = (x− 1)2
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Now we see that the function is shifted to the left or right. Note that y =
(x+ 1)2 shifts the function to the left, which can be seen to be correct, since
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the input x = −1 gives the output y = ((−1) + 1)2 = 02 = 0.

Observation 4.15: Adding or subtracting a constant to the input

Consider the graph of a function y = f(x). Then, the graph of y =
f(x+ c) is that of y = f(x) shifted to the left or right by c.

• If c is positive, the graph is shifted to the left; if c is negative, the
graph is shifted to the right.

Multiplying a positive constant to the output

Another transformation is given by multiplying the function by a fixed positive
factor.

y = x3 + 1 y = 2 · (x3 + 1) y = 1
2
· (x3 + 1)
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This time, the function is stretched away or compressed toward the x-axis.

Observation 4.16: Multiplying a positive constant to the output

Consider the graph of a function y = f(x) and let c > 0. Then, the
graph of y = c · f(x) is that of y = f(x) stretched away or compressed
toward the x-axis by a factor c.

• If c > 1, the graph is stretched away from the x-axis; if 0 < c < 1,
the graph is compressed toward the x-axis.
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Multiplying a positive constant to the input

Similarly, we can multiply the input by a positive factor.

y = x3 + 1 y = (2 · x)3 + 1 y = (1
2
· x)3 + 1
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This time, the function is stretched away or compressed toward the y-axis.

Observation 4.17: Multiplying a positive constant to the input

Consider the graph of a function y = f(x) and let c > 0. Then, the
graph of y = f(c · x) is that of y = f(x) stretched away or compressed
toward the y-axis by a factor c.

• If c > 1, the graph is compressed toward the y-axis; if 0 < c < 1,
the graph is stretched away from the y-axis.

Multiplying (−1) to the input or output

The last transformation is given by multiplying (−1) to the input or output,
as displayed in the following chart.

y = x3 + 1 y = −(x3 + 1) y = (−x)3 + 1
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Here, the function is reflected either about the x-axis or about the y-axis.

Observation 4.18: Multiplying (−1) to the input or output

Consider the graph of a function y = f(x). Then, the graph of y =
−f(x) is that of y = f(x) reflected about the x-axis. Furthermore, the
graph of y = f(−x) is that of y = f(x) reflected about the y-axis.

Example 4.19

Guess the formula for the function based on the basic graphs in Section
4.3 and the transformations described above.

a)
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Solution.

a) This is the square-root function shifted to the left by 2. Thus, by
Observation 4.14, this is the function f(x) =

√
x+ 2.

b) This is the graph of y = 1
x

reflected about the x-axis (or also y = 1
x

reflected about the y-axis). In either case, we obtain the rule y = − 1
x
.

c) This is a parabola reflected about the x-axis and then shifted up by
3. Thus, we get:

y = x2

reflecting about the x-axis gives y = −x2

shifting the graph up by 3 gives y = −x2 + 3
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d) Starting from the graph of the cubic equation y = x3, we need to
reflect about the x-axis (or also y-axis), then shift up by 2 and to the
right by 3. These transformations affect the formula as follows:

y = x3

reflecting about the x-axis gives y = −x3

shifting up by 2 gives y = −x3 + 2
shifting the the right by 3 gives y = −(x− 3)3 + 2

All of the above answers can be checked by graphing the function with
the graphing calculator.

Example 4.20

Sketch the graph of the function based on the basic graphs in Section
4.3 and the transformations described above.

a) y = x2 + 3 b) y = (x+ 2)2 c) y = |x− 3| − 2
d) y = 2 ·

√
x+ 1 e) y = −

(
1
x
+ 2
)

f ) y = (−x+ 1)3

Solution.

a) This is the parabola y = x2 shifted up by 3. The graph is shown
below.

b) y = (x+ 2)2 is the parabola y = x2 shifted 2 units to the left.

a)
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c) The graph of the function f(x) = |x − 3| − 2 is the absolute value
shifted to the right by 3 and down by 2. (Alternatively, we can first
shift down by 2 and then to the right by 3.)

d) Similarly, to get from the graph of y =
√
x to the graph of y =√

x+ 1, we shift the graph to the left, and then for y = 2 ·
√
x+ 1,
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we need to stretch the graph by a factor 2 away from the x-axis.
(Alternatively, we could first stretch the the graph away from the
x-axis, then shift the graph by 1 to the left.)

c)
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e) For y = −( 1
x
+ 2), we start with y = 1

x
and add 2, giving y = 1

x
+ 2,

which shifts the graph up by 2. Then, taking the negative gives
y = −( 1

x
+ 2), which corresponds to reflecting the graph about the

x-axis.

Note that in this case, we cannot perform these transformations in
the opposite order, since the negative of y = 1

x
gives y = − 1

x
, and

adding 2 gives y = − 1
x
+ 2, which is not equal to −( 1

x
+ 2).

f ) We start with y = x3. Adding 1 to the argument, y = (x+ 1)3, shifts
its graph to the left by 1. Then, applying a minus to the argument
gives y = (−x+ 1)3, which reflects the graph about the y-axis.

Here, the order in which we perform these transformations is again
important. In fact, if we first take the negative of the argument, we
obtain y = (−x)3. Then, adding one to the argument would give
y = (−(x + 1))3 = (−x − 1)3, which is different than our given
function y = (−x+ 1)3.
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All these solutions may also be checked easily by using the graphing
calculator.
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Example 4.21

a) The graph of f(x) = |x3 − 5| is stretched away from the y-axis by a
factor of 3. What is the formula for the new function?

b) The graph of f(x) =
√
6x2 + 3 is shifted up 5 units, and then reflected

about the x-axis. What is the formula for the new function?

c) How are the graphs of y = 2x3+5x−9 and y = 2(x−2)3+5(x−2)−9
related?

d) How are the graphs of y = (x− 2)2 and y = (−x+ 3)2 related?

Solution.

a) Based on Observation 4.17 on page 68, we have to multiply the
argument by 1

3
. The new function is therefore:

f
(1

3
· x
)

=

∣
∣
∣
∣

(1

3
· x
)3

− 5

∣
∣
∣
∣
=

∣
∣
∣
∣

1

27
· x3 − 5

∣
∣
∣
∣

b) After the shift, we have the graph of a new function y =
√
6x2 + 3+5.

Then, a reflection about the x-axis gives the graph of the function
y = −(

√
6x2 + 3 + 5).

c) Based on Observation 4.15 on page 67, we see that we need to shift
the graph of y = 2x3 + 5x− 9 by 2 units to the right.

d) The formulas can be transformed into each other as follows:

We begin with y = (x− 2)2.
Replacing x by x+ 5 gives y = ((x+ 5)− 2)2 = (x+ 3)2.
Replacing x by −x gives y = ((−x) + 3)2 = (−x+ 3)2.

Therefore, we have performed a shift to the left by 5, and then a
reflection about the y-axis.

We want to point out that there is a second solution for this problem:

We begin with y = (x− 2)2.
Replacing x by −x gives

y = ((−x)− 2)2 = (−x− 2)2.
Replacing x by x− 5 gives

y = (−(x− 5)− 2)2 = (−x+ 5− 2)2 = (−x+ 3)2.
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Therefore, we could also first perform a reflection about the y-axis,
and then shift the graph to the right by 5.

Some of the above functions have special symmetries, which we investigate
now.

Definition 4.22: Even function, odd function

A function f is called even if f(−x) = f(x) for all x.
A function f is called odd if f(−x) = −f(x) for all x.

Example 4.23

Determine if the following functions are even, odd, or neither:

f(x) = x2, g(x) = x3, h(x) = x4, k(x) = x5,
l(x) = 4x5 + 7x3 − 2x, m(x) = x2 + 5x

Solution.
The function f(x) = x2 is even, since f(−x) = (−x)2 = x2. Similarly,
g(x) = x3 is odd, h(x) = x4 is even, and k(x) = x5 is odd, since

g(−x) = (−x)3 = −x3 = −g(x)

h(−x) = (−x)4 = x4 = h(x)

k(−x) = (−x)5 = −x5 = −k(x)

Indeed, we see that a function y = xn is even precisely when n is even,
and y = xn is odd precisely when n is odd. (These examples are in fact
the motivation behind defining even and odd functions as in Definition
4.22 above.)
Next, in order to determine if the function l is even or odd, we calculate
l(−x) and compare it with l(x).

l(−x) = 4(−x)5 + 7(−x)3 − 2(−x) = −4x5 − 7x3 + 2x

= −(4x5 + 7x3 − 2x) = −l(x)

Therefore, l is an odd function.
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Finally, for m(x) = x2 + 5x, we calculate m(−x) as follows:

m(−x) = (−x)2 + 5(−x) = x2 − 5x

Note that m is not an even function, since x2 − 5x 6= x2 + 5x. Fur-
thermore, m is also not an odd function, since x2 − 5x 6= −(x2 + 5x).
Therefore, m is a function that is neither even nor odd.

Observation 4.24: Graph of even or odd function

An even function f is symmetric with respect to the y−axis (if you
reflect the graph of f about the y−axis, you get the same graph back),
since even functions satisfy f(−x) = f(x):

Example y = x2:

x

y

x−x

f(−x) = f(x)

An odd function f is symmetric with respect to the origin (if you reflect
the graph of f about the y−axis and then about the x−axis, you get
the same graph back), since odd functions satisfy f(−x) = −f(x):

Example y = x3:

x

y

x

−x

f(x)

−f(x)
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4.4 Exercises

Exercise 4.1

Graph the function in Desmos.

a) y = 3x− 5 b) y = x2 − 3x− 2 c) y = x4 − 3x3 + 2x− 1

d) y =
√
x2 − 4 e) y = 4x+3

2x+5
f ) y = |x+ 3|

Exercise 4.2

For each of the functions below, use Desmos to find all roots, all local
maxima, all local minima, and the y-intercept.

a) f(x) = x3 + 4x2 − 2x− 9 b) f(x) = x3 − 6x2 + 7x+ 4
c) f(x) = −4x3 + 3x2 + 7x+ 1 d) f(x) = 5x3 + 2x2

e) f(x) = x4 − x3 − 4x2 + 1 f ) f(x) = −x4 + 5x3 − 4x+ 3

g) f(x) = x5 + 2x4 − x3 − 3x2 − x h) f(x) =
√

|2x − 3| − 2x+ 3

Exercise 4.3

Determine the domain and range using Desmos.

a) y = |x− 2|+ 5 b) y = −2x+ 7
c) y = x2 − 6x+ 4 d) y = −x2 − 8x+ 3
e) y = 3 +

√
x+ 5 f ) y = 6− x+

√
4− x

g) y = x4 − 8x2 + 9 h) y = x−2
x−3

Exercise 4.4

Use Desmos to determine whether the equation describes a function or
not.

a) x2 + 2y − 3x = 7 b) x2 + 2y2 − 3x = 7
c) y2 + 8y + 15 = x d) y3 + x2 + y + x = 1

e) y = 2x−5
x−3

f ) x2 +
(

y −
√

|x|
)2

= 1
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Exercise 4.5

Solve the equation for y and graph all branches in Desmos in the same
window.

a) x2 + y2 = 4 b) (x+ 5)2 + y2 = 15
c) (x− 1)2 + (y − 2)2 = 9 d) y2 = x2 + 3

Exercise 4.6

Set up the general equation of a circle in Desmos, where the center
and the radius can be changed using sliders. If a circle of radius 3 with
center at the origin (0, 0) is shifted 4 units to the right and shifted 2
units down, then what is its equation?

Exercise 4.7

Use Desmos to find all solutions of the equation. Round your answer
to the nearest thousandth.

a) x3 + 3 = x5 + 7 b) 4x3 + 6x2 − 3x− 2 = 0

c) 2x
x−3

= x2+2
x+1

d) 53x+1 = x5 + 6

e) x3 + x2 = x4 − x2 + x f ) 3x2 = x3 − x2 + 3x

Exercise 4.8

Find a possible formula of the graph displayed below.

a)

-4 -3 -2 -1 0 1 2 3 4

-2

-1

0

1

2

3

4

x

y

b)

-3 -2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

3

x

y
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c)

-3 -2 -1 0 1 2 3 4

-2

-1

0

1

2

3

4

x

y

d)

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

3

4

5

6

x

y

e)

-4 -3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

f )

-2 -1 0 1 2 3 4 5 6

-2

-1

0

1

2

3

4

x

y

Exercise 4.9

Sketch the graph of the function based on the basic graphs and their
transformation described in Section 4.3. Confirm your answer by graph-
ing the function with the graphing calculator.

a) f(x) = |x| − 3 b) f(x) = 1
x+2

c) f(x) = −x2 d) f(x) = (x− 1)3

e) f(x) =
√
−x f ) f(x) = 4 · |x− 3|

g) f(x) = −√
x+ 1 h) f(x) = (1

2
· x)2 + 3
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Exercise 4.10

Consider the graph of f(x) = x2 − 7x + 1. Find the formula of the
function that is given by performing the following transformations on
the graph.

a) Shift the graph of f down by 4.
b) Shift the graph of f to the left by 3 units.
c) Reflect the graph of f about the x-axis.
d) Reflect the graph of f about the y-axis.
e) Stretch the graph of f away from the y-axis by a factor 3.
f ) Compress the graph of f toward the y-axis by a factor 2.

Exercise 4.11

How are the graphs of f and g related?

a) f(x) =
√
x, g(x) =

√
x− 5

b) f(x) = |x|, g(x) = 2 · |x|
c) f(x) = (x+ 1)3, g(x) = (x− 3)3

d) f(x) = x2 + 3x+ 5, g(x) = (2x)2 + 3(2x)2 + 5
e) f(x) = 1

x+3
, g(x) = − 1

x

f ) f(x) = 2 · |x|, g(x) = |x+ 1|+ 1

Exercise 4.12

Determine if the function is even, odd, or neither.

a) y = 2x3 b) y = 5x2 c) y = 3x4 − 4x2 + 5
d) y = 2x3 + 5x2 e) y = |x| f ) y = 1

x

g)

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

h)

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

i)

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y
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Exercise 4.13

The graph of the function y = f(x) is displayed below.

-5 -4 -3 -2 -1 0 1 2 3 4 5

-3

-2

-1

0

1

2

3

4

x

y

Sketch the graph of the following functions.

a) y = f(x) + 1 b) y = f(x− 3) c) y = −f(x)
d) y = 2f(x) e) y = f(2x) f ) y = f(1

2
x)



Chapter 5

Operations on functions

We can combine two functions in many different ways, for example, by combin-
ing their output values (such as adding or multiplying them), or by composing
the functions (that is, using the output of one as the input of the next function).
In this chapter, we define and study these operations.

5.1 Operations on functions given by formulas

In the first example of this section, we show how to add, subtract, multiply,
and divide functions that are given by a formula.

Example 5.1

Let f(x) = x2 + 5x and g(x) = 7x − 3. Find the following functions,
and state their domain.

(f + g)(x), (f − g)(x), (f · g)(x), and

(
f

g

)

(x).

Solution.
The functions are calculated by adding them (or subtracting, multiplying,
or dividing them).

(f + g)(x) = (x2 + 5x) + (7x− 3) = x2 + 12x− 3,

(f − g)(x) = (x2 + 5x)− (7x− 3)

= x2 + 5x− 7x+ 3 = x2 − 2x+ 3,

80
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(f · g)(x) = (x2 + 5x) · (7x− 3)

= 7x3 − 3x2 + 35x2 − 15x = 7x3 + 32x2 − 15x,
(
f

g

)

(x) =
x2 + 5x

7x− 3
.

The calculation of these functions was straightforward. To state their
domain is also straightforward, except for the domain of the quotient f

g
.

Note that f + g, f − g, and f · g are all polynomials. According to the
standard convention (Convention 2.7 on page 24), all these functions
have the domain R; that is, their domain is all real numbers.
Now, for the domain of f

g
, we have to be a bit more careful, since the

denominator of a fraction cannot be zero. The denominator of f
g
(x) =

x2+5x
7x−3

is zero, exactly when

7x− 3 = 0 =⇒ 7x = 3 =⇒ x =
3

7
.

We have to exclude 3
7

from the domain. The domain of the quotient f
g

is

therefore R− {3
7
}.

We can formally state the observation we made in the previous example.

Observation 5.2: Domain when adding, multiplying, dividing

Let f be a function with domain Df , and let g be a function with domain
Dg . A value x can be used as an input of f + g, f − g, and f · g, exactly
when x is an input of both f and g. Therefore, the domains of the
combined functions are the intersection of the domains Df and Dg:

Df+g = Df ∩Dg = {x | x ∈ Df and x ∈ Dg},
Df−g = Df ∩Dg,

Df ·g = Df ∩Dg.

For the quotient f
g
, we also have to make sure that the denominator

g(x) is not zero.

D f

g

= {x | x ∈ Df , x ∈ Dg, and g(x) 6= 0}.
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Example 5.3

Let f(x) =
√
x+ 2, and let g(x) = x2 − 5x + 4. Find the functions f

g

and g
f

and state their domains.

Solution.
First, the domain of f consists of those numbers x for which the square
root is defined. In other words, we need x + 2 ≥ 0, which means that
x ≥ −2, and so the domain of f is Df = [−2,∞). On the other hand,
the domain of g is all real numbers, Dg = R. Now, we have the quotients

(
f

g

)

(x) =

√
x+ 2

x2 − 5x+ 4
and

(
g

f

)

(x) =
x2 − 5x+ 4√

x+ 2
.

For the domain of f
g
, we need to exclude those numbers x for which

x2 − 5x+ 4 = 0. Thus, factoring x2 − 5x+ 4 = 0 gives

(x− 1)(x− 4) = 0 =⇒ x = 1 or x = 4

We obtain the domain for f
g

as the combined domain for f and g, and

exclude 1 and 4. Therefore, D f

g

= [−2,∞)− {1, 4}.

Now, for g
f
(x) = x2−5x+4√

x+2
, the denominator becomes zero exactly when

x+ 2 = 0 =⇒ x = −2

Therefore, we need to exclude −2 from the domain, that is

D g

f
= [−2,∞)− {−2} = (−2,∞).

Note 5.4

To form the quotient f
g
(x), where f(x) = x2 − 1 and g(x) = x + 1,

we write f
g
(x) = x2−1

x+1
= (x+1)(x−1)

x+1
= x − 1. One might be tempted to

say that the domain is all real numbers. But it is not! The domain
is all real numbers except −1, and the last step of the simplification
performed above is only valid for x 6= −1.
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Another operation we can perform is the composition of two functions.

Definition 5.5: Composition of functions

Let f and g be functions, and assume that g(x) is in the domain of f .
Then define the composition of f and g at x to be

(f ◦ g)(x) := f(g(x)).

x g(x) f(g(x))

g f

We can take any x as an input of f ◦ g which is an input of g and for
which g(x) is an input of f . Therefore, if Df is the domain of f and Dg

is the domain of g, the domain of Df◦g is

Df◦g = { x | x ∈ Dg, g(x) ∈ Df }.
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Example 5.6

Let f(x) = 2x2+5x and g(x) = 2−x. Find the following compositions:

a) f(g(3)) b) g(f(3)) c) f(f(1)) d) f(2 · g(5)) e) g(g(4) + 5)

Solution.
We evaluate the expressions as follows:

a) f(g(3)) = f(2− 3) = f(−1) = 2 · (−1)2 + 5 · (−1)

= 2− 5 = −3,

b) g(f(3)) = g(2 · 32 + 5 · 3) = g(18 + 15) = g(33)

= 2− 33 = −31,

c) f(f(1)) = f(2 · 12 + 5 · 1) = f(2 + 5) = f(7)

= 2 · 72 + 5 · 7 = 98 + 35 = 133,

d) f(2 · g(5)) = f(2 · (2− 5)) = f(2 · (−3)) = f(−6)

= 2 · (−6)2 + 5 · (−6) = 72− 30 = 42,

e) g(g(4) + 5) = g((2− 4) + 5) = g((−2) + 5)

= g(3) = 2− 3 = −1.

We can also calculate composite functions for arbitrary x in the domain.

Example 5.7

Let f(x) = x2 + 1 and g(x) = x+ 3. Find the following compositions:

a) (f ◦ g)(x) b) (g ◦ f)(x) c) (f ◦ f)(x) d) (g ◦ g)(x)

Solution.

a) There are essentially two ways to evaluate (f ◦ g)(x) = f(g(x)). We
can either first use the explicit formula for f(x) and then the one for
g(x), or vice versa. We will evaluate f(g(x)) by substituting g(x)
into the formula for f(x):

(f ◦ g)(x) = f(g(x)) = (g(x))2 + 1 = (x+ 3)2 + 1

= x2 + 6x+ 9 + 1 = x2 + 6x+ 10.
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Similarly, we evaluate the other expressions (b)-(d):

b) (g ◦ f)(x) = g(f(x)) = f(x) + 3 = x2 + 1 + 3 = x2 + 4

c) (f ◦f)(x) = f(f(x)) = (f(x))2+1 = (x2+1)2+1 = x4+2x2+1+1 =
x4 + 2x2 + 2

d) (g ◦ g)(x) = g(g(x)) = g(x) + 3 = x+ 3 + 3 = x+ 6

Example 5.8

Find (f ◦ g)(x) and (g ◦f)(x) for the following functions, and state their
domains.

a) f(x) = 3
x+2

and g(x) = x2 − 3x

b) f(x) = |3x− 2| − 6x+ 4 and g(x) = 5x+ 1

c) f(x) =
√

1
2
· (x− 4) and g(x) = 2x2 + 4

Solution.

a) Composing f ◦ g, we obtain

(f ◦ g)(x) = f(g(x)) =
3

g(x) + 2
=

3

x2 − 3x+ 2
.

The domain is the set of numbers x for which the denominator is
non-zero.

x2 − 3x+ 2 = 0 =⇒ (x− 2)(x− 1) = 0

=⇒ x = 2 or x = 1

=⇒ Df◦g = R− {1, 2}.

Similarly,

(g ◦ f)(x) = g(f(x)) = f(x)2 − 3f(x) =

(
3

x+ 2

)2

− 3
3

x+ 2

=
9

(x+ 2)2
− 9

x+ 2
=

9− 9(x+ 2)

(x+ 2)2

=
9− 9x− 18

(x+ 2)2
=

−9x− 9

(x+ 2)2
=

−9 · (x+ 1)

(x+ 2)2
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The domain is all real numbers except x = −2, that is Dg◦f =
R− {−2}.

b) We calculate the compositions as follows:

(f ◦ g)(x) = f(g(x)) = |3g(x)− 2| − 6g(x) + 4

= |3(5x+ 1)− 2| − 6(5x+ 1) + 4

= |15x+ 1| − 30x− 2

(g ◦ f)(x) = g(f(x)) = 5f(x) + 1 = 5 · (|3x− 2| − 6x+ 4) + 1

= 5 · |3x− 2| − 30x+ 20 + 1 = 5 · |3x− 2| − 30x+ 21

Since the domains of f and g are all real numbers, so are also the
domains for both f ◦ g and g ◦ f .

c) Again we calculate the compositions.

(f ◦ g)(x) = f(g(x)) =

√

1

2
· (g(x)− 4) =

√

1

2
· (2x2 + 4− 4)

=

√

1

2
· 2x2 =

√
x2 = |x|.

The domain of g is all real numbers, and the outputs g(x) = 2x2 + 4
are all ≥ 4, (since 2x2 ≥ 0). Therefore, g(x) is in the domain of f ,
and we have a combined domain of f ◦ g of Df◦g = R. On the other
hand,

(g ◦ f)(x) = g(f(x)) = 2(f(x))2 + 4 = 2 ·
(√

1

2
· (x− 4)

)2

+ 4

= 2 ·
(
1

2
· (x− 4)

)

+ 4 = (x− 4) + 4 = x.

The domain of g◦f consists of all numbers x which are in the domain
of f and for which f(x) is in the domain of g. Now, the domain of
f consists of all real numbers x that give a non-negative argument
in the square-root, that is: 1

2
(x − 4) ≥ 0. Therefore, we must have

x − 4 ≥ 0, so that x ≥ 4, and we obtain the domain Df = [4,∞).
Since the domain Dg = R, the composition g◦f has the same domain
as f :

Dg◦f = Df = [4,∞).



5.2. OPERATIONS ON FUNCTIONS GIVEN BY TABLES 87

We remark that at a first glance, we might have expected that (g◦f) =
x has a domain of all real numbers. However, the composition g(f(x))
can only have those inputs that are also allowed inputs of f . We
see that the domain of a composition is sometimes smaller than the
domain that we use via the standard convention (Convention 2.7).

5.2 Operations on functions given by tables

We now show how to combine two functions that are given by tables.

Example 5.9

Let f and g be the functions defined by the following table.

x 1 2 3 4 5 6 7

f(x) 6 3 1 4 0 7 6
g(x) 4 0 2 5 −2 3 1

Describe the following functions via a table:

a) 2 · f(x) + 3 b) f(x)− g(x) c) f(x+ 2) d) g(−x)

Solution.
For (a) and (b) we obtain by immediate calculation:

x 1 2 3 4 5 6 7

2 · f(x) + 3 15 9 5 11 3 17 15
f(x)− g(x) 2 3 −1 −1 2 4 5

For example, for x = 3, we obtain 2 ·f(x)+3 = 2 ·f(3)+3 = 2 ·1+3 = 5
and f(x)− g(x) = f(3)− g(3) = 1− 2 = −1.
For part (c), we have a similar calculation of f(x+ 2). For example, for
x = 1, we get f(1 + 2) = f(1 + 2) = f(3) = 1.

x 1 2 3 4 5 6 7 −1 0

f(x+ 2) 1 4 0 7 6 undef. undef. 6 3
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Note that for the last two inputs x = 6 and x = 7 the expression
f(x+ 2) is undefined, since, for example for x = 6, we have f(x+ 2) =
f(6 + 2) = f(8) which is undefined. However, for x = −1, we obtain
f(x + 2) = f(−1 + 2) = f(1) = 6. If we define h(x) = f(x + 2), then
the domain of h is therefore Dh = {−1, 0, 1, 2, 3, 4, 5}.
Finally, for part (d), we need to take x as inputs, for which g(−x) is
defined via the table for g. We obtain the following answer:

x −1 −2 −3 −4 −5 −6 −7

g(−x) 4 0 2 5 −2 3 1

Example 5.10

Let f and g be the functions defined by the following table.

x 1 3 5 7 9 11

f(x) 3 5 11 4 9 7
g(x) 7 −6 9 11 9 5

Describe the following functions via a table:

a) f ◦ g b) g ◦ f c) f ◦ f d) g ◦ g

Solution.
The compositions are calculated by repeated evaluation. For example,

(f ◦ g)(1) = f(g(1)) = f(7) = 4.

The complete answer is displayed below.

x 1 3 5 7 9 11

(f ◦ g)(x) 4 undef. 9 7 9 11
(g ◦ f)(x) −6 9 5 undef. 9 11
(f ◦ f)(x) 5 11 7 undef. 9 4
(g ◦ g)(x) 11 undef. 9 5 9 9
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5.3 Exercises

Exercise 5.1

Find f + g, f − g, f · g for the functions below. State their domain.

a) f(x) = x2 + 6x and g(x) = 3x− 5
b) f(x) = x3 + 5 and g(x) = 5x2 + 7
c) f(x) = 3x+ 7

√
x and g(x) = 2x2 + 5

√
x

d) f(x) = 1
x+2

and g(x) = 5x
x+2

e) f(x) =
√
x− 3 and g(x) = 2

√
x− 3

f ) f(x) = x2 + 2x+ 5 and g(x) = 3x− 6
g) f(x) = x2 + 3x and g(x) = 2x2 + 3x+ 4

Exercise 5.2

Find f
g
, and g

f
for the functions below. State their domain.

a) f(x) = 3x+ 6 and g(x) = 2x− 8
b) f(x) = x+ 2 and g(x) = x2 − 5x+ 4
c) f(x) = 1

x−5
and g(x) = x−2

x+3

d) f(x) =
√
x+ 6 and g(x) = 2x+ 5

e) f(x) = x2 + 8x− 33 and g(x) =
√
x

Exercise 5.3

Let f(x) = 2x−3 and g(x) = 3x2+4x. Find the following compositions:

a) f(g(2)) b) g(f(2)) c) f(f(5))
d) f(5g(−3)) e) g(f(2)− 2) f ) f(f(3) + g(3))
g) g(f(2 + x)) h) f(f(−x)) i) f(f(−3)− 3g(2))
j) f(f(f(2))) k) f(x+ h) l) g(x+ h)
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Exercise 5.4

Find the composition (f ◦ g)(x) for the following functions:

a) f(x) = 3x− 5 and g(x) = 2x+ 3
b) f(x) = x2 + 2 and g(x) = x+ 3
c) f(x) = x2 − 3x+ 2 and g(x) = 2x+ 1
d) f(x) = x2 +

√
x+ 3 and g(x) = x2 + 2x

e) f(x) = 2
x+4

and g(x) = x+ h

f ) f(x) = x2 + 4x+ 3 and g(x) = x+ h

Exercise 5.5

Find the compositions

(f ◦ g)(x), (g ◦ f)(x), (f ◦ f)(x), (g ◦ g)(x)

for the following functions:

a) f(x) = 2x+ 4 and g(x) = x− 5
b) f(x) = x+ 3 and g(x) = x2 − 2x
c) f(x) = 2x2 − x− 6 and g(x) =

√
3x+ 2

d) f(x) = 1
x+3

and g(x) = 1
x
− 3

e) f(x) = (2x− 7)2 and g(x) =
√
x+7
2

Exercise 5.6

Let f and g be the functions defined by the table below. Complete the
table by performing the indicated operations.

x 1 2 3 4 5 6 7

f(x) 4 5 7 0 −2 6 4
g(x) 6 −8 5 2 9 11 2

f(x) + 3
4g(x) + 5

g(x)− 2f(x)
f(x+ 3)
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Exercise 5.7

Let f and g be the functions defined by the table below. Complete the
table by composing the given functions.

x 1 2 3 4 5 6

f(x) 3 1 2 5 6 3
g(x) 5 2 6 1 2 4

(g ◦ f)(x)
(f ◦ g)(x)
(f ◦ f)(x)
(g ◦ g)(x)

Exercise 5.8

Let f and g be the functions defined by the table below. Complete the
table by composing the given functions.

x 0 2 4 6 8 10 12

f(x) 4 8 5 6 12 −1 10
g(x) 10 2 0 −6 7 2 8

(g ◦ f)(x)
(f ◦ g)(x)
(f ◦ f)(x)
(g ◦ g)(x)



Chapter 6

The inverse of a function

For some functions, we can reverse the meaning of input and output. We
can do this when each output of the function comes from exactly one input
(the function is one-to-one). The function resulting from switching inputs and
outputs is called the inverse of the function.

6.1 One-to-one functions

We have seen that some functions f may have the same outputs for different

inputs. For example for f(x) = x2, the inputs x = 2 and x = −2 have the
same output f(2) = 4 and f(−2) = 4. A function is one-to-one, precisely
when this is not the case.

Definition 6.1: One-to-one function

A function f is called one-to-one (or injective), if any two different
inputs x1 6= x2 always have different outputs f(x1) 6= f(x2).

We now give a graphical interpretation for when a function is one-to-one.

Note 6.2

As was noted above, the function f(x) = x2 is not one-to-one, because,
for example, for inputs 2 and −2, we have the same output

f(−2) = (−2)2 = 4, f(2) = 22 = 4.
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On the other hand, g(x) = x3 is one-to-one, since, for example, for
inputs −2 and 2, we have different outputs:

g(−2) = (−2)3 = −8, g(2) = 23 = 8.

The difference between the functions f and g can be seen from their
graphs.

x

y

y0

x0−x0

= x2

x

y

y0

x0

−y0

−x0

= x3

The graph of f(x) = x2 on the left has for different inputs (x0 and −x0)
the same output (y0 = (x0)

2 = (−x0)
2). This is shown in the graph since

the horizontal line at y0 intersects the graph at two different points. In
general, two inputs that have the same output y0 give two points on the
graph which also lie on the horizontal line at y0.
Now, the graph of g(x) = x3 on the right intersects with a horizontal
line at some y0 only once. This shows that for two different inputs, we
can never have the same output y0, so that the function g is one-to-one.

We summarize the above in the following observation.

Observation 6.3: Horizontal Line Test

A function is one-to-one exactly when every horizontal line intersects
the graph of the function at most once.

x

y

y0

x0

= f(x)
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Example 6.4

Which of the following are, or represent, one-to-one functions?

a)
-3 -2 -1 0 1 2 3 4

-1

0

1

2

3

4

5

x

y

b)
-1 0 1 2 3 4 5

-1

0

1

2

3

4

5

x

y

c) f(x) = −x3 + 6x2 − 13x+ 12 d) f(x) = x3 − 2x2 + 3

Solution.
We use the horizontal line test to see which functions are one-to-one.
For (a) and (b), we see that the functions are not one-to-one since there
is a horizontal line that intersects with the graph more than once:

a)
-3 -2 -1 0 1 2 3 4

-1

0

1

2

3

4

5

x

y

b)
-1 0 1 2 3 4 5

-1

0

1

2

3

4

5

x

y

For (c), using the graphing calculator to graph the function f(x) =
−x3 + 6x2 − 13x + 12, we see that all horizontal lines intersect the
graph exactly once. Therefore, the function in part (c) is one-to-one. The
function in part (d) however has a graph that intersects some horizontal
line in several points. Therefore, f(x) = x3− 2x2+3 is not one-to-one:

c)
-1 0 1 2 3 4 5

-1

0

1

2

3

4

5

x

y

d)
-2 -1 0 1 2 3 4

-1

0

1

2

3

4

5

x

y
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6.2 Inverse function

A function is one-to-one when each output is determined by exactly one input.
Therefore, we can construct a new function called the inverse function, in
which we reverse the roles of inputs and outputs. For example, when y = x3,
each y0 comes from exactly one x0 as shown in the picture below:

x

y

y0

x0

The inverse function assigns to the input y0 the output x0.

Definition 6.5: Inverse function

Let f be a function with domain Df and range Rf , and assume that f
is one-to-one. The inverse of f is the function f−1, determined by:

f(x) = y means precisely that f−1(y) = x.

x

input

output

y

output

input

f

f−1

Here the outputs of f are the inputs of f−1, and the inputs of f are
the outputs of f−1. Therefore, the inverse function f−1 has a domain
equal to the range of f , Df−1 = Rf ; and f−1 has a range equal to the
domain of f , Rf−1 = Df . In short, when f is a function f : Df → Rf ,
then the inverse function f−1 is a function f−1 : Rf → Df .
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The inverse function reverses the roles of inputs and outputs.

Example 6.6

Find the inverse of the following functions.

a) f(x) = 2x− 7 b) g(x) =
√
x+ 2

c) h(x) = 1
x+4

d) j(x) = x+1
x+2

e) k(x) = (x− 2)2 + 3 for x ≥ 2

Solution.

a) First, reverse the role of input and output in y = 2x−7 by exchanging
the variables x and y. That is, we write x = 2y − 7. We need to
solve this for y:

(add 7)
=⇒ x+ 7 = 2y =⇒ y =

x+ 7

2

Therefore, we obtain that the inverse of f is f−1(x) = x+7
2

.

For the other parts, we always exchange x and y and solve for y:
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b) Write y =
√
x+ 2 and exchange x and y:

x =
√

y + 2 =⇒ x2 = y + 2 =⇒ y = x2 − 2

=⇒ g−1(x) = x2 − 2

c) Write y = 1
x+4

and exchange x and y:

x =
1

y + 4
=⇒ y + 4 =

1

x
=⇒ y =

1

x
− 4

=⇒ h−1(x) =
1

x
− 4

d) Write y = x+1
x+2

and exchange x and y:

x =
y + 1

y + 2

×(y+2)
=⇒ x(y + 2) = y + 1 =⇒ xy + 2x = y + 1

=⇒ xy − y = 1− 2x =⇒ y(x− 1) = 1− 2x

=⇒ y =
1− 2x

x− 1
=⇒ j−1(x) =

1− 2x

x− 1

e) Write y = (x− 2)2 + 3 and exchange x and y:

x = (y − 2)2 + 3 =⇒ x− 3 = (y − 2)2 =⇒
√
x− 3 = y − 2

=⇒ y = 2 +
√
x− 3 =⇒ k−1(x) = 2 +

√
x− 3

The function in the last example is not one-to-one when allowing x to be
any real number. This is why we had to restrict the example to the inputs
x ≥ 2. We exemplify the situation in the following note.

Note 6.7

Note that the function y = x2 can be restricted to a one-to-one function
by choosing the domain to be all non-negative numbers [0,∞), or by
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choosing the domain to be all non-positive numbers (−∞, 0].

x

y

Let f : [0,∞) → [0,∞) be the function f(x) = x2, so that f has a
domain of all non-negative numbers. Then, the inverse is the function
f−1(x) =

√
x.

On the other hand, we can take g(x) = x2, whose domain consists
of all non-positive numbers (−∞, 0], that is g : (−∞, 0] → [0,∞).
Then, the inverse function g−1 must reverse domain and range, that is
g−1 : [0,∞) → (−∞, 0]. The inverse is obtained by exchanging x and
y in y = x2 as follows:

x = y2 =⇒ y = ±
√
x =⇒ g−1(x) = −

√
x.

Example 6.8

Restrict the function to a one-to-one function. Find the inverse function,
if possible.

a) f(x) = (x+ 3)2 + 1 b) g(x) =
1

(x− 2)2
c) h(x) = x3 − 3x2

Solution.
The graphs of f and g are displayed below.

a)
-6 -5 -4 -3 -2 -1 0 1 2

-1

0

1

2

3

4

x

y

b)
-2 -1 0 1 2 3 4 5

-1

0

1

2

3

4

x

y
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a) The graph shows that f is one-to-one when restricted to all numbers
x ≥ −3, which is the choice we make to find an inverse function.
Next, we replace x and y in y = (x+3)2+1 to give x = (y+3)2+1.
When solving this for y, we must now remember that our choice of
x ≥ −3 becomes y ≥ −3, after replacing x with y. We now solve for
y.

x = (y + 3)2 + 1 =⇒ x− 1 = (y + 3)2 =⇒ y + 3 = ±
√
x− 1

=⇒ y = −3 ±
√
x− 1

Since we have chosen the restriction of y ≥ −3, we use the expres-
sion with the positive sign, y = −3 +

√
x− 1, so that the inverse

function is f−1(x) = −3 +
√
x− 1.

b) For the function g, the graph shows that we can restrict g to x > 2
to obtain a one-to-one function. The inverse for this choice is given
as follows. Replacing x and y in y = 1

(x−2)2
gives x = 1

(y−2)2
, which

we solve for y under the condition y > 2.

x =
1

(y − 2)2
=⇒ (y − 2)2 =

1

x
=⇒ y − 2 = ± 1√

x

=⇒ y = 2± 1√
x

=⇒ g−1(x) = 2 +
1√
x

c) Finally, h(x) = x3 − 3x2 can be graphed as follows:

The above picture shows that the local minimum is at (approximately)
x = 2. Therefore, if we restrict h to all x ≥ 2, we obtain a one-to-one
function. We replace x and y in y = x3 − 3x2, so that the inverse
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function is obtained by solving the equation x = y3 − 3y2 for y.
However, this equation is quite complicated and solving it is beyond
our capabilities at this time. Therefore, we simply say that h−1(x) is
that y ≥ 2 for which y3 − 3y2 = x, and leave the example with this.

Let f be a one-to-one function. If f maps x0 to y0 = f(x0), then f−1

maps y0 to x0. In other words, the inverse function is precisely the function
for which

f−1(f(x0)) = f−1(y0) = x0 and f(f−1(y0)) = f(x0) = y0 .

x0 y0

f

f−1

We therefore have the following observation.

Observation 6.9: Inverses compose to the identity

Let f and g be two one-to-one functions. Then f and g are inverses of
each other exactly when

f(g(x)) = x and g(f(x)) = x for all x. (6.1)

In this case we write that g = f−1 and f = g−1.

Example 6.10

Are the following functions inverse to each other?

a) f(x) = 5x+ 7, g(x) = x−7
5

b) f(x) = 3
x−6

, g(x) = 3
x
+ 6

c) f(x) =
√
x− 3, g(x) = x2 + 3

Solution.
We calculate the compositions f(g(x)) and g(f(x)).

a) f(g(x)) = f(
x− 7

5
) = 5 · x− 7

5
+ 7 = (x− 7) + 7 = x
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g(f(x)) = g(5x+ 7) =
(5x+ 7)− 7

5
=

5x

5
= x

b) f(g(x)) = f(
3

x
+ 6) =

3

( 3
x
+ 6)− 6

=
3
3
x

= 3 · x
3
= x

g(f(x)) = g(
3

x− 6
) =

3
3

x−6

+ 6 = 3 · x− 6

3
+ 6

= (x− 6) + 6 = x

Using the Observation 6.9, we see that in both part (a) and (b) the
functions are inverse to each other. For part (c), we calculate for a
general x in the domain of g:

f(g(x)) =
√
x2 + 3− 3 6= x.

It is enough to show that for one composition (f ◦ g)(x) does not equal
x to conclude that f and g are not inverses. (It is not necessary to also
calculate the other composition g(f(x)).)

Be careful!

If f and g are functions such that the range of f is the domain of g, and the range of g is the
domain of f , then one of the two equations in (6.1) also implies the validity of the other equation
in (6.1). In other words, if, for example, we know that f(g(x)) = x is true, then g(f(x)) = x
is also true. Nevertheless, we recommend to always check both equations. The reason for this
is that it is easy to mistake one of the relations when we are not careful about the domain and
range.
For example, let f(x) = x2 and g(x) = −√

x. Then, naively, we would calculate f(g(x)) =

(−√
x)2 = x and g(f(x)) = −

√
x2 = −|x|, so that the first equation would say f and g are

inverses, whereas the second equation may lead us to think they are not inverses.
We can resolve this apparent contradiction by being precise about the domain that we consider
for f . Note that we can only find an inverse for f if we choose a domain that makes f into
a one-to-one function. For example, if we take the domain of f to be all positive numbers and
zero, Df = [0,∞), then f(g(x)) = f(−√

x) which is undefined, since f only takes non-negative

inputs. Also, we have g(f(x)) = −
√
x2 = −x. Therefore, neither f(g(x)) equals x, nor (g(f(x))

equals x. The functions f and g are not inverse to each other!
On the other hand, if we restrict the function f(x) = x2 to all negative numbers and zero,
Df = (−∞, 0], then f(g(x)) = (−√

x)2 = x, since now f is defined for the negative input

−√
x. Also, for a negative number x < 0, we have g(f(x)) = −

√
x2 = −|x| = x. So, in this

case, f and g are inverse to each other!

Our last observation in this chapter concerns the graph of inverse functions.
If f(x0) = y0 then f−1(y0) = x0, and the point P (x0, y0) is on the graph of f ,
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whereas the point Q(y0, x0) is on the graph of f−1.

x

y

y0

x0

P

y0

x0
Q

We see that Q is the reflection of P along the diagonal y = x. Since this is
true for any point on the graph of f and f−1, we have the following general
observation.

Observation 6.11: Graph of an inverse function

The graph of f−1 is the graph of f reflected about the diagonal.

x

y

di
ag

on
al

f

f−1

Example 6.12

Find the graph of the inverse function of the function given below.

a)

-3 -2 -1 0 1 2 3 4 5 6 7

-2

-1

0

1

2

3

4

5

x

y

b) f(x) = (x+ 1)3
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Solution.
Carefully reflecting the graphs given in part (a) and (b) gives the fol-
lowing solution. The function f(x) = (x+1)3 in part (b) can be graphed
with a graphing calculator first.

a)

-3 -2 -1 0 1 2 3 4 5 6 7

-3

-2

-1

0

1

2

3

4

5

6

7

x

y

b)

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

6.3 Exercises

Exercise 6.1

Use the horizontal line test to determine whether the function is one-
to-one.

a)
-2 -1 0 1 2 3 4 5

-1

0

1

2

3

4

5

x

y

b)
-1 0 1 2 3 4 5 6 7 8

-1

0

1

2

3

4

5

x

y

c) f(x) = x2 + 2x+ 5 d) f(x) = x2 − 14x+ 29

e) f(x) = x3 − 5x2 f ) f(x) = x2

x2−3

g) f(x) =
√
x+ 2 h) f(x) =

√

|x+ 2|
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Exercise 6.2

Find the inverse of the function f and check your solution.

a) f(x) = 4x+ 9 b) f(x) = −8x− 3
c) f(x) =

√
x+ 8 d) f(x) =

√
3x+ 7

e) f(x) = 6 ·
√
−x− 2 f ) f(x) = x3

g) f(x) = (2x+ 5)3 h) f(x) = 2 · x3 + 5

i) f(x) = 1
x

j) f(x) = 1
x−1

k) f(x) = 1√
x−2

l) f(x) = −5
4−x

m) f(x) = x
x+2

n) f(x) = 3x
x−6

o) f(x) = x+2
x+3

p) f(x) = 7−x
x−5

q) f given by the table below:

x 2 4 6 8 10 12

f(x) 3 7 1 8 5 2

Exercise 6.3

Restrict the domain of the function f in such a way that f becomes a
one-to-one function. Find the inverse of f with the restricted domain.

a) f(x) = x2 b) f(x) = (x+ 5)2 + 1
c) f(x) = |x| d) f(x) = |x− 4| − 2

e) f(x) = 1
x2 f ) f(x) = −3

(x+7)2

g) f(x) = x4 h) f(x) = (x−3)4

10

Exercise 6.4

Determine whether the following functions f and g are inverse to each
other.

a) f(x) = x+ 3 and g(x) = x− 3
b) f(x) = −x− 4 and g(x) = 4− x

c) f(x) = 2x+ 3 and g(x) = x− 3
2

d) f(x) = 6x− 1 and g(x) = x+1
6

e) f(x) = x3 − 5 and g(x) = 5 + 3
√
x

f ) f(x) = 1
x−2

and g(x) = 1
x
+ 2



6.3. EXERCISES 105

Exercise 6.5

Draw the graph of the inverse of the function given below.

a)

-2 -1 0 1 2 3 4 5 6

-2

-1

0

1

2

3

4

5

x

y

b)
-2 -1 0 1 2 3 4 5

-1

0

1

2

3

4

5

x

y

c)
-4 -3 -2 -1 0 1 2 3 4 5 6

-1

0

1

2

3

4

5

x

y

d) f(x) =
√
x e) f(x) = x3 − 4

f ) f(x) = 2x− 4 g) f(x) = 2x

h) f(x) = 1
x−2

for x > 2 i) f(x) = 1
x−2

for x < 2.



Review of functions and graphs

Exercise I.1

Let f be the piecewise defined function:

f(x) =







2x+ 3 , for −8 < x ≤ −4
x
2

, for −3 < x < 2
x2 + 5x , for 4 ≤ x

Find f(6), f(2), f(−6). State the domain of f .

Exercise I.2

Find the equation of the line displayed below.

-4 -3 -2 -1 0 1 2 3 4

-2

-1

0

1

2

3

4

x

y

Exercise I.3

Find all solutions of the equation with the graphing calculator:

x3 − 4x2 + 2x+ 2 = 0

Approximate your answer to the nearest thousandth.
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Exercise I.4

Let f(x) = x2 − 2x + 5. Simplify the difference quotient f(x+h)−f(x)
h

as
much as possible.

Exercise I.5

Consider the following graph of a function f .

-1 0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

x

y

Find: domain of f , range of f , f(3), f(5), f(7), f(9).

Exercise I.6

Find the possible formula for the graph displayed below.

-4 -3 -2 -1 0 1 2 3 4

-1

0

1

2

3

x

y

Exercise I.7

Let f(x) = 5x + 4 and g(x) = x2 + 8x + 7. Find the quotient
(
f
g

)
(x)

and state its domain.

Exercise I.8

Let f(x) = x2 +
√
x− 3 and g(x) = 2x − 3. Find the composition

(f ◦ g)(x) and state its domain.



Exercise I.9

Consider the assignments for f and g given by the table below.

x 2 3 4 5 6

f(x) 5 0 2 4 2
g(x) 6 2 3 4 1

Is f a function? Is g a function? Write the composed assignment for
(f ◦ g)(x) as a table.

Exercise I.10

Find the inverse of the function f(x) = 1
2x+5

.
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Chapter 7

Dividing polynomials

We now start our discussion of specific classes of examples of functions. The
first class of functions that we discuss are polynomials and rational functions.
In this section we discuss an important tool for analyzing these functions,
which consists of dividing two polynomials, also known as long division. Be-
fore we get to this, let us first recall the definition of polynomials and rational
functions.

Definition 7.1: Monomial, polynomial

A monomial is a number, a variable, or a product of numbers and vari-
ables. A polynomial is a sum (or difference) of monomials.

Example 7.2

The following are examples of monomials:

5, x, 7x2y, −12x3y2z4,
√
2 · a3n2xy

The following are examples of polynomials:

x2 + 3x− 7, 4x2y3 + 2x+ z3 + 4mn2, −5x3 − x2 − 4x− 9, 5x2y4

In particular, every monomial is also a polynomial.

We are mainly interested in polynomials in one variable x, and consider
these as functions. For example, f(x) = x2 + 3x− 7 is such a function.

110
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Definition 7.3: Polynomial in one variable

A polynomial in one variable is a function f of the form

f(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0

for some constants a0, a1, . . . , an, where an 6= 0 and n is a non-negative
integer. The numbers a0, a1, . . . , an are called coefficients. For each
k, the number ak is the coefficient of xk. The number an is called the
leading coefficient and n is the degree of the polynomial.
We usually consider polynomials f with real coefficients. In this case,
the domain of a f is all real numbers (see our standard convention 2.7).
A root or zero of a polynomial f(x) is a number c so that f(c) = 0.

Definition 7.4: Rational function

A rational function is a fraction of two polynomials f(x) = g(x)
h(x)

where

g(x) and h(x) are both polynomials, and h 6= 0 is not the zero function.
The domain of f is all real numbers for which the denominator h(x) is
not zero:

Df = { x | h(x) 6= 0 }.

Example 7.5

The following are examples of rational functions:

f(x) =
−3x2 + 7x− 5

2x3 + 4x2 + 3x+ 1
, f(x) =

1

x
, f(x) = −x2 + 3x+ 5

7.1 Long division

An important tool for analyzing polynomials consists of dividing two polyno-
mials. The method of dividing polynomials that we use is that of long division,
which is similar to the long division of natural numbers. Our first example
shows the procedure in detail.
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Example 7.6

Divide the following fractions via long division:

a)
3571

11
b)

x3 + 5x2 + 4x+ 2

x+ 3

Solution.

a) Recall the procedure for long division of natural numbers:

324

11 3571
−33

271
−22

51
−44

7 = remainder

The steps above are performed as follows. First, we find the largest
multiple of 11 less or equal to 35. The answer 3 is written as the first
digit on the top line. Multiply 3 times 11, and subtract the answer
33 from the first two digits 35 of the dividend. The remaining digits
71 are copied below to give 271. Now we repeat the procedure, until
we arrive at the remainder 7. In short, what we have shown is that:

3571 = 324 · 11 + 7 or alternatively,
3571

11
= 324 +

7

11
.

b) We repeat the steps from part (a) as follows. First, write the dividend
and divisor as in the format above:

x+ 3 x3 +5x2 +4x +2

Next, consider the highest term x3 of the dividend and the highest
term x of the divisor. Since x3

x
= x2, we start with the first term x2

of the quotient:

Step 1:
x2

x+ 3 x3 +5x2 +4x +2
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Multiply x2 by the divisor x+ 3 and write it below the dividend:

Step 2:

x2

x+ 3 x3 +5x2 +4x +2
x3 +3x2

Since we need to subtract x3 + 3x2, so we equivalently add its neg-
ative (don’t forget to distribute the negative):

Step 3:

x2

x+ 3 x3 +5x2 +4x +2
−(x3 +3x2)

2x2

Now, carry down the remaining terms of the dividend:

Step 4:

x2

x+ 3 x3 +5x2 +4x +2
−(x3 +3x2)

2x2 +4x +2

Now, repeat steps 1–4 for the remaining polynomial 2x2 + 4x + 2.
The outcome after going through steps 1–4 is the following:

x2 +2x (add 2x2

x
= 2x)

x+ 3 x3 +5x2 +4x +2
−(x3 +3x2)

2x2 +4x +2
−(2x2 +6x) (multiply 2x by (x+ 3))

−2x +2 (subtract from the above)

Since x can be divided into −2x, we can proceed with the above
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steps 1–4 one more time. The outcome is this:

x2 +2x −2

x+ 3 x3 +5x2 +4x +2
−(x3 +3x2)

2x2 +4x +2
−(2x2 +6x)

−2x +2
−(−2x −6)

8 = remainder

Note now that x cannot be divided into 8 so we stop here. The final
term 8 is called the remainder. The term x2 + 2x − 2 is called the
quotient. In analogy with our result in part (a), we can write our
conclusion as:

x3 + 5x2 + 4x+ 2 = (x2 + 2x− 2) · (x+ 3) + 8.

Alternatively, we could also divide this by (x+ 3) and write it as:

x3 + 5x2 + 4x+ 2

x+ 3
= x2 + 2x− 2 +

8

x+ 3
.

Note 7.7: Dividend, divisor, quotient, remainder

Just as with a division operation involving numbers, when dividing f(x)
g(x)

,

f(x) is called the dividend and g(x) is called the divisor. As a result of
dividing f(x) by g(x) via long division with quotient q(x) and remainder

r(x), we can write
f(x)

g(x)
= q(x) +

r(x)

g(x)
. (7.1)

If we multiply this equation by g(x), we obtain the following alternative
version:

f(x) = q(x) · g(x) + r(x) (7.2)
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Example 7.8

Divide the following fractions via long division.

a)
x2+4x+5

x−4
b)

x4+3x3−5x+1
x+1

c)
4x3+2x2+6x+18

2x+3
d)

x3+x2+2x+1
x2+3x+1

Solution.

a) We calculate:
x +8

x− 4 x2 +4x +5
−(x2 −4x)

8x +5
−(8x −32)

37

Therefore, x2 + 4x+ 5 = (x+ 8) · (x− 4) + 37.

b) Note that there is no x2 term in the dividend. This can be resolved
by adding +0 x2 to the dividend:

x3 +2x2 −2x −3

x+ 1 x4 +3x3 +0x2 −5x +1
−(x4 +x3)

2x3 +0x2 −5x +1
−(2x3 +2x2)

−2x2 −5x +1
−(−2x2 −2x)

−3x +1
−(−3x −3)

4

Therefore, we showed:

x4 + 3x3 − 5x+ 1

x+ 1
= x3 + 2x2 − 2x− 3 +

4

x+ 1
.
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c)
2x2 −2x +6

2x+ 3 4x3 +2x2 +6x +18
−(4x3 +6x2)

−4x2 +6x +18
−(−4x2 −6x)

12x +18
−(12x +18)

0

Since the remainder is zero, we succeeded in factoring 4x3 + 2x2 +
6x+ 18:

4x3 + 2x2 + 6x+ 18 = (2x2 − 2x+ 6) · (2x+ 3)

d) The last example has a divisor that is a polynomial of degree 2.
Therefore, the remainder is not a number, but a polynomial of degree
1.

x −2

x2 + 3x+ 1 x3 +x2 +2x +1
−(x3 +3x2 +x)

−2x2 +x +1
−(−2x2 −6x −2)

7x +3

Here, the remainder is r(x) = 7x+ 3.

x3 + x2 + 2x+ 1

x2 + 3x+ 1
= x− 2 +

7x+ 3

x2 + 3x+ 1

Note 7.9: Factoring and zero remainder

The divisor g(x) is a factor of f(x) exactly when the remainder r(x) is
zero, that is:

f(x) = q(x) · g(x) ⇐⇒ r(x) = 0.
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For example, in the above Example 7.8, only part (c) results in a fac-
torization of the dividend, since this is the only part with remainder
zero.

7.2 Dividing by (x− c)

We now restrict our attention to the case in which the divisor is g(x) = x− c
for some real number c. In this case, the remainder r of the division f(x) by
g(x) is a real number. We make the following observations.

Observation 7.10: Remainder theorem, factor theorem

Assume that g(x) = x − c, and the long division of f(x) by g(x) has
remainder r, that is,

Assumption: f(x) = q(x) · (x− c) + r.

When we evaluate both sides in the above equation at x = c, we see
that f(c) = q(c) · (c− c) + r = q(c) · 0 + r = r. In short:

The remainder when dividing f(x) by (x− c) is r = f(c). (7.3)

In particular:

f(c) = 0 ⇐⇒ g(x) = x− c is a factor of f(x). (7.4)

The above statement (7.3) is called the remainder theorem, and (7.4)
is called the factor theorem.

Example 7.11

Find the remainder of dividing f(x) = x2 + 3x+ 2 by

a) x− 3 b) x+ 4 c) x+ 1 d) x− 1
2

Solution.

a) By Observation 7.10, we know that the remainder r of the division
by x− c is f(c). Thus, the remainder for part (a), when dividing by



118 CHAPTER 7. DIVIDING POLYNOMIALS

x− 3 is

r = f(3) = 32 + 3 · 3 + 2 = 9 + 9 + 2 = 20.

b) For (b), note that g(x) = x+4 = x− (−4), so that taking c = −4 for
our input yields a remainder of r = f(−4) = (−4)2 + 3 · (−4) + 2 =
16− 12 + 2 = 6. Similarly, the other remainders are:

c) r = f(−1) = (−1)2 + 3 · (−1) + 2 = 1− 3 + 2 = 0,

d) r = f
(1

2

)

=
(1

2

)2

+
1

2
· 3 + 2 =

1

4
+

3

2
+ 2 =

1 + 6 + 8

4
=

15

4
.

Note that in part (c), we found a remainder 0, so that (x + 1) is a
factor of f(x).

Example 7.12

Determine whether g(x) is a factor of f(x).

a) f(x) = x3 + 2x2 + 5x+ 1, g(x) = x− 2
b) f(x) = x4 + 4x3 + x2 + 18, g(x) = x+ 3
c) f(x) = x5 + 3x2 + 7, g(x) = x+ 1

Solution.

a) We need to determine whether 2 is a root of f(x) = x3+2x2+5x+1,
that is, whether f(2) is zero.

f(2) = 23 + 2 · 22 + 5 · 2 + 1 = 8 + 8 + 10 + 1 = 27.

Since f(2) = 27 6= 0, we see that g(x) = x − 2 is not a factor of
f(x).

b) Now, g(x) = x+ 3 = x− (−3), so that we calculate:

f(−3) = (−3)4 + 4 · (−3)3 + (−3)2 − 18 = 81− 108 + 9 + 18 = 0.

Since the remainder is zero, we see that x + 3 is a factor of x4 +
4 · x3 + x2 + 18. Therefore, if we wanted to find the other factor, we
could use long division to obtain the quotient.



7.2. DIVIDING BY (x− c) 119

c) Finally, we have:

f(−1) = (−1)5 + 3 · (−1)2 + 7 = −1 + 3 + 7 = 9.

g(x) = x+ 1 is not a factor of f(x) = x5 + 3x2 + 7.

Example 7.13

a) Show that −2 is a root of f(x) = x5 − 3x3 + 5x2 − 12, and use this
to factor f .

b) Show that 5 is a root of f(x) = x3 − 19x− 30, and use this to factor
f completely.

Solution.

a) First, we calculate that −2 is a root.

f(−2) = (−2)5−3 · (−2)3+5 · (−2)2+12 = −32+24+20−12 = 0.

So we can divide f(x) by g(x) = x− (−2) = x+ 2:

x4 −2x3 +x2 +3x −6

x+ 2 x5 +0x4 −3x3 +5x2 +0x −12
−(x5 +2x4)

−2x4 −3x3 +5x2 +0x −12
−(−2x4 −4x3)

x3 +5x2 +0x −12
−(x3 +2x2)

3x2 +0x −12
−(3x2 +6x)

−6x −12
−(−6x −12)

0

So we factored f(x) as

f(x) = (x4 − 2x3 + x2 + 3x− 6) · (x+ 2).
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b) Again, we start by calculating f(5) = 53−19·5−30 = 125−95−30 =
0. Long division by g(x) = x− 5 gives:

x2 +5x +6

x− 5 x3 +0x2 −19x −30
−(x3 −5x2)

5x2 −19x −30
−(5x2 −25x)

6x −30
−(6x −30)

0

Thus, x3 − 19x− 30 = (x2 +5x+6) · (x− 5). To factor f completely,
we also factor x2 + 5x+ 6.

f(x) = (x2 + 5x+ 6) · (x− 5) = (x+ 2) · (x+ 3) · (x− 5).

7.3 Optional section: Synthetic division

When dividing a polynomial f(x) by g(x) = x−c, the actual calculation of the
long division has a lot of unnecessary repetitions, and we may want to reduce
this redundancy as much as possible. In fact, we can extract the essential
part of the long division, the result of which is called synthetic division.
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Example 7.14

Our first example is the long division of
5x3+7x2+x+4

x+2
.

5x2 −3x +7

x+ 2 5x3 +7x2 +x +4
−(5x3 +10x2)

−3x2 +x +4
−(−3x2 −6x)

7x +4
−(7x +14)

−10

Here, the first term 5x2 of the quotient is just copied from the first term
of the dividend. We record this together with the coefficients of the
dividend 5x3+7x2+x+4 and of the divisor x+2 = x−(−2) as follows:

5 7 1 4 (dividend (5x3 + 7x2 + x+ 4))
−2 (divisor (x− (−2)))

5 (quotient)

The first actual calculation is performed when multiplying the 5x2 term
with 2, and subtracting it from 7x2. We record this as follows:

5 7 1 4
−2 −10 (−10 is the product of −2 · 5)

5 −3 (−3 is the sum 7 + (−10))

Similarly, we obtain the next step by multiplying the 2x by (−3) and
subtracting it from 1x. Therefore, we get

5 7 1 4
−2 −10 6 (6 is the product of −2 ·( −3))

5 −3 7 (7 is the sum 1 + (6))

The last step multiplies 7 times 2 and subtracts this from 4. In short,
we write:

5 7 1 4
−2 −10 6 −14 (−14 is the product of −2 ·( 7) )

5 −3 7 −10 (−10 is the sum 4 + (−14))
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The answer can be determined from these coefficients. The quotient is
5x2 − 3x+ 7, and the remainder is −10.

Example 7.15

Find the following quotients via synthetic division.

a)
4x3 − 7x2 + 4x− 8

x− 4
b)

x4 − x2 + 5

x+ 3

Solution.

a) We need to perform the synthetic division.

4 −7 4 −8
4 16 36 160

4 9 40 152

Therefore we have

4x3 − 7x2 + 4x− 8

x− 4
= 4x2 + 9x+ 40 +

152

x− 4
.

b) Similarly, we calculate part (b). Note that some of the coefficients
are now zero.

1 0 −1 0 5
−3 −3 9 −24 72

1 −3 8 −24 77

We obtain the following result.

x4 − x2 + 5

x+ 3
= x3 − 3x2 + 8x− 24 +

77

x+ 5

Note 7.16

We have only considered synthetic division when dividing by a poly-
nomial of the form x− c. The method for dividing by polynomials such
as 3x+ 7 or x2 + 5x− 4 is more elaborate.
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7.4 Exercises

Exercise 7.1

Divide by long division.

a) x3−4x2+2x+1
x−2

b) x3+6x2+7x−2
x+3

c) x2+7x−4
x+1

d) x3+3x2+2x+5
x+2

e) 2x3+x2+3x+5
x−1

f ) 2x4+7x3+x+3
x+5

g) 2x4−31x2−13
x−4

h) x3+27
x+3

i) 3x4+7x3+5x2+7x+4
3x+1

j) 8x3+18x2+21x+18
2x+3

k) x3+3x2−4x−5
x2+2x+1

l) x5+3x4−20
x2+3

Exercise 7.2

Find the remainder when dividing f(x) by g(x).

a) f(x) = x3 + 2x2 + x− 3, g(x) = x− 2
b) f(x) = x3 − 5x+ 8, g(x) = x− 3
c) f(x) = x5 − 1, g(x) = x+ 1
d) f(x) = x5 + 5x2 − 7x+ 10, g(x) = x+ 2

Exercise 7.3

Determine whether the given g(x) is a factor of f(x). If so, name the
corresponding root of f(x).

a) f(x) = x2 + 5x+ 6, g(x) = x+ 3
b) f(x) = x3 − x2 − 3x+ 8, g(x) = x− 4
c) f(x) = x4 + 7x3 + 3x2 + 29x+ 56, g(x) = x+ 7
d) f(x) = x999 + 1, g(x) = x+ 1
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Exercise 7.4

Check that the given numbers for x are roots of f(x) (see Observation
7.10). If the numbers x are indeed roots, then use this information to
factor f(x) as much as possible.

a) f(x) = x3 − 2x2 − x+ 2, x = 1
b) f(x) = x3 − 6x2 + 11x− 6, x = 1, x = 2, x = 3
c) f(x) = x3 − 3x2 + x− 3, x = 3
d) f(x) = x3 + 6x2 + 12x+ 8, x = −2
e) f(x) = x3 + 13x2 + 50x+ 56, x = −2, x = −4
f ) f(x) = x3 + 3x2 − 16x− 48, x = 2, x = −4
g) f(x) = x5 + 5x4 − 5x3 − 25x2 + 4x+ 20, x = 1, x = −1,

x = 2, x = −2

Exercise 7.5

Divide by using synthetic division.

a) 2x3+3x2−5x+7
x−2

b) 4x3+3x2−15x+18
x+3

c) x3+4x2−3x+1
x+2

d) x4+x3+1
x−1

e) x5+32
x+2

f ) x3+5x2−3x−10
x+5



Chapter 8

Graphing polynomials

We now discuss the features of graphs of polynomial functions.

8.1 Graphs of polynomials

We study graphs of polynomials of various degrees. Recall from definition 7.3
that a polynomial function f of degree n is a function of the form

f(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0, with an 6= 0.

Note 8.1: Polynomial of degree 1

We already know from Section 3.1 that the graphs of polynomials of
degree 1, that is, f(x) = ax+ b, are straight lines.

y = 2x+ 3 y = −2x+ 3

x

y

x

y

Polynomials of degree 1 have only one root.

125
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We can also easily sketch the graphs of the functions f(x) = xn.

Observation 8.2: f(x) = xn

Graphing y = x2, y = x3, y = x4, y = x5, we obtain:

y = x2 y = x3 y = x4 y = x5

From this, we see that the shape of the graph of f(x) = xn depends on
n being even or odd.
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y = xn, for n even y = xn, for n odd
If x approaches ±∞, If x approaches ±∞,
=⇒ y approaches +∞. =⇒ y approaches ±∞.

Next, we look at graphs of general polynomials of degrees 2, 3, 4, 5, and
more generally, of any degree n. In particular, we will be interested in the
number of real roots (which are shown at the x-intercepts in the graph of
f ) and the number of extrema (that is the number of maxima or minima) of a
polynomial f .

Note 8.3: Polynomial of degree 2

Let f(x) = ax2 + bx + c be a polynomial of degree 2. The graph of f
is a parabola.

• f has at most 2 real roots (displayed at the x-intercepts). f has
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one extremum (that is one maximum or minimum).
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• If a > 0 then f opens upward; if a < 0 then f opens downward.

y = x2 − 4x+ 2 y = −x2 + 4x− 2
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Note 8.4: Polynomial of degree 3

Let f(x) = ax3 + bx2 + cx+ d be a polynomial of degree 3. The graph
may change its direction at most twice.

• f has at most 3 real roots. f has at most 2 extrema.
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• If a > 0 then f(x) approaches +∞ when x approaches +∞ (that
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is, f(x) gets large when x gets large), and f(x) approaches −∞
when x approaches −∞. If a < 0 then f(x) approaches −∞ when
x approaches +∞, and f(x) approaches +∞ when x approaches
−∞.

y = x3 − 6x2 + 11x− 4 y = −x3 + 6x2 − 11x+ 7
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Above, we have an instance of a polynomial of degree n which “changes
its direction” one more time than a polynomial of one lesser degree n − 1.
This phenomenon happens for higher degrees as well.

Note 8.5: Polynomial of degree 4

Let f(x) = ax4 + bx3 + cx2 + dx+ e be a polynomial of degree 4.

• f has at most 4 real roots. f has at most 3 extrema. If a > 0 then
f opens upward, if a < 0 then f opens downward.

y = x4 − 6.5x3 y = x4 − 4x3 + 5x2 − 1 y = −x4 + 11x3

+12.5x2 − 7x −44x2 + 76x− 50
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Note 8.6: Polynomial of degree 5

Let f be a polynomial of degree 5.

• f has at most 5 real roots. f has at most 4 extrema. If a > 0
then f(x) approaches +∞ when x approaches +∞, and f(x)
approaches −∞ when x approaches −∞. If a < 0 then f(x)
approaches −∞ when x approaches +∞, and f(x) approaches
+∞ when x approaches −∞.

y = −x5
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We summarize our findings in the following observation.

Observation 8.7: Graphs of polynomials

• Let f(x) = anx
n+an−1x

n−1+· · ·+a2x
2+a1x+a0 be a polynomial

of degree n. Then f has at most n real roots, and at most n− 1
extrema.
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• Assume the degree of f is even, n = 2, 4, 6, . . . . If an > 0, then the
polynomial opens upward. If an < 0 then the polynomial opens
downward.

f(x) = x4 f(x) = −x4
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• Assume the degree of f is odd, n = 1, 3, 5, . . . . If an > 0, then f(x)
approaches +∞ when x approaches +∞, and f(x) approaches
−∞ as x approaches −∞. If an < 0, then f(x) approaches
−∞ when x approaches +∞, and f(x) approaches +∞ as x
approaches −∞.

f(x) = x5 f(x) = −x5
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• The domain of a polynomial f is all real numbers, and f is con-
tinuous for all real numbers (there are no jumps in the graph).
The graph of f has no horizontal or vertical asymptotes, no dis-
continuities (jumps in the graph), and no corners. Furthermore,
f(x) approaches ±∞ when x approaches ±∞. Therefore, the
following graphs cannot be graphs of polynomials.
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Example 8.8

Which of the following graphs could be the graphs of a polynomial? If
the graph could indeed be a graph of a polynomial, then determine a
possible degree of the polynomial.

a)
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Solution.

a) Yes, this could be a polynomial. The degree could be, for example, 4.

b) No, since the graph has a pole.

c) Yes, this could be a polynomial. A possible degree would be degree
3.

d) No, since the graph has a corner.

e) No, since f(x) does not approach ∞ or −∞ as x approaches ∞. (In
fact, f(x) approaches 0 as x approaches ±∞ and we say that the
function (or graph) has a horizontal asymptote y = 0.)
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Example 8.9

Identify the graphs of the polynomials f , g, h, and k.

f(x) = (x− 1) · (x+ 1) · (x− 2)
g(x) = (x+ 1) · (x+ 2) · (x+ 3)
h(x) = (x− 1) · (x− 2) · (x− 3)
k(x) = x · (x+ 1) · (x− 2)

a)
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f )
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0

1
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Solution.
Since (x − 1) is a factor of f , the factor theorem (7.4) tells us that
f(1) = 0, that is, 1 is a root of f . Similarly, we see that the function
f has roots at 1, −1, and 2. The only graph with roots 1, −1, and 2 is
graph (e), so that the graph of f is (e). Similarly, the roots of g are −1,
−2, −3, so that it’s graph is (f ). This should not be confused with the
function h, which has roots at 1, 2, 3, and thus has graph (b). To identify
the function k, note that the factor x can be expressed as (x − 0), so
that k can also be written as k(x) = (x− 0) · (x+1) · (x− 2). The roots
of k are 0, −1, 2, and so k has graph (d).
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Example 8.10

Identify the graphs of the polynomials f , g, h, and k.

f(x) = x3 − 2x2 − 3x
g(x) = x3 − 4x2 + 4x
h(x) = x3 − 4x2 + 3x
k(x) = −x3 − 2x2 + 3x

a)
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e)
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Solution.
Factoring first x, and then factoring again, the functions can be written
as

f(x) = x(x2 − 2x− 3) = x(x+ 1)(x− 3)
g(x) = x(x2 − 4x+ 4) = x(x− 2)(x− 2) = x · (x− 2)2

h(x) = x(x2 − 4x+ 3) = x(x− 1)(x− 3)
k(x) = −x(x2 + 2x− 3) = −x(x− 1)(x+ 3)

Note that x = (x − 0), so that a factor x gives a root at 0. Therefore,
f has roots 0, −1, 3, and thus has graph (d). For g, note that we have
roots 0 and 2, and thus g has graph (e). Note that the factor (x − 2)
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appears twice in the factored form for g. The number of times a root
appears in the factored expression is called the multiplicity of the root.
Thus, the multiplicity of the root 2 of g is 2. This higher multiplicity
can also be observed in the graph of g: the graph of g does not cut
through the x-axis at 2, but only touches the x-axis at 2. In fact, the
graph resembles a parabola close to the root 2; of course it looks very
different than a parabola further away from 2. Next, the function h has
roots 0, 1, 3, and thus has graph (b). Finally, the function k has roots
0, 1, −3. There are two graphs with these roots, namely, graph (a) and
graph (c). Since the first coefficient is negative, the correct graph has
to be (c); see Note 8.4.

When graphing a function, we want to make sure to draw the function in
a window that shows all the interesting properties of the graph.

Note 8.11: A complete graph

Generally, we would like to graph a function in a way that includes all
essential parts of the function, such as all intercepts (both x-intercepts
and y-intercept), all roots, all asymptotes (as discussed in the following
chapters), and the long-range behavior of the function (that is how the
function behaves when x approaches ±∞). Moreover, if possible, we
also want to include all extrema (that is all maxima and minima) of the
function. Such a graph is called a complete graph.
Note that we have a certain amount of choice when graphing a complete
graph, as we want to pick a “reasonable” viewing window that displays
the wanted features. Depending on the graph, it may be sometimes
difficult or even impossible to make a good choice. Moreover, it may
not be clear if all of the wanted features (such as all maxima, minima,
etc.) have been displayed in the graph. In fact, some of the tools that
will be developed in a course in calculus may be needed to ensure that
this has indeed been achieved.

Example 8.12

Draw a complete graph of the function below. Label all intercepts and
roots.

f(x) = 7x3 + 4x2 − 17x+ 6
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Solution.
We use the graphing calculator to graph y = f(x).

By clicking on the intercepts, we see their approximate values. From the
graph, it appears that there are roots at x = −2 and x = 1, and there
is another root that is not an integer (≈ 0.429). Now to confirm, for
example, that x = −2 is a root, we could check directly that f(−2) = 0.
However, to find the other roots, we will need to use the factor theorem
(7.4) and divide f(x) by (x+2). So, if we perform the long division and
we obtain a remainder of 0, then this also confirms that −2 is indeed a
root.

7x2 −10x +3

x+ 2 7x3 +4x2 −17x +6
−(7x3 +142)

−10x2 −17x +6
−(−10x2 −20x)

3x +6
−(3x +6)

0

Thus, f(x) = (x+ 2) · (7x2 − 10x+ 3). To find the other roots of f , we
factor the quotient as 7x2 − 10x + 3 = (x − 1) · (7x − 3), and we get
that f(x) = (x+ 2) · (x− 1) · (7x− 3). (Note that 1 is a root of f , so it
is not surprising that (x− 1) appears as a factor of f .) The third root is
where 7x− 3 = 0, i.e., 7x = 3, or x = 3

7
, which is approximately 0.429.

We can now draw a complete graph of f , using a graphing window
similar to the one above, labeling all roots and intercepts. We can
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calculate the y-intercept to be at y = f(0) = 6.

x

y

−2 1

6

3
7

8.2 Roots and factors of a polynomial

We have seen that the roots are an important feature of a polynomial. Recall
that the roots of the polynomial f are those x for which f(x) = 0. These are,
of course, precisely the x-intercepts of the graph. By the factor theorem (7.4),
this is precisely the information needed to factor a polynomial.

Example 8.13

Find the roots of the polynomial and factor the polynomial completely.

a) f(x) = 6x3 − 19x2 + x+ 6
b) g(x) = −x3 − 5x2 − 3x+ 9
c) h(x) = 2x3 + 11x2 + 11x− 4

Solution.

a) We start by graphing the polynomial f(x) = 6x3 − 19x2 + x+ 6.
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The graph suggests a root at x = 3, so that we divide f(x) by x− 3.

6x2 −x −2

x− 3 6x3 −19x2 +x +6
−(6x3 −182)

−x2 +x +6
−(−x2 +3x)

−2x +6
−(−2x +6)

0

We therefore obtain f(x) = (x − 3) · (6x2 − x − 2). Continuing to
factor, we obtain f(x) = (x − 3) · (3x− 2) · (2x + 1). Note that we
can factor 3 from (3x − 2) = 3 · (x − 2

3
) and we can factor 2 from

2x+ 1 = 2 · (x+ 1
2
), so that the final factored expression for f(x) is

f(x) = (x−3) ·3 ·
(

x− 2

3

)

·2 ·
(

x+
1

2

)

= 6 · (x−3) ·
(

x− 2

3

)

·
(

x+
1

2

)

The roots of f are therefore 3, 2
3
, and −1

2
.

b) From the graph we see that the roots of g(x) = −x3 − 5x2 − 3x+ 9
appear to be −3 and 1.
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Dividing by x− 1, we obtain

−x2 −6x −9

x− 1 −x3 −5x2 −3x +9
−(−x3 +x2)

−6x2 −3x +9
−(−6x2 +6x)

−9x +9
−(−9x +9)

0

Therefore, g(x) = (x−1)(−x2−6x−9), and factoring −x2−6x−9 =
−(x2 + 6x+ 9) = −(x+ 3)(x+ 3), we obtain

g(x) = −(x− 1) · (x+ 3)2

The roots are indeed 1 and −3. Note that −3 is a root of multiplicity
2, as it appears twice in the factored expression for g. The graph of
g does not cut the x-axis at −3, but only touches the x-axis.

c) The graph of h(x) = 2x3 + 11x2 + 11x− 4 displays an integer root
at −4.

Factoring by x+ 4, we get

2x2 +3x −1

x+ 4 2x3 +11x2 +11x −4
−(2x3 +82)

3x2 +11x −4
−(3x2 +12x)

−x −4
−(−x −4)

0
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Therefore, h(x) = (x + 4) · (2x2 + 3x − 1). There does not seem to
be an immediate way to factor 2x2 + 3x− 1. However, we may use
the quadratic formula (reviewed in Proposition 8.14 below) to find
the roots of 2x2 + 3x− 1. Setting 2x2 + 3x− 1 = 0, we get

x =
−3±

√

32 − 4 · 2 · (−1)

2 · 2 =
−3±

√
9 + 8

4
=

−3±
√
17

4

These are indeed the remaining two roots of h, and we can write

h(x) = 2 · (x+ 4) ·
(

x− −3 +
√
17

4

)

·
(

x− −3 −
√
17

4

)

Note that there is an overall coefficient 2, which has to appear to
obtain the correct leading coefficient for h(x) = 2x3+11x2+11x−4.

In the last example we found the roots and factors of a quadratic poly-
nomial via the quadratic formula. We now recall the well-known quadratic
formula and state how it can be used to factor any quadratic polynomial.

Proposition 8.14: The quadratic formula

The solutions of the equation ax2 + bx + c = 0 for some real numbers
a, b, and c are given by

x1 =
−b+

√
b2 − 4ac

2a
and x2 =

−b−
√
b2 − 4ac

2a
.

We may combine the two solutions x1 and x2 and simply write this as:

x1/2 =
−b±

√
b2 − 4ac

2a
(8.1)

Since we have an explicit formula for the roots of a quadratic polynomial,
it is always possible to give an explicit formula of a quadratic polynomial in
factored form. We record this in the following note.
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Note 8.15: Factoring a quadratic polynomial

We may always use the roots x1 and x2 of a quadratic polynomial
f(x) = ax2 + bx + c from the quadratic formula and rewrite the poly-
nomial as

ax2 + bx+ c = a ·
(

x− −b+
√
b2 − 4ac

2a

)(

x− −b−
√
b2 − 4ac

2a

)

Application: Vertical position of an object in gravity

An an application, we note that the height h = h(t) of an object thrown
into the air as a function of time t will follow a quadratic function. Here,
for simplicity, we only consider the effect of the gravitational force and
ignore issues such as air resistance and friction, etc.

In fact, the vertical position h(t) of an object is a quadratic function in
time:1

h(t) = −1

2
gt2 + v0t+ h0 (8.2)

Here, v0 is the initial velocity, h0 is the initial height, and g = 32.2 ft
sec2

is the acceleration due to the gravitational pull from the Earth.
Therefore, if an object is thrown from an initial height of h0 = 5ft with
an initial velocity of v0 = 30 ft

sec
, then h(t) follows the formula:

h(t) = −1
2
· 32.2 · t2 + 30 · t + 5

1For more information, see https://openstax.org/books/college-physics-2e/pages/3-4-projectile-motion

https://openstax.org/books/college-physics-2e/pages/3-4-projectile-motion
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In the above graph the horizontal axis describes time t in seconds, and
the vertical axis describes height h(t) in feet. The graph shows that,
in particular, it would take about 2 seconds until the object hits the
ground.

8.3 Optional section: Graphing polynomials by

hand

In this section we will show how to sketch the graph of a factored polynomial
without the use of a calculator.

Example 8.16

Sketch the graph of the following polynomial without using the calcu-
lator:

p(x) = −2(x+ 10)3(x+ 9)x2(x− 8)

Solution.
Note that on the calculator it is impossible to get a window which will
give all of the features of the graph (by focusing on a window view that
captures the maximum, other features will become invisible). We will
sketch the graph by hand so that some of the main features are visible.
This will only be a sketch and not the actual graph up to scale. Again,
the graph cannot be drawn to scale while being able to see the features.
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We first start by putting the x-intercepts on the graph in the right order,
but not necessarily to scale. Then note that

p(x) = −2x7 + . . . (lower terms) ≈ −2x7 for large |x|.

This is the leading term of the polynomial (if you expand p it is the
term with the largest power) and therefore dominates the polynomial
for large |x|. So the graph of our polynomial should look something like
the graph of y = −2x7 on the extreme left and right side.

−10 −9 8

Now we look at what is going on at the roots. Near each root the factor
corresponding to that root dominates. So we have

for x ≈ p(x) ≈
−10 C1(x+ 10)3 cubic
−9 C2(x+ 9) line
0 C3 x2 parabola
8 C4(x− 8) line

where C1, C2, C3, and C4 are constants which can, but need not, be
calculated. For example, whether or not the parabola near 0 opens up or
down will depend on whether the constant C3 = −2·(0+10)3(0+9)(0−8)
is negative or positive. In this case C3 is positive, so it opens upward,
but we will not use this fact to graph. We will see this independently
which is a good check of our work.
Starting from the left of our graph where we had determined the behavior
for large negative x, we move toward the left-most zero, −10. Near −10
the graph looks cubic, so we imitate a cubic curve as we pass through
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(−10, 0).

−10 −9 8

Now we turn and head toward the next zero, −9. Here the graph looks
like a line, so we pass through the point (−9, 0) as a line would.

−10 −9 8

Now we turn and head toward the root 0. Here the graph should look
like a parabola. So we form a parabola there. (Note that, as we had
said before, the parabola should be opening upward here—and we see
that it is).

−10 −9 8

Now we turn toward the final zero 8. We pass through the point (8, 0)
like a line and we join (perhaps with the use of an eraser) to the large
x part of the graph. If this does not join nicely (if the graph is going in
the wrong direction) then there has been a mistake. This is a check of
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our work. Here is the final sketch.

−10 −9 8

What can be understood from this sketch? Questions like “when is
p(x) > 0?” can be answered by looking at the sketch. Further, the
general shape of the curve is correct so that other properties can be
concluded. For example, p has a local minimum between x = −10 and
x = −9 and a local maximum between x = −9 and x = 0, and between
x = 0 and x = 8. The exact point where the function reaches its
maximum or minimum cannot be decided by looking at this sketch. But
it will help to decide on an appropriate window so that the minimum or
maximum finder on the calculator can be used.

8.4 Exercises

Exercise 8.1

Assuming the graphs below are complete graphs, which of the graphs
could be the graphs of a polynomial?

a)
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Exercise 8.2

For each of the polynomials f , g, h, and k, find the corresponding graph
from (a)-(f ) below.

f(x) = (x− 1) · (x+ 2) · (x− 4) g(x) = (x+ 1) · (x− 2) · (x+ 4)
h(x) = (x− 1) · (x− 2) · (x− 4) k(x) = (x+ 1) · (x− 2) · (x− 4)
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Exercise 8.3

For each of the polynomials f , g, h, and k, find the corresponding graph
from (a)-(f ) below.

f(x) = (x+ 1) · (x+ 2)2 g(x) = −(x+ 1) · (x− 2)2

h(x) = −(x− 1)2 · (x+ 2) k(x) = (x− 1) · (x+ 2)2
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d)
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Exercise 8.4

For each of the polynomials f , g, h, and k, find the corresponding graph
from (a)-(f ) below.

f(x) = x3 + 4x2 + 3x g(x) = −x3 − 2x2 + 3x
h(x) = x2 − 2x2 − 3x k(x) = −x3 − 6x2 − 9x
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Exercise 8.5

Sketch a complete the graph of the function. Label all intercepts of the
graph.

a) f(x) = x3 + 4x2 + x− 6
b) f(x) = 2x3 − 15x2 + 34x− 24
c) f(x) = x3 − 16x− 21
d) f(x) = −2x3 − 5x2 − 2x+ 1
e) f(x) = x4 − 7x3 + 15x2 − 7x− 6
f ) f(x) = 3x4 + 11x3 − x2 − 19x+ 6

Exercise 8.6

Find the exact value of at least one root of the given polynomial.

a) f(x) = x3 − 10x2 + 31x− 30
b) f(x) = −x3 − x2 + 8x+ 8
c) f(x) = x3 − 11x2 − 3x+ 33
d) f(x) = x4 + 9x3 − 6x2 − 136x− 192
e) f(x) = x2 + 6x+ 3
f ) f(x) = x4 − 6x3 + 3x2 + 5x

Exercise 8.7

Find all roots and factor the polynomial completely.

a) f(x) = x3 − 5x2 + 2x+ 8
b) f(x) = x3 + 7x2 + 7x− 15
c) f(x) = x3 + 9x2 + 26x+ 24
d) f(x) = x3 + 4x2 − 11x+ 6
e) f(x) = 3x3 + 13x2 − 52x+ 28
f ) f(x) = 6x3 − 5x2 − 13x− 2
g) f(x) = 6x3 − x2 − 31x− 10
h) f(x) = x3 − 7x2 + 13x− 3
i) f(x) = x3 + 2x2 − 11x+ 8
j) f(x) = 2x3 + 7x2 + 5x− 2
k) f(x) = 3x3 − 10x2 − 4x+ 21
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Exercise 8.8

Graph the following polynomials without using the calculator.

a) f(x) = (x+ 4)2(x− 5)
b) f(x) = −3(x+ 2)3x2(x− 4)5

c) f(x) = 2(x− 3)2(x− 5)3(x− 7)
d) f(x) = −(x+ 4)(x+ 3)(x+ 2)2(x+ 1)(x− 2)2



Chapter 9

Roots of polynomials

We have seen in Observation 7.10 on page 117 that every root c of a poly-
nomial f(x) gives a factor (x − c) of f(x). As we would like to use this to
factor polynomials, it will be helpful to know more about the nature of roots
of polynomials. In Section 9.1, we will discuss a statement concerning roots
that are rational numbers (the rational root theorem), while in Section 9.2
we give a general statement about the existence of roots (the fundamental
theorem of algebra).

9.1 Optional section: The rational root theorem

Our first comment concerns rational roots for a polynomial with integer coef-
ficients.

Note 9.1

Consider, for example, the equation 10x3 − 6x2 + 5x− 3 = 0. Let x be
a rational solution of this equation, that is x = p

q
is a rational number

such that

10 ·
(p

q

)3

− 6 ·
(p

q

)2

+ 5 · p
q
− 3 = 0.

We assume that x = p
q

is completely reduced, that is, p and q have
no common factors that can be used to cancel the numerator and de-
nominator of the fraction p

q
. Now, simplifying the above equation, and

149
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combining terms, we obtain:

10 · p
3

q3
− 6 · p

2

q2
+ 5 · p

q
− 3 = 0

(multiply by q3) =⇒ 10p3 − 6p2q + 5pq2 − 3q3 = 0

(add 3q3) =⇒ 10p3 − 6p2q + 5pq2 = 3q3

(factor p on the left) =⇒ p · (10p2 − 6pq + 5q2) = 3q3.

Therefore, p is a factor of 3q3 (with the other factor being (10p2−6pq+
5q2)). Since p and q have no common factors, p must be a factor of 3.
That is, p is one of the following integers: p = +1,+3,−1,−3.
Similarly, starting from 10p3 − 6p2q + 5pq2 − 3q3 = 0, we can write

(add +6p2q − 5pq2 + 3q3) =⇒ 10p3 = 6p2q − 5pq2 + 3q3

(factor q on the right) =⇒ 10p3 = (6p2 − 5pq + 3q2) · q.

Now, q must be a factor of 10p3. Since q and p have no common factors, q
must be a factor of 10. In other words, q is one of the following numbers:
q = ±1,±2,±5,±10. Putting this together with the possibilities for
p = ±1,±3, we see that all possible rational roots are the following:

±1

1
, ±1

2
, ±1

5
, ± 1

10
, ±3

1
, ±3

2
, ±3

5
, ± 3

10
.

The observation in the previous example holds for a general polynomial
equation with integer coefficients.

Observation 9.2: Rational root theorem

Consider the equation

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0, (9.1)

where every coefficient an, an−1, . . . , a0 is an integer and a0 6= 0, an 6= 0.
Assume that x = p

q
is a rational solution of (9.1) and the fraction x = p

q

is completely reduced. Then a0 is an integer multiple of p, and an is an
integer multiple of q. In particular, if x is an integer root of (9.1), then
a0 is an integer multiple of x (which follows if we apply the above to
the case x = p

1
).
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In other words:

• Any rational solution of (9.1) can be written as a fraction x = p
q

where p is a factor of a0 and q is a factor of an.
• Any integer solution x of (9.1) is a factor of a0.

We can use this observation to find good candidates for the roots of a
given polynomial.

Example 9.3

a) Find all rational roots of f(x) = 7x3 + x2 + 7x+ 1.

b) Find all real roots of f(x) = 2x3 + 11x2 − 2x− 2.

c) Find all real roots of f(x) = 4x4 − 23x3 − 2x2 − 23x− 6.

Solution.

a) If x = p
q

is a rational root, then p is a factor of 1, that is p = ±1;
and q is a factor of 7, that is q = ±1,±7. The candidates for rational
roots are therefore x = ±1

1
,±1

7
. To see which of these candidates

are indeed roots of f we plug these numbers into f via the table
function on the graphing calculator (see Example 4.7). We obtain
the following:

The only root among ±1,±1
7

is x = −1
7
.
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b) We need to identify all real roots of f(x) = 2x3 + 11x2 − 2x− 2. In
general, it is a quite difficult task to find a root of a polynomial of
degree 3, so that it will be helpful if we can find the rational roots
first. If x = p

q
is a rational root, then p is a factor of −2, that is

p = ±1,±2; and q is a factor of 2, that is q = ±1,±2. The possible
rational roots x = p

q
of f are:

±1, ±2, ±1

2

Using the calculator, we see that the only rational root is x = 1
2
.

Therefore, by the factor theorem (Observation 7.10), we see that
(x − 1

2
) is a factor of f , that is f(x) = q(x) · (x − 1

2
). To avoid

fractions in the long division, we rewrite this as

f(x) = q(x) · (x− 1

2
) = q(x) · 2x− 1

2
=

q(x)

2
· (2x− 1),

so that we may divide f(x) by (2x− 1) instead of (x− 1
2
) (note that

this cannot be done with synthetic division). We obtain the following
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quotient:
x2 +6x +2

2x− 1 2x3 +11x2 −2x −2
−(2x3 −x2)

12x2 −2x −2
−(12x2 −6x)

4x −2
−(4x −2)

0

Therefore, f(x) = (x2 + 6x+ 2)(2x− 1), and any root of f is either
a root of x2 +6x+2 or of 2x− 1. We know that the root of 2x− 1 is
x = 1

2
, and that x2+6x+2 has no other rational roots. Nevertheless,

we can identify all other real roots of x2 + 6x+ 2 via the quadratic
formula, (see Proposition 8.14).

x2 + 6x+ 2 = 0

=⇒ x1/2 =
−6 ±

√
62 − 4 · 1 · 2
2

=
−6 ±

√
36− 8

2
=

−6±
√
28

2

=
−6 ±

√
4 · 7

2
=

−6± 2
√
7

2

= −3 ±
√
7

Therefore, the roots of f are precisely the following:

x1 = −3 +
√
7, x2 = −3 −

√
7, x3 =

1

2
.

c) First we find the rational roots x = p
q

of f(x) = 4x4 − 23x3 − 2x2 −
23x−6. Since p is a factor of −6 it must be p = ±1,±2,±3,±6, and
since q is a factor of 4 it must be q = ±1,±2,±4. All candidates for
rational roots x = p

q
are the following (where we excluded repeated

ways of writing x):

±1, ±2, ±3, ±6, ±1

2
, ±3

2
, ±1

4
, ±3

4
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Checking all these candidates with the calculator produces exactly
two rational roots: x = 6 and x = −1

4
. Therefore, we may divide

f(x) by both (x − 6) and by (x + 1
4
) without remainder. To avoid

fractions, we use the term 4 · (x + 1
4
) = (4x + 1) instead of (x + 1

4
)

for our factor of f . Therefore, f(x) = q(x) · (x − 6) · (4x + 1). The
quotient q(x) is determined by performing a long division by (x− 6)
and then another long division by (4x+ 1), or alternatively by only
one long division by

(x− 6) · (4x+ 1) = 4x2 + x− 24x− 6 = 4x2 − 23x− 6.

Dividing f(x) = 4x4−23x3−2x2−23x−6 by 4x2−23x−6 produces
the quotient q(x):

x2 +1

4x2 − 23x− 6 4x4 −23x3 −2x2 −23x −6
−(4x4 −23x3 −6x2)

4x2 −23x −6
−(4x2 −23x −6)

0

We obtain the factored expression for f(x) as f(x) = (x2 + 1)(4x+
1)(x − 6). The only remaining real roots we need to find are those
of x2 + 1. However,

x2 + 1 = 0 =⇒ x2 = −1

has no real solution. In other words, there are only complex solutions
of x2 = −1, which are x = i and x = −i (we will discuss complex
solutions in more detail in the next section). Since the problem
requires us to find the real roots of f , our answer is that the only
real roots are x1 = 6 and x2 = −1

4
.
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9.2 The fundamental theorem of algebra

There is a general theorem which tells us when a polynomial has a root. This
theorem is called the fundamental theorem of algebra. Since complex num-
bers play a crucial role in this theorem, we briefly recall the basic notations
concerning complex numbers. A more thorough discussion of complex numbers
will be given in Chapter 23.

Review 9.4: Complex numbers

There is no real number whose square is minus 1, that is, there is no x
with x2 = −1. So we denote by i a solution of this equation. This i is
not a real number but a new kind of number called a complex number.
We can think of i as i =

√
−1.

We can then consider numbers of the form a+ bi where a and b are real
numbers. Numbers of this form constitute the set of complex numbers,
denoted by C. a is called the real part and bi is called the imaginary

part of the complex number a + bi.
We can add two complex numbers by adding their real and imaginary
parts to form the real and imaginary parts of the sum. We can multi-
ply two complex numbers by ordinary distribution (FOIL) then use the
property that i2 = −1.

Example 9.5

Here is an example for the subtraction and multiplication of two complex
numbers.

(2− 3i)− (4 + 3i) = (2− 4) + (−3− 3)i = −2− 6i,

(2− 3i) · (4 + 3i) = 8 + 6i− 12i− 9i2 = 8− 6i− 9(−1) = 17− 6i.

We can see that these numbers arise naturally as roots of quadratic equa-
tions, such as, for example x2+6 = 0, which can be written as x2 = −6 and has
a solution given by x =

√
−6 =

√
−1 ·

√
6 = i

√
6. The following fundamental

theorem of algebra guarantees the existence of a root of any polynomial of
degree ≥ 1, as long as we allow complex numbers for our roots.
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Theorem 9.6: Fundamental theorem of algebra

Let f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 be a polynomial of degree
≥ 1. Then there exists a complex number c which is a root of f .

Let us make two remarks about the fundamental theorem of algebra to
clarify the statement of the theorem.

Note 9.7

• In the above Theorem 9.6, we did not specify what kind of coeffi-
cients a0, . . . an are allowed for the theorem to hold. In fact, to be
precise, the fundamental theorem of algebra states that for any
polynomial f(x) = anx

n + an−1x
n−1 + · · · + a1x + a0 of degree

≥ 1 where a0, . . . an are complex numbers, the polynomial f has
a root c (which is also a complex number).

• The theorem states that a polynomial f of degree ≥ 1 always has
a complex root c, but, in general, f may not have any real roots.
For example, consider f(x) = x2 + 1, and consider a root c of f ,
that is c2 + 1 = 0. Since, for any real number c, we always have
c2 ≥ 0, so that f(c) = c2+1 ≥ 1, this shows that there cannot be
a real root c of f . However, we can easily check that the complex
number i is a root of f :

f(i) = i2 + 1 = −1 + 1 = 0

Indeed f(x) has the roots i and −i, and can be factored as

(x− i)(x+ i) = x2 + xi− xi− i2 = x2 + 1.

Now, while the fundamental theorem of algebra guarantees a root c of
a polynomial f , we can use the remainder theorem from Observation 7.10
together with the calculator (and also the rational root theorem) to check
possible candidates c for the roots. Once we found a root, we can use the
factor theorem (also from Observation 7.10) to factor f(x) = q(x) · (x− c).
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Example 9.8

Find all (real and complex) roots of the polynomial. Sketch a complete
graph and label all roots.

a) f(x) = x3 + 6x2 + 10x+ 8
b) g(x) = x3 − 6x2 + 10x− 4
c) h(x) = x4 + 2x3 − 6x2 − 3x+ 18

Solution.

a) In order to find a root of f , we use the graph to make a guess for
one of the roots.

The graph suggests that the root may be at x = −4, which is also
easily confirmed by plugging −4 into the function:

f(−4) = (−4)3 + 6 · (−4)2 + 10 · (−4) + 8

= −64 + 96− 40 + 8 = 0

Next, we divide f(x) = x3 + 6x2 + 10x+ 8 by (x+ 4).

x2 +2x +2

x+ 4 x3 +6x2 +10x +8
−(x3 +4x2)

2x2 +10x +8
−(2x2 +8x)

2x +8
−(2x +8)

0
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Therefore, f(x) = (x+4)(x2+2x+2). To find the remaining roots of
f , we use the quadratic formula for the second polynomial x2+2x+2:

x2+2x+2 = 0 =⇒ x =
−2±

√
22−4·1·2
2

=
−2±

√
4−8

2
=

−2±
√
−4

2

=
−2±

√
−1

√
4

2
=

−2±i·2
2

=
2(−1±i)

2
= −1 ± i

Therefore, there is only one real root −4, and two complex roots
−1 + i and −1 − i. The polynomial can be factored as

f(x) = (x+ 4) · (x− (−1 + i)) · (x− (−1− i))

The complete graph is displayed below. The only real root is shown
at −4.

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

-2

-1

0

1

2

3

4

5

6

x

y

b) We first check the graph of g(x) = x3 − 6x2 + 10x− 4.
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From the graph we suspect that x = 2 is a root, while there are two
more real roots which are not at integer values. We confirm the root
at 2 by direct computation, or by performing a long division by x−2.

x2 −4x +2

x− 2 x3 −6x2 +10x −4
−(x3 −2x2)

−4x2 +10x −4
−(−4x2 +8x)

2x −4
−(2x −4)

0

We find the remaining roots via the quadratic formula. Setting x2 −
4x+ 2 = 0 gives

x =
−(−4)±

√
(−4)2−4·1·2
2

=
4±

√
16−8
2

=
4±

√
8

2

=
4±

√
4
√
2

2
=

4±2·
√
2

2
=

2·(2±
√
2)

2
= 2±

√
2

Therefore, g(x) = (x− 2) · (x− (2+
√
2)) · (x− (2−

√
2)). The roots

of g are 2, 2 +
√
2, 2−

√
2. The complete graph of g is drawn below.

-4 -3 -2 -1 0 1 2 3 4 5 6

-3

-2

-1

0

1

2

3

x

y

2−
√
2 2 2 +

√
2

c) We first graph h(x) = x4+2x3−6x2−3x+18. Note that if we want
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to see a complete graph, we need to zoom out vertically.

Two integer roots of h appear to be at x = −2 and x = −3. Dividing
by, say, x+ 3, gives

x3 −x2 −3x +6

x+ 3 x4 +2x3 −6x2 −3x +18
−(x4 +3x3)

−x3 −6x2 −3x +18
−(−x3 −3x2)

−3x2 −3x +18
−(−3x2 −9x)

6x +18
−(6x +18)

0

Therefore, h(x) = (x+3)(x3−x2−3x+6). To factor x3−x2−3x+6,
we graph it to find possible roots.
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There is a root at x = −2, as we might have already suspected, since
we noted that −2 is a root of h. Next, we performing another long
division.

x2 −3x +3

x+ 2 x3 −x2 −3x +6
−(x3 +2x2)

−3x2 −3x +6
−(−3x2 −6x)

3x +6
−(3x +6)

0

With this, we have h(x) = (x + 3)(x + 2)(x2 − 3x + 3). To find the
roots of the last factor, apply the quadratic formula to x2−3x+3 = 0.

x =
−(−3)±

√
(−3)2−4·1·3
2

=
3±

√
9−12
2

=
3±

√
−3

2
=

3±
√
−1

√
3

2
=

3±i·
√
3

2

Thus, h(x) = (x+ 3) · (x+ 2) ·
(

x− 3+i·
√
3

2

)

·
(

x− 3−i·
√
3

2

)

.

The complete graph is shown below.

x

y

−2−3

h(x) has roots at −3, −2, 3+i·
√
3

2
, 3−i·

√
3

2
.

As we have seen in the last example, we can use the roots to factor a
polynomial completely so that all factors are polynomials of degree 1. Fur-
thermore, in this example, we had a complex root, a + ib, and its complex
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conjugate a− ib was also a root. These observations hold more generally, as
we state now.

Observation 9.9: Factors and roots of polynomials

(1) Every polynomial f(x) = anx
n+an−1x

n−1+ · · ·+a1x+a0 of degree
n can be factored as

f(x) = an · (x− c1) · (x− c2) · · · · · (x− cn). (9.2)

This follows, since we can find a root c1 of f (as guaranteed by
the fundamental theorem of algebra), and use it to factor f(x) =
(x− c1) · g(x). We do the same for g(x) and repeat until we arrive
at (9.2).

(2) In particular, every polynomial of degree n has at most n roots.
(However, these roots may be real or complex.)

(3) The factor (x− c) for a root c could appear multiple times in (9.2),
that is, we may have (x− c)k as a factor of f . The multiplicity of a
root c is the number of times k that a root appears in the factored
expression for f , as in (9.2).

(4) If f(x) = anx
n+an−1x

n−1+ · · ·+a1x+a0 has only real coefficients
a0, . . . , an, and c = a + bi is a complex root of f , then the complex
conjugate c̄ = a− bi is also a root of f .

Proof. If x is any root, then anxn+an−1xn−1+ · · ·+a1x+a0 = 0. Applying the complex
conjugate to this and using that u · v = ū · v̄ gives anx̄n+an−1x̄n−1+ · · ·+a1x̄+a0 = 0.
Since the coefficients aj are real, we have that aj = aj , so that anx̄n + an−1x̄n−1 + · · ·+
a1x̄+ a0 = 0. This shows that the complex conjugate x̄ is a root of f as well.

Example 9.10

For a chosen real number C , let f be the function (dependent on the
C):

f(x) = 4x3 − 16x2 + 9x+ C

a) Find the number C so that the polynomial f(x) has a root at 3.

b) Find all remaining roots of f(x) and write them in simplest radical
form.
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Solution.

a) For 3 to be a root of f , we know that x−3 has to be a factor of f(x).
We therefore perform a long division by f(x)÷ (x− 3).

4x2 −4x −3

x− 3 4x3 −16x2 +9x +C
−(4x3 −12x2)

−4x2 +9x +C
−(−4x2 +12x)

−3x +C
−(−3x +9)

C − 9

Thus, x− 3 is a factor of f(x) exactly when the remainder C − 9 is
zero, that is, C = 9. We thus have that

f(x) = 4x3 − 16x2 + 9x+ 9

b) From (a), we know that f factors as f(x) = (x − 3)(4x2 − 4x − 3).
We can use the quadratic formula to find the remaining roots of f by
setting 4x2 − 4x− 3 = 0.

=⇒ x =
−(−4)±

√

(−4)2 − 4 · 4 · (−3)

2 · 4

=
4±

√
16 + 48

8
=

4±
√
64

8
=

4± 8

8

=⇒ x1 =
4 + 8

8
=

12

8
=

3

2
, x2 =

4− 8

8
=

−4

8
= −1

2

We get that the roots of f are 3, 3
2

and −1
2
.

Note that, alternatively, we could have factored 4x2 − 4x − 3 =
(2x − 3)(2x + 1) = 4(x − 3

2
)(x + 1

2
), resulting in the same roots

x1 =
3
2

and x2 = −1
2
.
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Example 9.11

Find a polynomial f with the following properties:

a) f has degree 3; the roots of f are precisely 4, 5, 6; and the leading
coefficient of f is 7

b) f has degree 3 with real coefficients; f has roots 3i, −5 (and possibly
other roots as well); and f(0) = 90

c) f has degree 4 with complex coefficients; f has roots i+ 1, 2i, 3

d) f has roots that are determined by the following graph of f :

-1 0 1 2 3 4 5 6

-2

-1

0

1

2

3

4

x

y

Solution.

a) In general a polynomial f of degree 3 is of the form f(x) = m · (x−
c1)·(x−c2)·(x−c3). Identifying the roots and the leading coefficient,
we obtain the polynomial

f(x) = 7 · (x− 4) · (x− 5) · (x− 6)

b) A polynomial f of degree 3 is of the form f(x) = m ·(x−c1) ·(x−c2) ·
(x−c3). Roots of f are 3i and −5, and since the coefficients of f are
real, it follows from Observation 9.9(4) that the complex conjugate
−3i is also a root of f . Therefore, f(x) = m·(x+5)·(x−3i)·(x+3i).
To identify m, we use the last condition f(0) = 90.

90 = m · (0 + 5) · (0− 3i) · (0 + 3i) = m · 5 · (−9)i2 = m · 5 · 9 = 45m

Dividing by 45, we obtain m = 2, so that

f(x) = 2 · (x+ 5) · (x− 3i) · (x+ 3i) = 2 · (x+ 5) · (x2 + 9),

which clearly has real coefficients.



9.2. THE FUNDAMENTAL THEOREM OF ALGEBRA 165

c) Since f is of degree 4, it can be written as f(x) = m · (x− c1) · (x−
c2) · (x− c3) · (x− c4). Three of the roots are identified as i+ 1, 2i,
and 3:

f(x) = m · (x− (1 + i)) · (x− 2i) · (x− 3) · (x− c4)

However, we have no further information on the fourth root c4 or the
leading coefficient m. (Note that Observation 9.9(4) cannot be used
here, since we are not assuming that the polynomial has real coeffi-
cients. Indeed f cannot have real coefficients since then, besides the
complex roots 1 + i and 2i, their complex conjugates 1 − i and −2i
would also be roots of f , giving us 5 roots of f . However, a poly-
nomial of degree 4 cannot have 5 roots.) We can therefore choose

any number for these remaining variables. For example, a possible
solution to the problem is given by choosing m = 3 and c4 = 2, for
which we obtain:

f(x) = 3 · (x− (1 + i)) · (x− 2i) · (x− 3) · (x− 2)

d) f is of degree 5, and we know that the leading coefficient is 1. The
graph is zero at x = 1, 2, 3, and 4, so that the roots are 1, 2, 3, and 4.
Moreover, since the graph just touches the root x = 4, this must be a
multiple root, that is, it must occur more than once (see Section 8.3
for a discussion of multiple roots and their graphical consequences).
We obtain the following solution:

f(x) = (x− 1)(x− 2)(x− 3)(x− 4)2

Note that the root x = 4 is a root of multiplicity 2.

Note 9.12

By Observation 9.9(4), polynomials with real coefficients have complex
roots that come in complex conjugate pairs. To find the product of the
corresponding factors, an appropriate grouping may help to simplify the
computation.
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For example, when multiplying (x−(2+3i))(x−(2−3i)), we can group
the x and 2, and then use the binomial formula (a+ b)(a− b) = a2 − b2

to evaluate:

(x− (2 + 3i))(x− (2− 3i)) = ((x− 2)− 3i)((x− 2) + 3i)

= (x− 2)2 − 9i2 = (x− 2)2 + 9

9.3 Exercises

Exercise 9.1

a) Find all rational roots of f(x) = 2x3 − 3x2 − 3x+ 2.
b) Find all rational roots of f(x) = 3x3 − x2 + 15x− 5.
c) Find all rational roots of f(x) = 6x3 + 7x2 − 11x− 12.
d) Find all real roots of f(x) = 6x4 + 25x3 + 8x2 − 7x− 2.
e) Find all real roots of f(x) = 4x3 + 9x2 + 26x+ 6.

Exercise 9.2

Find a root of the polynomial by guessing possible candidates of the
root.

a) f(x) = x5 − 1 b) f(x) = x4 − 1 c) f(x) = x3 − 27
d) f(x) = x3 + 1000 e) f(x) = x4 − 81 f ) f(x) = x3 − 125
g) f(x) = x5 + 32 h) f(x) = x777 − 1 i) f(x) = x2 + 64

Exercise 9.3

Find the roots of the polynomial and use it to factor the polynomial
completely.

a) f(x) = x3 − 7x+ 6 b) f(x) = x3 − x2 − 16x− 20
c) f(x) = x3 − 7x2 + 17x− 20 d) f(x) = x3 + x2 − 5x− 2
e) f(x) = 2x3 + x2 − 7x− 6 f ) f(x) = 12x3 + 49x2 − 2x− 24
g) f(x) = x3 − 3x2 + 9x+ 13 h) f(x) = x4 − 5x2 + 4
i) f(x) = x4 − 1 j) f(x) = x5 − 6x4 + 8x3 + 6x2 − 9x
k) f(x) = x3 − 27 l) f(x) = x4 + 2x2 − 15
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Exercise 9.4

Find the exact roots of the polynomial; write the roots in simplest radical
form, if necessary. Sketch a graph of the polynomial with all roots
clearly marked.

a) f(x) = x3 − 2x2 − 5x+ 6 b) f(x) = x3 + 5x2 + 3x− 4
c) f(x) = −x3 + 5x2 + 7x− 35 d) f(x) = x3 + 7x2 + 13x+ 7
e) f(x) = 2x3 − 8x2 − 18x− 36 f ) f(x) = x4 − 4x2 + 3
g) f(x) = −x4 + x3 + 24x2 − 4x− 80 h) f(x) = 7x3 − 11x2 − 10x+ 8
i) f(x) = −15x3 + 41x2 + 15x− 9 j) f(x) = x4 − 6x3 + 6x2 + 4x

Exercise 9.5

Find a real number C so that the polynomial has a root as indicated.
Then, for this choice of C , find all remaining roots of the polynomial.

a) f(x) = x3 + 6x2 + 5x+ C has root at x = 1
b) f(x) = x3 − 4x2 − 2x+ C has root at x = −2
c) f(x) = x3 − x2 − 9x+ C has root at x = 3
d) f(x) = x3 + 8x2 + 5x+ C has root at x = −1
e) f(x) = x3 − 5x2 + 15x+ C has root at x = 2

Exercise 9.6

Find a polynomial f that fits the given data.

a) f has degree 3. The roots of f are precisely 2, 3, 4. The leading
coefficient of f is 2.

b) f has degree 4. The roots of f are precisely −1, 2, 0, −3. The
leading coefficient of f is −1.

c) f has degree 3. f has roots −2, −1, 2, and f(0) = 10.

d) f has degree 4. f has roots 0, 2, −1, −4, and f(1) = 20.

e) f has degree 3. The coefficients of f are all real. The roots of f are
precisely 2 + 5i, 2− 5i, 7. The leading coefficient of f is 3.

f ) f has degree 3. The coefficients of f are all real. f has roots i, 3,
and f(0) = 6.
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g) f has degree 4. The coefficients of f are all real. f has roots 5 + i
and 5− i of multiplicity 1, the root 3 of multiplicity 2, and f(5) = 7.

h) f has degree 4. The coefficients of f are all real. f has roots i and
3 + 2i.

i) f has degree 6. f has complex coefficients. f has roots 1 + i, 2 + i,
4− 3i of multiplicity 1 and the root −2 of multiplicity 3.

j) f has degree 5. f has complex coefficients. f has roots i, 3, −7 (and
possibly other roots).

k) f has degree 3. The roots of f are determined by its graph:
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l) f has degree 4. The coefficients of f are all real. The leading
coefficient of f is 1. The roots of f are determined by its graph:
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m) f has degree 4. The coefficients of f are all real. f has the following
graph:
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Chapter 10

Rational functions

Recall that a rational function is a fraction of polynomials:

f(x) =
anx

n + an−1x
n−1 + · · ·+ a1x+ a0

bmxm + bm−1xm−1 + · · ·+ b1x+ b0

In this chapter, we will study some of the characteristics of graphs of rational
functions.

10.1 Graphs of rational functions

The graph of rational functions can have new features that were not present
in the graph of polynomials, such as, for example, asymptotes. An asymptote

is a line that is approached by the graph of a function: x = a is a vertical

asymptote if f(x) approaches ±∞ as x approaches a from either the left or
from the right, and y = b is a horizontal asymptote if f(x) approaches b as x
approaches ∞ or −∞.

In order to get an idea of some of the features of graphs of rational func-
tions, we look at various sample graphs. First, we graph the basic functions
y = 1

xn .

169
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Observation 10.1: f(x) = 1
xn

Graphing y = 1
x
, y = 1

x2 , y = 1
x3 , y = 1

x4 , we obtain:

y = 1
x

y = 1
x2 y = 1

x3 y = 1
x4

In general, we see that x = 0 is a vertical asymptote and y = 0 is a
horizontal asymptote. The shape of y = 1

xn depends on n being even
or odd. We have:
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y = 1
xn , n odd y = 1

xn , n even

In the next note, we graph four sample rational functions. These examples
will help us understand many general aspects of graphs of rational functions.

Note 10.2

(1) Our first graph is f(x) = 1
x−3

.
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Here, the domain is all numbers where the denominator is not zero,
that is D = R − {3}. There is a vertical asymptote, x = 3. Fur-
thermore, the graph approaches 0 as x approaches ±∞. Therefore,
f has a horizontal asymptote, y = 0. Indeed, whenever the denom-
inator has a higher degree than the numerator, the line y = 0 will
be the horizontal asymptote.

(2) Next, we graph f(x) = 8x2−8
4x2−16

.

Here, the domain is all x for which 4x2−16 6= 0. To see where this
occurs, calculate

4x2 − 16 = 0 =⇒ 4x2 = 16 =⇒ x2 = 4 =⇒ x = ±2.

Therefore, the domain is D = R− {−2, 2}. As before, we see from
the graph that the domain reveals the vertical asymptotes x = 2 and
x = −2 (the vertical dashed lines). To find the horizontal asymp-
tote (the horizontal dashed line), we note that, when x becomes
very large, the highest terms of both numerator and denominator
dominate the function value, so that

for |x| very large =⇒ f(x) =
8x2 − 8

4x2 − 16
≈ 8x2

4x2
= 2

Therefore, when x approaches ±∞, the function value f(x) ap-
proaches 2, and therefore the horizontal asymptote is at y = 2 (the
horizontal dashed line).
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(3) Our next graph is f(x) = x2−8x+15
x−3

.

We see that there does not appear to be any vertical asymptote,
despite the fact that 3 is not in the domain. The reason for this
is that we can “remove the singularity” by canceling the troubling
term x− 3 as follows:

f(x) =
x2 − 8x+ 15

x− 3
=

(x− 3)(x− 5)

(x− 3)
=

x− 5

1
= x− 5, x 6= 3

Therefore, the function f reduces to x − 5 for all values where it
is defined. However, note that f(x) = x2−8x+15

x−3
is not defined at

x = 3. We denote this in the graph by an open circle at x = 3, and
call this a removable singularity (or a hole).
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(4) Our fourth and last graph before stating the rules in full generality
is f(x) = 2x3−8

3x2−16
.

The graph indicates that there is no horizontal asymptote, as the
graph appears to increase toward ∞ and decrease toward −∞. To
make this observation precise, we calculate the behavior when x
approaches ±∞ by ignoring the lower terms in the numerator and
denominator

for |x| very large =⇒ f(x) =
2x3 − 8

3x2 − 16
≈ 2x3

3x2
=

2x

3

Therefore, when x becomes very large, f(x) behaves like 2
3
x, which

approaches ∞ when x approaches ∞, and approaches −∞ when x
approaches −∞. (In fact, after performing a long division we obtain
2x3−8
3x2−16

= 2
3
· x + r(x)

3x2−16
, which would give rise to what is called a

slant asymptote y = 2
3
·x; see also Observation 11.4 below.) Indeed,

whenever the degree of the numerator is greater than the degree
of the denominator, we find that there is no horizontal asymptote,
but the graph blows up to ±∞. (Compare this also with example
(c) above).

We summarize the observations from the above examples in the following
observation.
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Observation 10.3: Rational functions

Let f(x) = p(x)
q(x)

be a rational function with polynomials p(x) and q(x)

in the numerator and denominator, respectively.

• The domain of f is all real numbers x for which the denominator
is not zero,

D = { x ∈ R | q(x) 6= 0 }

• Assume that q(x0) = 0, so that f is not defined at x0. If x0 is not
a root of p(x), or if x0 is a root of p(x) but of a lesser multiplicity
than the root in q(x), then f has a vertical asymptote x = x0.

f(x) = x−2
x−3

f(x) = 1
(x−3)2

f(x) = (x−3)(x−4)
(x−3)2
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• If p(x0) = 0 and q(x0) = 0, and the multiplicity of the root x0

in p(x) is at least the multiplicity of the root in q(x), then these
roots can be canceled, and we say that there is a removable

discontinuity (also called a hole) at x = x0.

f(x) = (x−1)(x−3)
(x−3)

f(x) = (x−2)(x−3)
(x−3)(x−4)
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• To find the horizontal asymptotes, we need to distinguish the
cases where the degree of p(x) is less than, equal to, or greater
than q(x).
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deg(p) >deg(q) deg(p) =deg(q) deg(p) <deg(q)

f(x) = x3−1
3x2−1

f(x) = 6x2−5
3x2+1

f(x) = 5x−1
x3+4x
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no horizontal asymptote: asymptote:

asymptote y = highest coeff. of p
highest coeff. of q

y = 0

In addition, it is also useful to determine the x- and y-intercepts.

• If 0 is in the domain of f , then the y-intercept is (0, f(0)).

f(x) = x+2
x+1
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f(0) = 0+2
0+1

= 2

• If p(x0) = 0 but q(x0) 6= 0, then f(x0) = p(x0)
q(x0)

= 0
q(x0)

= 0, so

that (x0, 0) is an x-intercept, that is, the graph intersects with
the x-axis at x0.

f(x) = x−2
x−3

f(x) = (x−2)(x−4)(x−5)
(x−3)3
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Example 10.4

Find the domain, all horizontal asymptotes, vertical asymptotes, re-
movable singularities, and x- and y-intercepts. Use this information
together with the graph of the calculator to sketch the graph of f .

a) f(x) = −x2

x2−3x−4
b) f(x) = 5x

x2−2x
c) f(x) = x3−9x2+26x−24

x2−x−2

d) f(x) = x−4
(x−2)2

e) f(x) = 3x2−12
2x2+1

Solution.

a) We combine our knowledge of rational functions and its algebra with
the particular graph of the function. The graphing calculator shows
the following graph:

To find the domain of f we only need to exclude from the real numbers
those x that make the denominator zero. Since x2−3x−4 = 0 exactly
when (x+ 1)(x− 4) = 0, which gives x = −1 or x = 4, we have the
domain:

domain D = R− {−1, 4}
The numerator has a root exactly when −x2 = 0, that is x = 0.
Therefore, x = −1 and x = 4 are vertical asymptotes, and since we
cannot cancel terms in the fraction, there is no removable singularity.
Furthermore, since f(x) = 0 exactly when the numerator is zero, the
only x-intercept is (0, 0).

To find the horizontal asymptote, we consider f(x) for large values of
x by ignoring the lower order terms in numerator and denominator,

|x| large =⇒ f(x) ≈ −x2

x2
= −1
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We see that the horizontal asymptote is y = −1. Finally, for the
y-intercept, we calculate f(0):

f(0) =
−02

02 − 3 · 0− 4
=

0

−4
= 0.

Therefore, the y-intercept is (0, 0). The function is then graphed as
follows:
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b) The graph of f(x) = 5x
x2−2x

as drawn with the graphing calculator is
shown below.

For the domain, we find the roots of the denominator,

x2 − 2x = 0 =⇒ x(x− 2) = 0 =⇒ x = 0 or x = 2.

The domain is D = R − {0, 2}. For the vertical asymptotes and
removable singularities, we calculate the roots of the numerator,

5x = 0 =⇒ x = 0.
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Therefore, x = 2 is a vertical asymptote, and x = 0 is a removable
singularity. Furthermore, the denominator has a higher degree than
the numerator, so that y = 0 is the horizontal asymptote. For the
y-intercept, we calculate f(0) by evaluating the fraction f(x) at 0

5 · 0
02 − 2 · 0 =

0

0
,

which is undefined. Therefore, there is no y-intercept (we, of course,
already noted that there is a removable singularity when x = 0).
Finally, for the x-intercept, we need to analyze where f(x) = 0,
that is where 5x = 0. The only candidate is x = 0 for which f is
undefined. Again, we see that there is no x-intercept. The func-
tion is then graphed as follows. (Notice in particular the removable
singularity at x = 0.)
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c) We start again by graphing the function f(x) = x3−9x2+26x−24
x2−x−2

with
the calculator. After zooming to an appropriate window, we get:
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To find the domain of f , we find the zeros of the denominator

x2 − x− 2 = 0 =⇒ (x+ 1)(x− 2) = 0 =⇒ x = −1 or x = 2.

The domain is D = R − {−1, 2}. The graph suggests that there is
a vertical asymptote x = −1. However the x = 2 appears not to be
a vertical asymptote. This would happen when x = 2 is a removable
singularity, that is, x = 2 is a root of both numerator and denominator
of f(x) = p(x)

q(x)
. To confirm this, we calculate the numerator p(x) at

x = 2:

p(2) = 23 − 9 · 22 + 26 · 2− 24 = 8− 36 + 52− 24 = 0

Therefore, x = 2 is indeed a removable singularity. To analyze f
further, we also factor the numerator. Using the factor theorem, we
know that x−2 is a factor of the numerator. Its quotient is calculated
via long division.

x2 −7x +12

x− 2 x3 −9x2 +26x −24
−(x3 −2x2)

−7x2 +26x −24
−(−7x2 +14x)

12x −24
−(12x −24)

0

With this, we obtain:

f(x) =
(x− 2)(x2 − 7x+ 12)

x2 − x− 2
=

(x− 2)(x− 3)(x− 4)

(x+ 1)(x− 2)

Therefore, we conclude that x = −1 is a vertical asymptote and
x = 2 is a removable singularity. We also see that the x-intercepts
are (3, 0) and (4, 0) (that is x− values where the numerator is zero).

Now, the long range behavior is determined by ignoring the lower
terms in the fraction,

|x| large =⇒ f(x) ≈ x3

x2
= x =⇒ no horizontal asymptote
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Finally, the y-coordinate of the y-intercept is given by

y = f(0) =
03 − 9 · 02 + 26 · 0− 24

02 − 0− 2
=

−24

−2
= 12.

We draw the graph as follows:

x
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3 4−1

12

d) We first graph f(x) = x−4
(x−2)2

.

The domain is all real numbers except where the denominator be-
comes zero, that is, D = R−{2}. The graph has a vertical asymptote
x = 2 and no hole. The horizontal asymptote is at y = 0, since the
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denominator has a higher degree than the numerator. The y-intercept
is at y0 = f(0) = 0−4

(0−2)2
= −4

4
= −1. The x-intercept is where the

numerator is zero, x − 4 = 0, that is at x = 4. Since the above
graph did not show the x-intercept clearly, we can observe it better
by zooming into the graph vertically (see Note 4.4):

Note in particular that the graph intersects the x-axis at x = 4
and then changes its direction to approach the x-axis from above. A
graph of the function f which includes all these features is displayed
below.

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

-4

-3

-2

-1

0

1

2

x

y

e) We graph f(x) = 3x2−12
2x2+1

.
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For the domain, we determine the zeros of the denominator.

2x2 + 1 = 0 =⇒ 2x2 = −1 =⇒ x2 = −1

2
.

The only solutions of this equation are given by complex numbers,
but not by any real numbers. In particular, for any real number x, the
denominator of f(x) is not zero. The domain of f is all real numbers,
D = R. This implies in turn that there are no vertical asymptotes,
and no removable singularities.

The x-intercepts are determined by f(x) = 0, that is where the
numerator is zero,

3x2 − 12 = 0 =⇒ 3x2 = 12 =⇒ x2 = 4 =⇒ x = ±2.

The horizontal asymptote is given by f(x) ≈ 3x2

2x2 = 3
2
, that is, it is at

y = 3
2
= 1.5. The y-intercept is at

y = f(0) =
3 · 02 − 12

2 · 02 + 1
=

−12

1
= −12.

We sketch the graph as follows:
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−12
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3
2
= 1.5

Since the graph is symmetric with respect to the y-axis, we can
make one more observation, namely that the function f is even (see
Observation 4.24 on page 74):

f(−x) =
3(−x)2 − 12

2(−x)2 + 1
=

3x2 − 12

2x2 + 1
= f(x)
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10.2 Optional section: Graphing rational functions

by hand

In this section we will show how to sketch the graph of a factored rational
function without the use of a calculator. It will be helpful to the reader to have
read Section 8.3 on graphing a polynomial by hand before continuing in this
section. In addition to having the same difficulties as polynomials, calculators
often have difficulty graphing rational functions near an asymptote.

Example 10.5

Graph the function p(x) = −3x2(x−2)3(x+2)
(x−1)(x+1)2(x−3)3

.

Solution.
We can see that p has zeros at x = 0, 2, and −2 and vertical asymptotes
x = 1, x = −1 and x = 3. Also note that for large |x|, p(x) ≈ −3. So
there is a horizontal asymptote y = −3. We indicate each of these facts
on the graph:

−2 0 2

−3

We can in fact get a more precise statement by performing a long division and writing p(x) =
n(x)
d(x)

= −3+
r(x)
d(x)

. If we drop all but the leading order terms in the numerator and the denominator

of the second term, we see that p(x) ≈ −3− 12
x

, whose graph for large |x| looks like

−3

This sort of reasoning can make the graph a little more accurate but is not necessary for a sketch.



184 CHAPTER 10. RATIONAL FUNCTIONS

We also have the following table:

for a near a, p(x) ≈ type sign change at a
−2 C1(x+ 2) linear changes
−1 C2/(x+ 1)2 asymptote does not change
0 C3 x2 parabola does not change
1 C4/(x− 1) asymptote changes
2 C5(x− 2)3 cubic changes
3 C6/(x− 3)3 asymptote changes

Note that, if the power appearing in the second column is even, then the
function does not change from one side of a to the other. If the power is
odd, the sign changes (either from positive to negative or from negative
to positive).
Now we move from large negative x values toward the right, taking into
account the above table. For large negative x, we start our sketch as
follows:

−2 0 2

−3

And noting that near x = −2 the function p(x) is approximately linear,
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we have

−2 0 2

−3

Then noting that we have an asymptote (noting that we cannot cross
the x-axis without creating an x-intercept) we have

−2 0 2

−3

Now, from the table we see that there is no sign change at −1 so we
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have

−2 0 2

−3

and from the table we see that near x = 0 the function p(x) is approx-
imately quadratic and therefore the graph looks like a parabola. This
together with the fact that there is an asymptote at x = 1 gives

−2 0 2

−3

Now, from the table we see that the function changes sign at the asymp-
tote, so while the graph “hugs” the top of the asymptote on the left-hand
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side, it “hugs” the bottom on the right-hand side giving

−2 0 2

−3

Now, from the table we see that near x = 2, p(x) is approximately cubic.
Also, there is an asymptote x = 3 so we get

−2 0 2

−3

Finally, we see from the table that p(x) changes sign at the asymptote
x = 3 and has a horizontal asymptote y = −3, so we complete the
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sketch:

−2 0 2

−3

Note that if we had made a mistake somewhere there is a good chance
that we would have not been able to get to the horizontal asymptote on
the right side without creating an additional x-intercept.
What can we conclude from this sketch? This sketch exhibits only the
general shape which can help decide on an appropriate window size if
we want to investigate details using technology. Furthermore, we can
infer where p(x) is positive and where p(x) is negative. However, it is
important to notice that there may be wiggles in the graph that we have
not included in our sketch.

We now give one more example of graphing a rational function where the
horizontal asymptote is y = 0.

Example 10.6

Sketch the graph of

r(x) =
2x2(x− 1)3(x+ 2)

(x+ 1)4(x− 2)3
.

Solution.
Here we see that there are x-intercepts at (0, 0), (0, 1), and (0,−2).
There are two vertical asymptotes: x = −1 and x = 2. In addition, there
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is a horizontal asymptote at y = 0. (Why?) Putting this information on
the graph gives

10−2

In this case, it is easy to get more information for large |x| that will
be helpful in sketching the function. Indeed, when |x| is large, we can
approximate r(x) by dropping all but the highest order term in the
numerator and denominator which gives r(x) ≈ 2x6

x7 = 2
x
. So for large

|x|, the graph of r looks like

10−2

The function gives the following table:

for a near a, p(x) ≈ type sign change at a
−2 C1(x+ 2) linear changes
−1 C2/(x+ 1)4 asymptote does not change
0 C3 x2 parabola does not change
1 C4(x− 1)3 cubic changes
2 C5/(x− 2)3 asymptote changes

Looking at the table for this function, we see that the graph should look
like a line near the zero (0,−2) and since it has an asymptote x = −1,
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the graph looks something like:

10−2

Then, looking at the table, we see that r(x) does not change its sign
near x = −1, so that we obtain:

10−2

Now, the function is approximately quadratic near x = 0, so the graph
looks like:

10−2

Next, looking at the root at 1, we note that the function is approximately
cubic there, and that there is an asymptote at x = 2. We draw this as
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follows:

10−2

Finally, we see that the function changes sign at x = 2 (see the table).
So, since the graph “hugs” the asymptote near the bottom of the graph
on the left side of the asymptote, it will “hug” the asymptote near the
top on the right side. So this, together with the fact that y = 0 is an
asymptote, gives the sketch (perhaps using an eraser to match the part
of the graph on the right that uses the large x):

10−2

Note that if the graph could not be matched at the end without creating
an extra x-intercept, then a mistake has been made.
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10.3 Exercises

Exercise 10.1

Find the domain, the vertical asymptotes, and removable discontinuities
of the functions:

a) f(x) = 2
x−2

b) f(x) = x2+2
x2−6x+8

c) f(x) = 3x+6
x3−4x

d) f(x) = (x−2)(x+3)(x+4)
(x−2)2(x+3)(x−5)

e) f(x) = x−1
x3−1

f ) f(x) = 2
x3−2x2−x+2

Exercise 10.2

Find the horizontal asymptotes of the functions:

a) f(x) = 8x2+2x+1
2x2+3x−2

b) f(x) = 1
(x−3)2

c) f(x) = x2+3x+2
x−1

d) f(x) = 12x3−4x+2
−3x3+2x2+1

Exercise 10.3

Find the x- and y-intercepts of the functions:

a) f(x) = x−3
x−1

b) f(x) = x3−4x
x2−8x+15

c) f(x) = (x−3)(x−1)(x+4)
(x−2)(x−5)

d) f(x) = x2+5x+6
x2+2x

Exercise 10.4

Sketch a complete graph of the function f . To this end, calculate the
domain of f , the horizontal and vertical asymptotes, the removable sin-
gularities, the x- and y-intercepts of the function, and graph the function
with the graphing calculator.

a) f(x) = 7x+2
3x−5

b) f(x) = x2−x−2
x2+2x−3

c) f(x) = 3x2−7x+2
x2−3x−10

d) f(x) = x2+7x+12
x2+6x+8

e) f(x) = x−3
x3−3x2−6x+8

f ) f(x) = x3−3x2−x+3
x3−2x2
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Exercise 10.5

Find a rational function f that satisfies all the given properties.

a) vertical asymptote at x = 4 and horizontal asymptote at y = 0

b) vertical asymptotes at x = 2 and x = 3 and horizontal asymptote at
y = 5

c) removable singularity at x = 1 and no horizontal asymptote



Chapter 11

Exploring discontinuities and

asymptotes

We have seen that rational functions have certain features that were not
present in polynomials, such as discontinuities. These discontinuities can
be removable (“holes”), or non-removable (at vertical asymptotes), where the
function can become arbitrarily large, and thus approaches infinity.

It may be perplexing to think about functions approaching an infinite value,
as we do not experience infinities in everyday life. Indeed, a quantity that
approaches an infinite value would probably come with some strange side
effects. For example, it is theorized that gravity approaches an infinite value
at the center of a black hole (often called the singularity), and we definitely
do not recommend to get anywhere near such an object!

194
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In this chapter, we will explore the behavior of functions near an input
x0. In Section 11.1 we look at asymptotes and removable singularities for
rational functions, while we look at the general case in Section 11.2.

11.1 More on rational functions

We now explore the asymptotic behavior of rational functions near a discon-
tinuity, as well as the behavior at infinity in more detail. First, we review
how one can recover the formula of a rational function f(x) = p(x)

q(x)
from its

asymptotes and roots.

Example 11.1

The graph of the rational function f(x) = p(x)
q(x)

is displayed below, where

p and q are polynomials of degree 2. Assuming that all intercepts and
asymptotes are at integer values as indicated (in red), find these inter-
cepts and asymptotes. Use this information to find a formula for f(x).
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Solution.
The intercepts and asymptotes can be read off from the graph:

x-intercepts : (x, y) = (−4, 0) and (x, y) = (−1, 0)

y-intercept : (x, y) = (0, 2)

vertical asymptotes : x = −2 and x = 1

horizontal asymptote : y = −1
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Since the x-intercepts determine the roots of the numerator of f , and
the vertical asymptotes determine the roots of the denominator of f , we
see that f must be of the form

f(x) = a · (x+ 4) · (x+ 1)

(x+ 2) · (x− 1)

where a is some overall coefficient. The coefficient a can be determined
either via the horizontal asymptote or via the y-intercept. In the first
case, note that the horozintal asymptote of f(x) = a· x2+5x+4

x2+x−2
is y = a, so

that we conclude a = −1. For the latter case, note that the y-intercept
of f(x) = a · (x+4)·(x+1)

(x+2)·(x−1)
is at y = f(0) = a · 4·1

2·(−1)
= a · (−2), which,

according to the graph, has to be equal to 2:

2 = −2a =⇒ a = −1

Therefore, f(x) = (−1) · (x+4)·(x+1)
(x+2)·(x−1)

.

Example 11.2

The graph of the rational function f(x) = p(x)
q(x)

is displayed below, where

p is a polynomial of degree 1 and q is a polynomial of degree 3. Assum-
ing that all intercepts and asymptotes are at integer values as indicated
(in red), find these intercepts and asymptotes. Use this information to
find a formula for f(x).
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Solution.
From the graph, we see that the intercepts and asymptotes are:

x-intercept : (x, y) = (2, 0)

y-intercept : (x, y) = (0,−1)

vertical asymptotes : x = −3 and x = 1 and x = 4

horizontal asymptote : y = 0

Using the x-intercept and the vertical asymptotes, we see that f is of
the form

f(x) = a · (x− 2)

(x+ 3) · (x− 1) · (x− 4)

for some coefficient a. Note that the horizontal asymptote is auto-
matically y = 0, since the denominator has a higher degree than the
numerator. To find the coeffient a, we use the y-intercept, which in this
formula is given by y = f(0) = a · −2

3·(−1)·(−4)
= a · −2

12
= a · −1

6
. Since the

graph shows a y-intercept at y = −1, it follows that

−1 = a · −1

6
=⇒ a = 6

Therefore, f(x) = 6 · (x−2)
(x+3)·(x−1)·(x−4)

.

Example 11.3

The graph of the function y = f(x) is displayed below.

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

x

y



198 CHAPTER 11. EXPLORING DISCONTINUITIES & ASYMPTOTES

Assume that f(x) = p(x)
q(x)

is a rational function, where p and q are poly-

nomials of degree 2; that all intercepts and asymptotes are at integer
values (indicated in red); and that f has a removable discontinuity at
x = −3.

a) Use this information to find a formula for f(x).

b) Find the coordinates of the removable discontinuity.

Solution.

a) The x-intercept is at (2, 0), the y-intercept is at (0, 1), the vertical
asymptote is at x = 4, and the horizontal asymptote is at y = 2.
The discontinuity at x = −3 requires a factor of (x + 3) in the

numerator and the denominator, so that f(x) = a · (x−2)·(x+3)
(x−4)·(x+3)

. From

the horizontal asymptote y = 2 we see that a = 2, so that

f(x) = 2 · (x− 2) · (x+ 3)

(x− 4) · (x+ 3)

b) To find the y-coordinate of the discontinuity, we may try to plug
x = −3 into the function f . Unfortunately, this does not lead to an
answer, since f(−3) is undefined. However, we can see that for all
x 6= −3, the function f coincides with g(x) = 2 · x−2

x−4
after canceling

the factor (x+ 3). The graph of g is displayed below.
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Evaluating g at x = −3 gives

g(−3) = 2 · −3− 2

−3− 4
= 2 · −5

−7
=

10

7

This shows that the coordinates of the discontinuity of f are (x, y) =
(−3, 10

7
). We say that, “as x approaches −3, f(x) approaches 10

7
”,

which is written as:

as x → −3, f(x) → 10

7

This is also called a limit, written as: lim
x→−3

f(x) = 10
7

.

We also want to study a rational function as x becomes arbitrarily large
(having large positive or large negative values), or, saying it differently, when
x approaches ±infinity (x → ∞ or x → −∞). We already saw the behavior of
some rational functions for this case when we considered horizontal asymp-
totes. More generally, we can describe the behavior of a rational function
when x → ±∞ as follows.

Observation 11.4: Asymptotic behavior, slant asymptote

The asymptotic behavior of a rational function f(x) = p(x)
q(x)

, in the case

where the degree of p is greater than the degree of q, can be calculated
by performing a long division. If the long division has a quotient g(x)
and a remainder r(x), then

f(x) =
p(x)

q(x)
= g(x) +

r(x)

q(x)
.

Now, since deg(r) <deg(q), the fraction r(x)
q(x)

approaches zero as x

approaches ±∞, so that f(x) ≈ g(x) for large |x|. Thus, f(x) is
approximately g(x) for large |x|.
If g(x) is a linear function (that is, a polynomial of degree 1), then g is
called the slant asymptote of f .
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Example 11.5

Find the slant asymptote of f(x) = 6x3+11x2−40x+18
2x2+7x−4

.

Solution.
We divide the polynomials via a long division:

3x −5

2x2 + 7x− 4 6x3 +11x2 −40x +18
−(6x3 +21x2 −12x)

−10x2 −28x +18
−(−10x2 −35x +20)

7x −2

Therefore, f(x) = 3x − 5 + 7x−2
2x2+7x−4

, so that for large |x|, we have
f(x) ≈ 3x− 5. Thus, the slant asymptote of f(x) is y = 3x− 5.

Note that the slant asymptote has positive slope, so that it goes to +∞
when x becomes large (that is x → ∞), while it goes to −∞ when
x → −∞.
We also write this as lim

x→+∞
f(x) = +∞ and lim

x→−∞
f(x) = −∞.

11.2 Optional section: Limits

In Example 11.3 we implicitly calculated the limit as the y-coordinate of the
removable discontinuity. A full treatment of limits is the subject of a course
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in calculus, which will provide many more tools to evaluate limits. For now,
we will only explore some intuition regarding limits mainly stemming from
studying graphs of functions.

Definition 11.6: Limit

Let y = f(x) be a function, which is defined near a number a. We write

as x → a, f(x) → L

if f(x) approaches L as x approaches a. Alternatively, we also write

lim
x→a

f(x) = L

and we call L the limit of f as x approaches a.
This definition contains several concepts that were not made precise, such as what it means to
be “near a”, what it means to “approach a number a”, or what it means to “approach L as x
approaches a”.

A precise version of a limit will formally specify that f(x) will be within an arbitrarily small
distance from L for all x close enough to a. This is what is done, for example, in the ǫ-δ definition
of a limit. The details are topics of a course in calculus, and are beyond the scope of this text.

We also consider the case when x approaches a number from one side
only, that is, from the right or from the left:

• if f(x) approaches L as x approaches a from the right , then we
write

as x → a+, f(x) → L or lim
x→a+

f(x) = L

• if f(x) approaches L′ as x approaches a from the left , then we
write

as x → a−, f(x) → L′ or lim
x→a−

f(x) = L′

x

y = f(x)

a

L

from right

L′

from left
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Note 11.7

We note that f(x) approaches L when x approaches a, precisely when
f(x) approaches L when x approaches a from the right and from the
left.

(

lim
x→a

f(x) = L
)

⇔
(

lim
x→a+

f(x) = L and lim
x→a−

f(x) = L

)

We explore these concepts in the next examples.

Example 11.8

The graph of y = f(x) is shown below.
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Find the limit from the right, the limit from the left, and the (two-sided)
limit as x approaches the following numbers.

a) as x → 3 b) as x → 5 c) as x → 7 d) as x → −2

Solution.

a) The limits from the right and from the left approaching 3 are
lim
x→3+

f(x) = 2 and lim
x→3−

f(x) = 2. Therefore, we also have

lim
x→3

f(x) = 2.

b) The limits from the right and left approaching 5 are lim
x→5+

f(x) = 6

and lim
x→5−

f(x) = 4. Since these limits differ, the two-sided limit

lim
x→5

f(x) does not exist.
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c) The limits approaching 7 are lim
x→7+

f(x) = 5 and lim
x→7−

f(x) = 5, and

therefore also lim
x→7

f(x) = 5. Note that in this case f(7) is also

defined and f(7) = 5 coincides with the limit. (We say that f is
continuous at 7.)

d) The limits approaching −2 are equal, lim
x→−2+

f(x) = 3 and

lim
x→−2+

f(x) = 3, and therefore lim
x→−2

f(x) = 3. In this case f(−2)

is also defined but does not coincide with the limit.

Example 11.9

Use the graphing calculator to identify the stated limits.

a) lim
x→1

x− 1√
x− 1

b) lim
x→2

x · |x− 2|
x− 2

c) lim
x→−3

x+ 5

x+ 3
d) lim

x→0+
x2 · ln(x)

Solution.

a) We plug numbers into the graphing calculator that approach 1 from
the right and from the left. Suitable numbers from the right are: 1.1,
1.01, 1.001, etc. Suitable numbers from the left are: 0.9, 0.99, 0.999,
etc.
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These evaluations appear to indicate that f(x) approaches 2 as x
approaches 1.

Note that we only used the graphing calculator to get an idea what
the limit might be. A precise evaluation of the limit will require a
more thorough analysis of the function at x = 1. Such an analysis
is beyond the scope of this exercise. Nevertheless, we will provide
this analysis for one case (that is for part (a) of this example) in the
hope that it might help some readers, but will not do so for parts (b)
and (c). Note that for x 6= 1:

f(x) =
x− 1√
x− 1

=
(x− 1)(

√
x+ 1)

(
√
x− 1)(

√
x+ 1)

=
(x− 1)(

√
x+ 1)

x− 1
=

√
x+ 1

Therefore, the function y =
√
x+1 coincides with y = f(x) for x 6= 1,

but does not have a discontinuity at x = 1. Evaluating y =
√
x+1 at

x = 1 gives y =
√
1+ 1 = 1+ 1 = 2, which shows that lim

x→1
f(x) = 2.

b) Evaluating x·|x−2|
x−2

to the right and left of 2 gives:

Therefore, lim
x→2+

x·|x−2|
x−2

= 2 and lim
x→2−

x·|x−2|
x−2

= −2. As these limits

differ, lim
x→2

x·|x−2|
x−2

does not exist.
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c) We evaluate x+5
x+3

close to −3.

From this, it is reasonable to conclude that lim
x→−3+

x+5
x+3

= +∞ and

lim
x→−3−

x+5
x+3

= −∞, so that lim
x→−3

x+5
x+3

does not exist. Note that this also

aligns with our knowledge about the vertical asymptote at x = −3.

d) Note that y = x2 · ln(x) is only defined for x > 0, since this is where
ln(x) is defined.

Moreover, when x → 0+, we know that x2 approaches 0, but ln(x) ap-
proaches −∞. Interestingly, from the values shown the calculators,
it appears that this product approaches lim

x→0+
x2 · ln(x) = 0.
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11.3 Exercises

Exercise 11.1

Below are the graphs of rational functions whose numerators and de-
nominators are polynomials of degree 2. All intercepts and asymptotes
are at integer values, indicated in red. Find all intercepts and asymp-
totes, and find a formula for each function.
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Exercise 11.2

Below are the graphs of rational functions whose numerators are poly-
nomials of degree 1 and whose denominators are polynomials of degree
3. All intercepts and asymptotes are at integer values indicated in red.
Find all intercepts and asymptotes, and find a formula for each function.

a)
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Exercise 11.3

Find the domain of each rational function below. Identify the removable
discontinuities and find their x- and y-coordinates.

a) f(x) = (x−3)(x−4)
(x+5)(x−4)

b) f(x) = 3(x+2)(x−5)
(x+3)(x−5)

c) f(x) = 7(x−2)
(x+3)(x−2)(x−6)

d) f(x) = x2+6x+8
x2+x−12

e) f(x) = x2−9
x2−x−6

f ) f(x) = x2−4x+3
x3+x2−2x

Exercise 11.4

Find the slant asymptote of the rational function.

a) f(x) = 2x3+9x2−20x−21
2x2−3x−4

b) f(x) = 2x3−13x2+35x−26
x2−4x+6

c) f(x) = 12x3+10x2−4x−9
3x2+x−2

d) f(x) = −3x3−4x2+20x−16
x2+2x−5

Exercise 11.5

The graph of the function y = f(x) is shown below.
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Find the limits of f(x) as x approaches the values indicated below.

a) x → 2+ b) x → 2− c) x → 2
d) x → −3+ e) x → −3− f ) x → −3
g) x → −1+ h) x → −1− i) x → −1
j) x → 4+ k) x → 4− l) x → 4
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Exercise 11.6

Choose inputs that approach the given value from the indicated side
(right or left). (Note that there is not just one unique answer for this
part of the problem!)
Then, use the graphing calculator to compute the corresponding output
values and guess what the limit might be.

a) lim
x→3−

x−3
|x−3| b) lim

x→1+

x3−1√
x−1

c) lim
x→2−

1
x
− 1

2

x−2

d) lim
x→−5+

x3+5x2

|x+5| e) lim
x→−5−

x3+5x2

|x+5| f ) lim
x→4−

x−1
x−4



Chapter 12

Solving inequalities

In this chapter we use our knowledge of functions to solve inequalities. In
Section 12.1, we study polynomial inequalities and absolute value inequali-
ties, while in Section 12.2 we solve rational inequalities.

12.1 Polynomial and absolute value inequalities

We will develop a general strategy for solving inequalities involving non-
linear functions. Linear inequalities, however, can be solved quite easily by
separating the variable x, while keeping in mind that multiplying or dividing
a negative number reverses the sign of the inequality.

−2x ≤ −6 =⇒ x≥3
but 2x ≤ 6 =⇒ x ≤ 3

Example 12.1

Solve for x.

a) −3x+ 7 > 19 b) 2x+ 5 ≥ 4x− 11
c) 3 < −6x− 4 ≤ 13 d) −2x− 1 ≤ 3x+ 4 < 4x− 20

Solution.
The first three calculations are as follows:

a) −3x+ 7 > 19
(−7)
=⇒ −3x > 12

(÷(−3))
=⇒ x < −4

b) 2x+ 5 ≥ 4x− 11
(−4x−5)
=⇒ −2x ≥ −16

(÷(−2))
=⇒ x ≤ 8

210
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c) 3 < −6x− 4 ≤ 13
(+4)
=⇒ 7 < −6x ≤ 17

(÷(−6))
=⇒ 7

−6
> x ≥ 17

−6
=⇒ −17

6
≤ x < −7

6

Here, the last implication was obtained by switching the right and left
terms of the inequality. The solution set is the interval [−17

6
,−7

6
).

For part (d), it is best to consider both inequalities separately.

−2x− 1 ≤ 3x+ 4
(−3x+1)
=⇒ −5x ≤ 5

(÷(−5))
=⇒ x ≥ −1,

3x+ 4 < 4x− 20
(−4x−4)
=⇒ −x < −24

(·(−1))
=⇒ x > 24.

The solution has to satisfy both inequalities x ≥ −1 and x > 24. Both
inequalities are true for x > 24 (since then also x ≥ −1), so that this
is in fact the solution: x > 24.

We now consider inequalities with polynomials of higher degree.

Example 12.2

Solve for x: x2 − 3x− 4 ≥ 0

Solution.
To get an idea of where x2 − 3x − 4 ≥ 0, we graph the left-hand side
function f(x) = x2 − 3x− 4.

-4 -3 -2 -1 0 1 2 3 4 5 6 7

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

x

y

Note that the output x2 − 3x − 4 is greater or equal to zero when
the graph of f(x) is above or on the x-axis, which is marked in red.
Since the graph is a parabola, the graph can only switch from above to
below the x-axis (and the same from below to above the x-axis) when
it intersects the x-axis. These are the roots of the function.
So, we first find the roots of the polynomial, which, in this case, can be
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done by factoring.

x2 − 3x− 4 = 0 =⇒ (x− 4)(x+ 1) = 0 =⇒ x = 4 or x = −1

From the graph we see that f(x) ≥ 0 when x ≤ −1 or when x ≥ 4 (the
parts of the graph above the x-axis). To show this without using the
calculator, we can check one point in each of the intervals (−∞,−1),
(−1, 4), and (4,∞):

−1 4

Check x = −2: Check x = 0: Check x = 5:

f(−2) = (−2)2 − 3 · (−2)− 4 f(0) = 02 − 3 · 0− 4 f(5) = 52 − 3 · 5− 4

= 4 + 6− 4 = 0− 0− 4 = 25− 15− 4

= 6 ≥ 0 = −4 � 0 = 6 ≥ 0

TRUE FALSE TRUE

The solution set S is therefore

S = {x|x ≤ −1 or x ≥ 4} = (−∞,−1] ∪ [4,∞).

The numbers −1 and 4 are included in the solution set since this is
where we have equality x2 − 3x − 4 = 0, and the original inequality
x2 − 3x− 4 ≥ 0 includes the equality.

Note 12.3: Solving inequalities

Analyzing the previous example, we use a three-step approach when
dealing with inequalities.

• In step one we find the x where the left-hand side and the right-
hand side of the inequality change from “>” to “<” and vice versa.
In particular, we check where the two sides are equal.

• In step two we check one x in each of the subintervals from step
one to decide whether they satisfy the original inequality or not.

For steps one and two we may also use the graphing calculator to gain
further insights.

• In step three we check which of the endpoints of the intervals are
included in the solution set.
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Example 12.4

Solve for x.

a) x2 + 3x− 10 < 0 b) x3 − 9x2 + 23x− 15 ≤ 0
c) x3 + 15x > 7x2 + 9 d) x4 − x2 ≥ 5(x3 − x)

Solution.

a) We can find the roots of the polynomial on the left by factoring.

x2+3x−10 = 0 =⇒ (x+5)(x−2) = 0 =⇒ x = −5 or x = 2

To see where f(x) = x2 + 3x − 10 is < 0, we graph it with the
calculator and check numbers in each interval where f(x) 6= 0.

−5 2

Check x = −6: Check x = 0: Check x = 3:

f(−6) f(0) f(3)

= (−6)2 + 3 · (−6)− 10 = 02 + 3 · 0− 10 = 32 + 3 · 3− 10

= 36− 18− 10 = 0 + 0− 10 = 9 + 9− 10

= 8 ≮ 0 = −10 < 0 = 8 ≮ 0

FALSE TRUE FALSE

We see that f(x) < 0 when −5 < x < 2. The numbers −5 and 2 are
not included because the inequality “<” does not include equality.
The solution set is therefore S = {x| − 5 < x < 2} = (−5, 2).
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b) Here is the graph of the function f(x) = x3 − 9x2 + 23x − 15 from
the graphing calculator.

This graph shows that there are two intervals where f(x) ≤ 0 (the
parts of the graph below the x-axis). To determine the exact intervals,
we calculate where f(x) = x3 − 9x2 + 23x − 15 = 0. The graph
suggests that the roots of f(x) are at x = 1, x = 3, and x = 5. This
can be confirmed by a calculation:

f(1) = 13 − 9 · 12 + 23 · 1− 15 = 1− 9 + 23− 15 = 0,

f(3) = 33 − 9 · 32 + 23 · 3− 15 = 27− 81 + 69− 15 = 0,

f(5) = 53 − 9 · 52 + 23 · 5− 15 = 125− 225 + 115− 15 = 0.

Since f is a polynomial of degree 3, the roots x = 1, 3, 5 are all of the
roots of f . (Alternatively, we could have divided f(x), for example,
by x − 1 and used this to completely factor f and with this obtain
all the roots of f .) We next check each interval.

1 3 5

Check x = 0: Check x = 2: Check x = 4: Check x = 6:

f(0) = −15 ≤ 0 f(2) = 3 � 0 f(4) = −3 ≤ 0 f(6) = 16 � 0

TRUE FALSE TRUE FALSE

With this, we can determine the solution set to be the set:

solution set S = {x ∈ R|x ≤ 1, or 3 ≤ x ≤ 5}
= (−∞, 1] ∪ [3, 5].

Note that we include the roots 1, 3, and 5 in the solution set since
the original inequality was “≤” (and not “<”), which includes the
solutions of the corresponding equality.
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c) We rewrite the inequality in a way that has zero on one side so that
we can get a better view of where the corresponding equality holds.

x3 + 15x > 7x2 + 9 =⇒ x3 − 7x2 + 15x− 9 > 0

(Here it does not matter whether we bring the terms to the right
or the left side of the inequality sign! The resulting inequality is
different, but the solution to the problem is the same.) With this,
we now use the graphing calculator to find the graph of the function
f(x) = x3 − 7x2 + 15x− 9.

The graph suggests at least one root (the left-most intersection
point), but possibly one or two more roots. To gain a better un-
derstanding of whether the graph intersects the x-axis on the right,
we rescale the window size of the previous graph.

This viewing window suggests that there are two roots x = 1 and
x = 3. We confirm that these are the only roots with an algebraic
computation. First, we check that x = 1 and x = 3 are indeed roots:

f(1) = 13 − 7 · 12 + 15 · 1− 9 = 1− 7 + 15− 9 = 0,
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f(3) = 33 − 7 · 32 + 15 · 3− 9 = 27− 63 + 45− 9 = 0.

To confirm that these are the only roots (and we have not just missed
one of the roots that might possibly become visible after sufficiently
zooming into the graph), we factor f(x) completely. We divide f(x)
by x− 1:

x2 −6x +9

x− 1 x3 −7x2 +15x −9
−(x3 −x2)

−6x2 +15x −9
−(−6x2 +6x)

9x −9
−(9x −9)

0

and use this to factor f :

f(x) = x3 − 7x2 + 15x− 9 = (x− 1)(x2 − 6x+ 9)

= (x− 1)(x− 3)(x− 3)

This shows that 3 is a root of multiplicity 2, and so f has no other
roots than x = 1 and x = 3. The solution set consists of those
numbers x for which f(x) > 0. We check points in each interval.

1 3

Check x = 0: Check x = 2: Check x = 4:

f(0) = −9 ≯ 0 f(2) = 1 > 0 f(4) = 3 > 0

FALSE TRUE TRUE

From this calculation, as well as from the graph, we see that f(x) > 0
when 1 < x < 3 and when x > 3 (the roots x = 1 and x = 3 are
not included as solutions). We can write the solution set in several
different ways:

solution set S = {x|1 < x < 3 or x > 3} = {x|1 < x} − {3},

or in interval notation:

solution set S = (1, 3) ∪ (3,∞) = (1,∞)− {3}.
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d) Again, we move all terms to one side:

x4 − x2 ≥ 5(x3 − x) (distribute 5) =⇒ x4 − x2 ≥ 5x3 − 5x

(subtract 5x3, add 5x) =⇒ x4 − 5x3 − x2 + 5x ≥ 0.

We graph f(x) = x4 − 5x3 − x2 + 5x with the graphing calculator.

The graph suggests the roots x = −1, 0, 1, and 5. This can be
confirmed by a straightforward calculation.

f(−1) = (−1)4 − 5 · (−1)3 − (−1)2 + 5 · (−1) = 1 + 5− 1− 5 = 0,

f(0) = 04 − 5 · 03 − 02 − 5 · 0 = 0,

f(1) = 14 − 5 · 13 − 12 + 5 · 1 = 1− 5− 1 + 5 = 0,

f(5) = 54 − 5 · 53 − 52 + 5 · 5 = 125− 125− 25 + 25 = 0.

The roots x = −1, 0, 1, and 5 are the only roots, since f is of degree
4. We check points in each interval.

−1 0 1 5

Check x = −2: f(−2) = (−2)4 − 5 · (−2)3 − (−2)2 + 5 · (−2)

= 42 ≥ 0 TRUE

Check x = −0.5: f(−0.5) = (−0.5)4 − 5 · (−0.5)3 − (−0.5)2 − 5 · (−0.5)

≈ −2.1 � 0 FALSE

Check x = 0.5: f(0.5) = 0.54 − 5 · 0.53 − 0.52 + 5 · 1
≈ 1.7 ≥ 0 TRUE
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Check x = 2: f(2) = 24 − 5 · 23 − 22 + 5 · 5 = −18 � 0 FALSE

Check x = 6: f(6) = 64 − 5 · 63 − 62 + 5 · 6 = 210 ≥ 0 TRUE

Since the inequality we want to solve is f(x) ≥ 0, which includes
equality, the zeros of f are included in the solution, and so the
solution set is:

S = (−∞,−1] ∪ [0, 1] ∪ [5,∞)

Polynomial inequalities come up, for example, when finding the domain of
functions involving a square root, as we will show in the next example.

Example 12.5

Find the domain of the given functions.

a) f(x) =
√
x2 − 4 b) g(x) =

√
x3 − 5x2 + 6x

Solution.

a) The domain of f(x) =
√
x2 − 4 is given by all x for which the square

root is non-negative. In other words, the domain is given by numbers
x with x2−4 ≥ 0. Graphing the function y = x2−4 = (x+2)(x−2),
we see that this is precisely the case when x ≤ −2 or x ≥ 2.
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Therefore, the domain is Df = (−∞,−2] ∪ [2,∞). This is also
confirmed by the graph of f , which is shown below.

b) For the domain of g(x) =
√
x3 − 5x2 + 6x, we need find those x with

x3 − 5x2 + 6x ≥ 0. To this end, we graph y = x3 − 5x2 + 6x and
check for its roots.

From the graph above, we calculate the roots of y = x3 − 5x2 + 6x
at x = 0, x = 2, and x = 3. Furthermore, the graph shows that
x3 − 5x2 + 6x ≥ 0 precisely when 0 ≤ x ≤ 2 or 3 ≤ x. The domain
is therefore Dg = [0, 2] ∪ [3,∞).

A similar computation to that for polynomial inequalities also applies to
absolute value inequalities, which we show in the next example.
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Example 12.6

Solve for x: |2x− 3| ≥ 7

Solution.
To analyze |2x− 3| ≥ 7, we graph the function f(x) = |2x− 3|, as well
as the function g(x) = 7.

To see where |2x − 3| ≥ 7, we first find the values where |2x− 3| = 7.
Note that 2x−3 has an absolute value of 7 exactly when 2x−3 is either
7 or −7.

|2x− 3| = 7 =⇒ 2x− 3 = ±7

=⇒ 2x− 3 = 7 =⇒ 2x− 3 = −7
(add 3) =⇒ 2x = 10 (add 3) =⇒ 2x = −4

(divide by 2) =⇒ x = 5 (divide by 2) =⇒ x = −2

We next check in each interval whether |2x− 3| ≥ 7:

−2 5

Check x = −3: Check x = 0: Check x = 6:

|2 · (−3)− 3|
?
≥ 7 |2 · 0− 3|

?
≥ 7 |2 · 6− 3|

?
≥ 7

| − 9|
?

≥ 7 | − 3|
?

≥ 7 |9|
?

≥ 7

9
?
≥ 7 3

?
≥ 7 9

?
≥ 7

TRUE FALSE TRUE

Since the values at x = −2 and x = 5 give equality, the solution set
for |2x− 3| ≥ 7 is given by S = (−∞,−2] ∪ [5,∞).
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12.2 Rational inequalities

Rational inequalities are solved with a similar three-step process that was
used to solve the polynomial and absolute value inequalities before (see Note
12.3 page 212). That is, in step 1, we find possible inputs where the inequality
may change its sign (for example at the x-intercepts). In step 2, we check in
which of the intervals the given inequality is true, and which are thus part of
the solution set. Finally, in step 3, we determine which of the endpoints of
the intervals should be included in the solution set.

Example 12.7

Solve for x.

a)
x−1
x−4

≤ 0 b)
7x−3
6x+5

> 0 c)
x2−5x+6
x2−5x

≥ 0

d)
5

x−2
≤ 3 e)

4
x+5

< 3
x−3

Solution.

a) We first graph the function f(x) = x−1
x−4

.

As shown above, the graph changes from above to below the x-axis
at the x-intercept x = 1, and then changes from below to above the
x-axis at the vertical asymptote at x = 4. Using both x = 1 and
x = 4, we get the three intervals (−∞, 1), (1, 4), and (4,∞), which
we will check as to whether f(x) ≤ 0 or not.

1 4

Check x = 0: Check x = 2: Check x = 5:

0−1
0−4

?
≤ 0 2−1

2−4

?
≤ 0 5−1

5−4

?
≤ 0

−1
−4

= 1
4

?
≤ 0 1

−2

?
≤ 0 4

1

?
≤ 0

FALSE TRUE FALSE
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Since the inequality is x−1
x−4

≤ 0, we include the root at x = 1 in the
solution set. However, we do not include x = 4, since this is a vertical
asymptote of f and would not give a solution of the inequality, but
would rather give an undefined expression on the left-hand side of
the inequality. The solution set is therefore S = [1, 4).

b) To solve 7x−3
6x+5

> 0, we graph the function f(x) = 7x−3
6x+5

.

x-intercept: 7x− 3 = 0 =⇒ 7x = 3 =⇒ x =
3

7

vertical asymptote: 6x+ 5 = 0 =⇒ 6x = −5 =⇒ x = −5

6

Note that 3
7
≈ 0.429 is indicated in the graph. The vertical asymptote

is approximately at −5
6
≈ −0.833. We can therefore use −1, 0, and

1 to check the inequality f(x) = 7x−3
6x+5

> 0 on the corresponding

intervals (−∞,−5
6
), (−5

6
, 3
7
) and (3

7
,∞).

−5
6

3
7

Check x = −1: Check x = 0: Check x = 1:
7·(−1)−3
6·(−1)+5

?
> 0 7·0−3

6·0+5

?
> 0 7·1−3

6·1+5

?
> 0

−10
−1

= 10
?
> 0 −3

5

?
> 0 4

11

?
> 0

TRUE FALSE TRUE

For the solution set, we do not include the root of f since the inequal-
ity is strict f(x) > 0, and we never include the vertical asymptote of
f . The solution set is therefore

S =
(
−∞,−5

6

)
∪
(
3
7
,∞
)
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c) Here is the graph of x2−5x+6
x2−5x

in the standard window.

Factoring numerator and denominator, we can determine vertical
asymptotes, holes, and x-intercepts.

x2 − 5x+ 6

x2 − 5x
=

(x− 2)(x− 3)

x(x− 5)

The vertical asymptotes are at x = 0 and x = 5, the x-intercepts are
at x = 2 and x = 3. To see where x2−5x+6

x2−5x
≥ 0, we check numbers in

each of the corresponding intervals.

0 2 3 5

Check x = −1: f(−1) =
(−1)2−5·(−1)+6
(−1)2−5·(−1)

= 12
6

≥ 0 TRUE

Check x = 1: f(1) = 12−5·1+6
12−5·1 = 2

−4
� 0 FALSE

Check x = 2.5: f(2.5) = 2.52−5·2.5+6
2.52−5·2.5 = −0.25

−6.25
≥ 0 TRUE

Check x = 4: f(4) = 42−5·4+6
42−5·4 = 2

−4
� 0 FALSE

Check x = 6: f(6) = 62−5·6+6
62−5·6 = 12

6
≥ 0 TRUE

Combining all of the above information, we obtain the solution set:

solution set S = (−∞, 0) ∪ [2, 3] ∪ (5,∞)
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Notice that the x−intercepts x = 2 and x = 3 are included in the
solution set, whereas the values x = 0 and x = 5 associated with the
vertical asymptotes are not included, since the fraction is not defined
for x = 0 and x = 5.

d) To find the numbers x where 5
x−2

≤ 3, we can graph the two functions
on the left- and right-hand side of the inequality.

However, this can sometimes be confusing, and we recommend rewrit-
ing the inequality so that one side becomes zero. Then, we graph
the function on the other side of the new inequality.

5

x− 2
≤ 3 ⇐⇒ 5

x− 2
− 3 ≤ 0 ⇐⇒ 5− 3(x− 2)

x− 2
≤ 0

⇐⇒ 5− 3x+ 6

x− 2
≤ 0 ⇐⇒ 11− 3x

x− 2
≤ 0

Therefore, we graph the function f(x) = 11−3x
x−2

.

The vertical asymptote is x = 2, and the x-intercept found is thus

11− 3x = 0 =⇒ 11 = 3x =⇒ x =
11

3
≈ 3.667.
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We check the inequality 11−3x
x−2

≤ 0 at 0, 3, and 4.

2 11
3

Check x = 0: Check x = 3: Check x = 4:

11−3·0
0−2

?
≤ 0 11−3·3

3−2

?
≤ 0 11−3·4

4−2

?
≤ 0

11
−2

?
≤ 0 2

1

?
≤ 0 −1

2

?
≤ 0

TRUE FALSE TRUE

This, together with the fact that f is undefined at 2 and f(11
3
) = 0,

gives the following solution set:

S =
(

−∞, 2
)

∪
[11

3
,∞
)

e) We want to find those numbers x for which 4
x+5

< 3
x−3

. One way to do

this is given by graphing both functions f1(x) =
4

x+5
and f2(x) =

3
x−3

,
and by trying to determine where f1(x) < f2(x). The graphs of f1
and f2 are displayed below. Note that it may sometimes not be
completely obvious to determine in which intervals f1 is greater than
f2.

As before, we recommend rewriting the inequality so that one side
of the inequality becomes zero:

4

x+ 5
<

3

x− 3
⇐⇒ 4

x+ 5
− 3

x− 3
< 0

⇐⇒ 4(x− 3)− 3(x+ 5)

(x+ 5)(x− 3)
< 0

⇐⇒ 4x− 12− 3x− 15

(x+ 5)(x− 3)
< 0
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Simplifying this, we get the inequality: x−27
(x+5)(x−3)

< 0. We therefore

graph the function f(x) = x−27
(x+5)(x−3)

.

The vertical asymptotes of f(x) = x−27
(x+5)(x−3)

are x = −5 and x = 3.

The x-intercept is (27, 0). We next check the corresponding intervals.
−5 3 27

Check x = −6: f(−6) =
(−6)−27

((−6)+5)·((−6)−3)
= −33

9
< 0 TRUE

Check x = 0: f(0) = 0−27
(0+5)·(0−3)

= −27
−15

= 27
15

≮ 0 FALSE

Check x = 4: f(4) = 4−27
(4+5)·(4−3)

= −23
9

< 0 TRUE

Check x = 28: f(28) = 28−27
(28+5)·(28−3)

= 1
825

≮ 0 FALSE

Note that the graph of f is indeed above the x-axis for x > 27.

Therefore, the solution set is

solution set S = {x|x < −5, or 3 < x < 27} = (−∞,−5) ∪ (3, 27).

Here, the x-intercept x = 27 is not included in the solution set since
the inequality had a “<” and not “≤” sign.
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12.3 Exercises

Exercise 12.1

Solve for x.

a) 5x+ 6 ≤ 21 b) 3 + 4x > 10x
c) 2x+ 8 ≥ 6x+ 24 d) 9− 3x < 2x− 13
e) −5 ≤ 2x+ 5 ≤ 19 f ) 15 > 7− 2x ≥ 1
g) 3x+ 4 ≤ 6x− 2 ≤ 8x+ 5 h) 5x+ 2 < 4x− 18 ≤ 7x+ 11

Exercise 12.2

Solve for x.

a) x2 − 5x− 14 > 0 b) x2 − 2x ≥ 35
c) x2 − 4 ≤ 0 d) x2 + 3x− 3 < 0
e) 2x2 + 2x ≤ 12 f ) 3x2 < 2x+ 1
g) x2 − 4x+ 4 > 0 h) x3 − 2x2 − 5x+ 6 ≥ 0
i) x3 + 4x2 + 3x+ 12 < 0 j) −x3 − 4x < −4x2

k) x4 − 10x2 + 9 ≤ 0 l) x4 − 5x3 + 5x2 + 5x < 6
m) x4 − 5x3 + 6x2 > 0 n) x5 − 6x4 + x3 + 24x2 − 20x ≤ 0

o) x5 − 15x4 + 85x3 − 225x2 + 274x− 120 ≥ 0,
p) x11 − x10 + x− 1 ≤ 0

Exercise 12.3

Find the domain of the functions below.

a) f(x) =
√
x2 − 8x+ 15 b) f(x) =

√
9x− x3

c) f(x) =
√

(x− 1)(4− x) d) f(x) =
√

(x− 2)(x− 5)(x− 6)

e) f(x) = 5√
6−2x

f ) f(x) = 1√
x2−6x−7
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Exercise 12.4

Solve for x.
a) |2x+ 7| > 9 b) |6x+ 2| < 3

c) |5− 3x| ≥ 4 d) | − x− 7| ≤ 5

e) |1− 8x| ≥ 3 f ) 1 >
∣
∣2 + x

5

∣
∣

Exercise 12.5

Solve for x.

a) x+2
x+4

≥ 0 b) x−5
2−x

> 0 c) 9x−11
7x+15

≤ 0 d) 13x+4
6x−1

≥ 0

e) 7x−2
3x+8

< 0 f ) 4x−4
x2−4

≥ 0 g) x−2
x2−4x−5

< 0 h) x2−9
x2−4

≥ 0

i) x−3
x+3

≤ 4 j) 1
x+10

> 5 k) 2
x−2

≤ 5
x+1

l) x2

x+4
≤ x



Review of polynomials and rational

functions

Exercise II.1

Divide the polynomials: 2x3+x2−9x−8
2x+3

Exercise II.2

Find the remainder when dividing x3 + 3x2 − 5x+ 7 by x+ 2.

Exercise II.3

Which of the following is a factor of x400 − 2x99 + 1:

x− 1, x+ 1, x− 0

Exercise II.4

Identify the polynomial with its graph.

a)

-2 -1 0 1 2 3 4

-2

-1

0

1

2

3

4

x

y

b)

-2 -1 0 1 2 3 4

-2

-1

0

1

2

3

4

x

y

229
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c)

-2 -1 0 1 2 3 4

-2

-1

0

1

2

3

4

x

y

d)

-2 -1 0 1 2 3 4

-2

-1

0

1

2

3

4

x

y

i) f(x) = −x2 + 2x+ 1, graph:
ii) f(x) = −x3 + 3x2 − 3x+ 2, graph:

iii) f(x) = x3 − 3x2 + 3x+ 1, graph:
iv) f(x) = x4 − 4x3 + 6x2 − 4x+ 2, graph:

Exercise II.5

Sketch a complete graph of the function:

f(x) = −2x3 + 11x2 − 16x+ 3

• Include the exact x-intercepts and the y-intercept.

• Approximate the maxima and minima with the graphing calculator.

Exercise II.6

Find all roots of f(x) = x3 + 6x2 + 5x− 12.
Use this information to factor f(x) completely.

Exercise II.7

Find a polynomial of degree 3 whose roots are 0, 1, and 3, and so that
f(2) = 10.

Exercise II.8

Find a polynomial of degree 4 with real coefficients, whose roots include
−2, 5, and 3− 2i.



Exercise II.9

Let f(x) = 3x2−12
x2−2x−3

. Sketch the graph of f . Include all vertical and
horizontal asymptotes, all holes, and all x- and y-intercepts.

Exercise II.10

Solve for x:
a) x2 + 4x > 5 b) |6x+ 7| ≥ 2 c)

5x−2
3x+8

≤ 0
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Chapter 13

Exponential and logarithmic

functions

We now consider functions that differ greatly from polynomials and rational
functions in their complexity. More precisely, we will explore exponential and
logarithmic functions from a function theoretic point of view.

13.1 Exponential functions and their graphs

We start by recalling the definition of an exponential function and by studying
its graph.

Definition 13.1: Exponential function

A function f is called an exponential function if it is of the form

f(x) = c · bx

for some real number c and positive real number b > 0. The constant b
is called the base.
Since f(x) = c · bx is defined for all real numbers, the domain of f is
D = R.

233
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Example 13.2

Graph the functions.

f(x) = 2x, g(x) = 3x, h(x) = 10x, k(x) =

(
1

2

)x

, l(x) =

(
1

10

)x

First, we will graph the function f(x) = 2x by calculating the function
values in a table and then plotting the points in the x-y plane. We can
calculate the values by hand, or simply use the table function of the
calculator to find the function values.

f(0) = 20 = 1

f(1) = 21 = 2

f(2) = 22 = 4

f(3) = 23 = 8

f(−1) = 2−1 = 0.5

f(−2) = 2−2 = 0.25

We obtain the following graph.
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Similarly, we can compute the table for the other functions g, h, k, and
l, and plot them with the graphing calculator.

Note that the function k can also be written as

k(x) =

(
1

2

)x

= (2−1)x = 2−x,

and similarly, l(x) =
(

1
10

)x
= 10−x.

This example shows that the exponential function has the following prop-
erties.
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Observation 13.3: Graph of an exponential function

The graph of the exponential function f(x) = bx with b > 0 and b 6= 1
has a horizontal asymptote at y = 0.
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1.2
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• If b > 1, then f(x) approaches +∞ when x approaches +∞, and
f(x) approaches 0 when x approaches −∞.

• If 0 < b < 1, then f(x) approaches 0 when x approaches +∞,
and f(x) approaches +∞ when x approaches −∞.

Note that all of these graphs have the horizontal asymptote y = 0.

An important base that we will frequently need to consider is the base of
e, where e is Euler’s number.

Definition 13.4: Euler’s number

Euler’s number e is an irrational number that is approximately

e = 2.718281828459045235 . . .

To be precise, we can define e as the number which is the horizontal asymptote of the function
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f(x) =
(
1 + 1

x

)x
when x approaches +∞.
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One can show that f has, indeed, a horizontal asymptote, and this limit is defined as e.

e := lim
x→∞

(
1 +

1

x

)x

Furthermore, one can show that the exponential function with base e has a similar limit expression.

er = lim
x→∞

(
1 +

r

x

)x
(13.1)

Alternatively, Euler’s number and the exponential function with base e may also be defined using

an infinite series, namely, er = 1+ r+ r2

1·2 + r3

1·2·3 + r4

1·2·3·4 + . . . . These ideas will be explored
further in a course in calculus.

We next graph a few functions that use Euler’s number.

Example 13.5

Graph the functions.

a) y = ex b) y = e−x c) y = e−x2
d) y = ex+e−x

2

Solution.
Using the calculator, we obtain the desired graphs.

y = ex y = e−x
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y = e−x2
y = ex+e−x

2

The last function y = ex+e−x

2
is called the hyperbolic cosine, and is de-

noted by cosh(x) = ex+e−x

2
. (The hyperbolic sine, sinh(x) = ex−e−x

2
, and

the hyperbolic tangent , tanh(x) = ex−e−x

ex+e−x will be graphed in Exercise
13.1.)

We now study how different multiplicative factors c affect the shape of an
exponential function.

Example 13.6

Graph the functions.

a) y = 2x b) y = 3 · 2x c) y = (−3) · 2x
d) y = 0.2 · 2x e) y = (−0.2) · 2x

Solution.
We graph the functions in the same viewing window.
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Here are the graphs of functions f(x) = c · 2x for various choices of c.
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y = 3 · 2x

y = 2x

y = 0.2 · 2x

y = (−0.2) · 2x

y = (−1) · 2x

y = (−3) · 2x

Note that for f(x) = c · 2x, the y-intercept is given at f(0) = c.

Finally, we can combine our knowledge of graph transformations to study
exponential functions that are shifted and stretched.

Example 13.7

Graph the functions.

a) y = 3x − 5 b) y = ex+4 c) y = 1
4
· ex−3 + 2

Solution.
The first two graphs are displayed below.

y = 3x − 5 y = ex+4
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The first graph y = 3x − 5 is the graph of y = 3x shifted down by 5.
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The graph of y = ex+4 is the graph of y = ex shifted to the left by 4.
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Finally, y = 1
4
ex−3 + 2 is the graph of y = ex shifted to the right by 3

(see the graph of y = ex−3), then compressed by a factor 4 toward the
x-axis (see the graph of y = 1

4
ex−3), and then shifted up by 2.
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y = ex y = ex−3 y = 1
4
ex−4
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13.2 Logarithmic functions and their graphs

The logarithm is defined as the inverse function of an exponential function.
From the above, we can see that y = bx is one-to-one (for 0 < b, b 6= 1), so
that it makes sense to define the inverse of y = bx. Specifically, we call the
inverse function of y = bx the logarithm with base b.

Definition 13.8: Logarithmic function

Let 0 < b 6= 1 be a positive real number that is not equal to 1. For
x > 0, the logarithm of x with base b is defined by the equivalence

x = by ⇐⇒ y = logb(x) (13.2)

Note that this computes the inverse of the exponential function y = bx

with base b (that is, we exchange x and y to get x = by and solve for
y).
For the particular base b = 10 we use the short form

log(x) := log10(x)

For the particular base b = e, where e ≈ 2.71828 is Euler’s number, we
call the logarithm with base e the natural logarithm, and write

ln(x) := loge(x)

The logarithmic function is the function y = logb(x) with domain D =
{x ∈ R|x > 0} of all positive real numbers, and range R = R of all
real numbers.

Example 13.9

Rewrite the equation as a logarithmic equation.

a) 34 = 81 b) 103 = 1000 c) ex = 17 d) 27·a = 53

Solution.
We can immediately apply Equation (13.2). For part (a), we have b = 3,
y = 4, and x = 81. Therefore we have:

34 = 81 ⇔ log3(81) = 4
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Similarly, we obtain the solutions for (b), (c), and (d).
b) 103 = 1000 ⇔ log(1000) = 3
c) ex = 17 ⇔ ln(17) = x
d) 27a = 53 ⇔ log2(53) = 7a

Example 13.10

Evaluate the expression by rewriting it as an exponential expression.

a) log2(16) b) log5(125) c) log13(1) d) log4(4)
e) log(100, 000) f ) log(0.001) g) ln(e7) h) logb(b

x)

Solution.

a) If we set y = log2(16), then this is equivalent to 2y = 16. Since,
clearly, 24 = 16, we see that y = 4. Therefore, we have log2(16) = 4.

b) log5(125) = y ⇔ 5y = 125
(since 53=125)

=⇒ 3 = y = log5(125)

c) log13(1) = y ⇔ 13y = 1
(since 130=1)

=⇒ 0 = y = log13(1)

d) log4(4) = y ⇔ 4y = 4
(since 41=4)

=⇒ 1 = y = log4(4)

e) log(100, 000) = y ⇔ 10y = 100, 000
(since 105=100,000)

=⇒ 5 = y = log(100, 000)

f ) log(0.001) = y ⇔ 10y = 0.001
(since 10−3=0.001)

=⇒ −3 = y = log(0.001)

g) ln(e7) = y ⇔ ey = e7 =⇒ 7 = y = ln(e7)

h) logb(b
x) = y ⇔ by = bx =⇒ x = y = logb(b

x)

Note that the last example, in which we obtained logb(b
x) = x, combines

all of the previous examples.

In the previous example (in parts (c), (d), and (h)), we were able to find
certain elementary logarithms. We record these in the next observation.
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Observation 13.11: Basic logarithmic evaluations

We have the elementary logarithms:

logb(b
x) = x logb(b) = 1 logb(1) = 0 (13.3)

In general, when the argument is not a power of the base, we can use
the calculator to approximate the values of a logarithm via the formulas:

logb(x) =
log(x)

log(b)
or logb(x) =

ln(x)

ln(b)
(13.4)

The last two formulas will be proved in Proposition 14.2 below. For now,
we want to show how they can be used to calculate any logarithmic expression
with any calculator that has either the ln or the log function.

Example 13.12

Evaluate: a) log3(13) b) log2.34(98.765)

Solution.

a) We calculate log3(13) by using the first formula in (13.4).

log3(13) =
log(13)

log(3)
≈ 2.335

Alternatively, we can also calculate this with the second formula in
(13.4).

log3(13) =
ln(13)

ln(3)
≈ 2.335

b) We compute log2.34(98.765) =
log(98.765)
log(2.34)

≈ 5.402.

We also study the graph of logarithmic functions.
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Note 13.13

Consider the graph of y = 2x from the previous section. Recall that the
graph of the inverse of a function is the reflection of the graph of the
function about the diagonal line y = x. So in this case we have:
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y = 2x

y = x

y = log2(x)

Note that the horizontal asymptote y = 0 for y = 2x becomes the
vertical asymptote x = 0 for y = log2(x). The x-intercept of y = log2(x)
is at y = 0, that is 0 = log2(x), which gives x = 20 = 1 as the
x-intercept.

Example 13.14

Graph the functions f(x) = ln(x), g(x) = log(x), h(x) = log2(x), and
k(x) = log0.5(x). What are the domains of f , g, h, and k? How do these
functions differ?

Solution.
We know from the definition that the domain of f , g, and h is all real
positive numbers, Df = Dg = Dh = Dk = {x|x > 0}. The functions
f and g can immediately be entered into the calculator. The standard
window gives the following graphs.

f(x) = ln(x) g(x) = log(x)
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Note that we can rewrite g(x), h(x), and k(x) as a constant times f(x):

g(x) = log(x) = log10(x) =
ln(x)

ln(10)
=

1

ln(10)
· f(x)

h(x) = log2(x) =
ln(x)

ln(2)
=

1

ln(2)
· f(x)

k(x) = log0.5(x) =
ln(x)

ln(0.5)
=

1

ln(0.5)
· f(x)

Since 1
ln(10)

≈ 0.434 < 1, we see that the graph of g is that of f com-

pressed toward the x-axis by a factor 1
ln(10)

. Similarly, 1
ln(2)

≈ 1.443 > 1,

so that the graph of h is that of f stretched away from the x-axis by
a factor 1

ln(2)
. Finally, 1

ln(0.5)
≈ −1.443, or more precisely, 1

ln(0.5)
=

1
ln(2−1)

= − 1
ln(2)

, so that the graph of k is that of h reflected about the

x-axis.

h(x) = log2(x) k(x) = log0.5(x)

Note that all these graphs have a vertical asymptote at x = 0. Moreover,
all of the functions have an x-intercept at x = 1:

f(1) = g(1) = h(1) = k(1) = 0

To visualize the differences between the graphs, we graph them together
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in one coordinate system.
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f(x) = ln(x)

g(x) = log(x)

h(x) = log2(x)

k(x) = log0.5(x)

Example 13.15

Graph the given function. State the domain, find the vertical asymptote,
and find the x-intercept of the function.

a) f(x) = ln(5− x) b) g(x) = log7(2x+ 8) c) h(x) = −3 · ln(x) + 4

Solution.

a) To determine the domain of f(x) = ln(5 − x), we have to see for
which x the logarithm has a positive argument. More precisely, we
need 5−x > 0, that is, 5 > x, so that the domain is Df = {x|x < 5}.

The calculator displays the following graph:
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Note that the graph, as displayed by the calculator, appears to end
at a point that is approximately at (5,−35). However, the actual
graph of the logarithm does not stop at any point, since it has a
vertical asymptote at x = 5, that is, the graph approaches −∞ as x
approaches 5. The calculator only displays an approximation, which
may be misleading, since this approximation is determined by the
window size and the size of each pixel. We therefore graph the
function f(x) = ln(5− x) as follows:
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The x-intercept is given where y = 0, that is

0 = ln(5− x) =⇒ 5− x = e0 =⇒ 5− x = 1 =⇒ x = 4

Therefore, the x-intercept is at (4, 0).

b) The domain of g(x) = log7(2x + 8) consists of those numbers x for
which the argument of the logarithm is positive.

2x+ 8 > 0
(subtract 8)
=⇒ 2x > −8

(divide by 2)
=⇒ x > −4

Therefore, the domain is Dg = {x|x > −4}. The graph of g(x) =
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log7(2x+ 8) is displayed below.

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

-3

-2

-1

0

1

2

3

x

y

There is a vertical asymptote at x = −4. The x-intercept is given at
y = 0:

0 = log7(2x+ 8) =⇒ 2x+ 8 = 70 =⇒ 2x+ 8 = 1

=⇒ 2x = −7 =⇒ x = −7

2

Therefore, the x-intercept is at (−7
2
, 0).

c) Using our knowledge of transformations of graphs, we expect that
h(x) = −3 · ln(x) + 4 is that of y = ln(x) reflected and stretched
away from the x-axis (by a factor 3), and then shifted up by 4. The
stretched and reflected graph is on the left below, whereas the graph
of the shifted function h is on the right.

y = −3 · ln(x) p(x) = −3 · ln(x) + 4

The domain consist of numbers x for which the ln(x) is defined, that
is, Dp = {x|x > 0}. The vertical asymptote is therefore also at
x = 0. The x-intercept is computed as follows:

y = 0 =⇒ 0 = −3 · ln(x) + 4 =⇒ −4 = −3 · ln(x)
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=⇒ ln(x) =
4

3
=⇒ x = e

4
3

Therefore, the x-intercept is at (e
4
3 , 0).

In the previous examples we analyzed the graphs of various logarithmic
functions. The following is a summary of our findings.

Observation 13.16: Graph of a logarithmic function

The graph of a logarithmic function y = logb(x) with base b is that
of the natural logarithm y = ln(x) stretched away from the x-axis, or
compressed toward the x-axis when b > 1. When 0 < b < 1, the graph
is furthermore reflected about the x-axis.

• The function y = logb(x) has domain D = {x|x > 0}.

• The graph of y = logb(x) has a vertical asymptote at x = 0.

• The graph of y = logb(x) has no horizontal asymptote, as f(x)
approaches +∞ when x approaches +∞ for b > 1, and f(x)
approaches −∞ when x approaches +∞ for 0 < b < 1.

• The x-intercept is given for y = 0, which for y = logb(x) is at
x = 1.
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y = ln(x)

y = log10(x)

y = log0.1(x)

y = log2(x)

y = log0.5(x)
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13.3 Exercises

Exercise 13.1

Graph the following functions with the calculator.

a) y = 5x b) y = 1.01x c) y = (1
3
)x d) y = 0.97x

e) y = 3−x f ) y = (1
3
)−x g) y = ex

2
h) y = 0.01x

i) y = 1x j) y = ex + 1 k) y = ex−e−x

2
l) y = ex−e−x

ex+e−x

The last two functions are known as the hyperbolic sine, sinh(x) =
ex−e−x

2
, and the hyperbolic tangent , tanh(x) = ex−e−x

ex+e−x . Recall that the

hyperbolic cosine cosh(x) = ex+e−x

2
was already graphed in Example

13.5.

Exercise 13.2

Graph the given function. Describe how the graph is obtained by a
transformation from the graph of an exponential function y = bx (for
appropriate base b).

a) y = 0.1 · 4x b) y = 3 · 2x c) y = (−1) · 2x
d) y = 0.006 · 2x e) y = e−x f ) y = e−x + 1
g) y = (1

2
)x + 3 h) y = 2x−4 i) y = 2x+1 − 6

Exercise 13.3

Use the definition of the logarithm to write the given equation as an
equivalent logarithmic equation.

a) 42 = 16 b) 28 = 256 c) ex = 7 d) 10−1 = 0.1

e) 3x = 12 f ) 57·x = 12 g) 32a+1 = 44 h)
(
1
2

) x
h = 30

Exercise 13.4

Evaluate the following expressions without using a calculator.

a) log7(49) b) log3(81) c) log2(64) d) log50(2500)
e) log2(0.25) f ) log(1000) g) ln(e4) h) log13(13)
i) log(0.1) j) log6(

1
36
) k) ln(1) l) log 1

2
(8)
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Exercise 13.5

Using a calculator, approximate the following expressions to the nearest
thousandth.

a) log3(50) b) log3(12) c) log17(0.44) d) log0.34(200)

Exercise 13.6

State the domain of the function f and find any vertical asymptote(s)
and x-intercept(s). Use the results to sketch the graph.

a) f(x) = log(x) b) f(x) = log(x+ 7)
c) f(x) = ln(x+ 5)− 1 d) f(x) = ln(3x− 6)
e) f(x) = 2 · log(x+ 4) f ) f(x) = −4 · log(x+ 2)
g) f(x) = log3(7x+ 5) h) f(x) = ln(−6x+ 14)
i) f(x) = log0.4(x) j) f(x) = log3(−5x)− 2
k) f(x) = log |x| l) f(x) = log |x+ 2|



Chapter 14

Properties of logarithms and

logarithmic equations

We now study more algebraic properties of the logarithm. We then use this
to solve logarithmic equations.

14.1 Algebraic properties of the logarithms

Recall the well-known identities for exponential expressions.

Review 14.1: Exponential identities

We have the following identities:

bx+y = bx · by

bx−y = bx

by

(bx)n = bnx

(14.1)

Writing the above identities in terms of f(x) = bx, these can also be
expressed as f(x+ y) = f(x)f(y), f(x− y) = f(x)/f(y), and f(nx) =
f(x)n.

Since the logarithm is the inverse function of the exponential, there are
some logarithmic identities that correspond to (14.1).

252
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Proposition 14.2: Logarithmic identities

The logarithm behaves well with respect to products, quotients, and
exponentiation. Indeed, for all positive real numbers 0 < b 6= 1, x > 0,
y > 0, and real numbers n, we have:

logb(x · y) = logb(x) + logb(y)

logb(
x
y
) = logb(x)− logb(y)

logb(x
n) = n · logb(x)

(14.2)

In terms of the logarithmic function g(x) = logb(x), the properties in the
table above can be written: g(xy) = g(x)+ g(y), g(x/y) = g(x)− g(y),
and g(xn) = n · g(x).
Furthermore, for another positive real number 0 < a 6= 1, we have the
change of base formula:

logb(x) =
loga(x)

loga(b)
(14.3)

In particular, we have the formulas from Equation (13.4) on page 243
when taking the base a = 10 and a = e:

logb(x) =
log(x)

log(b)
and logb(x) =

ln(x)

ln(b)

Proof. We start with the first formula logb(x · y) = logb(x) + logb(y). If we call u = logb(x) and
v = logb(y), then the equivalent exponential formulas are bu = x and bv = y. With this, we have

x · y = bu · bv = bu+v.

Rewriting this in logarithmic form, we obtain

logb(x · y) = u+ v = logb(x) + logb(y).

This is what we needed to show.

Next, we prove the formula logb(
x
y
) = logb(x) − logb(y). We abbreviate u = logb(x) and v = logb(y)

as before, and their exponential forms are bu = x and bv = y. Therefore, we have

x

y
=

bu

bv
= bu−v.
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Rewriting this again in logarithmic form, we obtain the desired result.

logb

(x

y

)
= u− v = logb(x)− logb(y)

For the third formula, logb(x
n) = n · logb(x), we write u = logb(x), that is in exponential form bu = x.

Then:
xn = (bu)n = bn·u =⇒ logb(x

n) = n · u = n · logb(x)

For the last formula (14.3), we write u = logb(x), that is, bu = x. Applying the logarithm with base a
to bu = x gives loga(b

u) = loga(x). As we have just shown before, loga(b
u) = u · loga(b). Combining

these identities with the initial definition u = logb(x), we obtain

loga(x) = loga(b
u) = u · loga(b) = logb(x) · loga(b)

Dividing both sides by loga(b) gives the result
loga(x)
loga(b)

= logb(x).

Example 14.3

Combine the terms using the properties of logarithms so as to write as
one logarithm.

a) 1
2
ln(x) + ln(y) b) 2

3
(log(x2y)− log(xy2))

c) 2 ln(x)− 1
3
ln(y)− 7

5
ln(z) d) 5 + log2(a

2 − b2)− log2(a+ b)

Solution.
Recall that a fractional exponent can also be rewritten with an nth root.

x
1
2 =

√
x and x

1
n = n

√
x =⇒ x

p

q = (xp)
1
q = q

√
xp

We apply the rules from Proposition 14.2.

a) 1
2
ln(x) + ln(y) = ln(x

1
2 ) + ln(y) = ln(x

1
2 y) = ln(

√
x · y)

b) 2
3
(log(x2y)− log(xy2)) = 2

3

(

log
(

x2y
xy2

))

= 2
3

(

log
(

x
y

))

= log

((
x
y

) 2
3

)

= log
(

3

√
x2

y2

)

c) 2 ln(x)− 1
3
ln(y)− 7

5
ln(z) = ln(x2)− ln( 3

√
y)− ln(

5
√
z7) = ln

(
x2

3
√
y· 5

√
z7

)

d) 5+ log2(a
2− b2)− log2(a+ b) = log2(2

5)+ log2(a
2− b2)− log2(a+ b)

= log2

(
25·(a2−b2)

a+b

)

= log2

(
32·(a+b)(a−b)

a+b

)

= log2(32 · (a− b))
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Example 14.4

Write the expressions in terms of elementary logarithms u = logb(x),
v = logb(y), and, in part (c), also w = logb(z). Assume that x, y, z > 0.

a) ln(
√
x5 · y2) b) log

(√√
x · y3

)

c) log2

(

3

√

x2

y
√
z

)

Solution.
In a first step, we rewrite the expression with fractional exponents, and
then apply the rules from Proposition 14.2.

a)

ln(
√
x5 · y2) = ln(x

5
2 · y2) = ln(x

5
2 ) + ln(y2)

=
5

2
ln(x) + 2 ln(y) =

5

2
u+ 2v

b)

log

(√√
x · y3

)

= log

((

x
1
2 y3
) 1

2

)

=
1

2
log
(

x
1
2 y3
)

=
1

2

(

log(x
1
2 ) + log(y3)

)

=
1

2

(
1

2
log(x) + 3 log(y)

)

=
1

4
log(x) +

3

2
log(y) =

1

4
u+

3

2
v

c)

log2

(

3

√

x2

y
√
z

)

= log2

((
x2

y · z 1
2

) 1
3

)

=
1

3
log2

(
x2

y · z 1
2

)

=
1

3

(

log2(x
2)− log2(y)− log2(z

1
2 )
)

=
1

3

(

2 log2(x)− log2(y)−
1

2
log2(z)

)

=
2

3
log2(x)−

1

3
log2(y)−

1

6
log2(z)

=
2

3
u− 1

3
v − 1

6
w
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14.2 Solving logarithmic equations

We can solve exponential and logarithmic equations by applying logarithms
and exponentials. Since the exponential and logarithmic functions are invert-
ible (they are inverses of each other), these functions necessarily have to be
one-to-one functions. As an algebraic expression, this means that:

Observation 14.5: y = bx and y = logb(x) are one-to-one

The exponential and the logarithmic functions are one-to-one:

bx = by ⇔ x = y (14.4)

logb(x) = logb(y) ⇔ x = y (14.5)

In the following examples, we use the above to solve equations that involve
logarithms.

Example 14.6

Solve for x.

a) log6(3x− 5) = log6(x− 1) b) log2(x+ 5) = log2(x+ 3) + 4
c) log(x) + log(x+ 4) = log(5) d) log3(x− 2) + log3(x+ 6) = 2
e) ln(x+ 2) + ln(x− 3) = ln(7)

Solution.

a) We can use Equation (14.5) as follows.

log6(3x− 5) = log6(x− 1) =⇒ 3x− 5 = x− 1
(−x+5)
=⇒ 2x = 4

=⇒ x = 2

An immediate check shows x = 2 is indeed a solution, since log6(3 ·
2− 5) = log6(1) and log6(2− 1) = log6(1).

b) We have to solve log2(x+5) = log2(x+3)+4. To combine the right-
hand side, recall that 4 can be written as a logarithm, 4 = log2(2

4) =
log2 16. With this remark we can now solve the equation for x.
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log2(x+5) = log2(x+3)+4 =⇒ log2(x+5) = log2(x+3)+log2(16)

=⇒ log2(x+ 5) = log2(16 · (x+ 3)) =⇒ x+ 5 = 16(x+ 3)

=⇒ x+5 = 16x+48
(−16x−5)
=⇒ −15x = 43 =⇒ x = −43

15

c) We start by combining the logarithms.

log(x) + log(x+ 4) = log(5) =⇒ log(x · (x+ 4)) = log(5)
remove log
=⇒ x(x+ 4) = 5

=⇒ x2 + 4x− 5 = 0

=⇒ (x+ 5)(x− 1) = 0

=⇒ x = −5 or x = 1

Since the equation became a quadratic equation, we ended up with
two possible solutions x = −5 and x = 1. However, since x =
−5 would give a negative value inside a logarithm in our original
equation log(x)+log(x+4) = log(5), we need to exclude this solution.
The only solution is x = 1.

We note that the incorrect solution x = −5 is introduced in the very
first implication, since −5 in fact is a perfectly well-defined solution
of the equation log(x · (x+ 4)) = log(5),

log((−5) · (−5 + 4)) = log((−5) · (−1)) = log(5),

whereas −5 is not a solution of log(x) + log(x + 4) = log(5), since
log(−5) + log(−5 + 4) is undefined.

d) Using that 2 = log3(3
2):

log3(x− 2) + log3(x+ 6) = 2 =⇒ log3((x− 2)(x+ 6)) = log3(3
2)

=⇒ (x− 2)(x+ 6) = 32

=⇒ x2 + 4x− 12 = 9

=⇒ x2 + 4x− 21 = 0

=⇒ (x+ 7)(x− 3) = 0

=⇒ x = −7 or x = 3

We exclude x = −7, since we would obtain a negative value inside
a logarithm, so that the solution is x = 3.
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e) We combine the left-hand side of ln(x+2)+ ln(x−3) = ln(7) to get

ln((x+ 2) · (x− 3)) = log(7) =⇒ (x+ 2) · (x− 3) = 7

=⇒ x2 − 3x+ 2x− 6 = 7

=⇒ x2 − x− 13 = 0

To solve this, we need to use the quadratic formula (8.1).

x2 − x− 13 = 0 =⇒ x =
−(−1)±

√

(−1)2 − 4 · 1 · (−13)

2 · 1

=
1±

√
1 + 52

2
=

1±
√
53

2

To see which of these are actual solutions of ln(x+ 2)+ ln(x− 3) =

ln(7), note that we have to plug x = 1±
√
53

2
into x+ 2 and x− 3 and

make sure these are positive:

1 +
√
53

2
+ 2 ≈ 6.14 > 0 and

1 +
√
53

2
− 3 ≈ 1.14 > 0

1−
√
53

2
+ 2 ≈ −1.14 < 0 and

1−
√
53

2
− 3 ≈ −6.14 < 0

Thus, 1−
√
53

2
is not a solution (since, for example, ln(1−

√
53

2
+ 2) is

undefined), and the only solution is x = 1+
√
53

2
.

In Examples 14.6 (c)–(e) our calculations showed that the given equalities
had two possible solutions. After checking these with the original equation,
we saw that one was an actual solution (making the equation true), while
the other was not (and therefore was rejected). In general, it may turn out
that all of the possible solutions are actual solutions, or none of the possible
solutions are actual solutions. This is demonstrated in the next example.
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Example 14.7

Solve for x.

a) log3(x+ 1) + log3(7− x) = log3(12)
b) log5(x− 7) + log5(2− x) = log5(4)

Solution.

a) Combining the logarithms gives log3((x+1)(7−x)) = log3(12), which
implies

(x+ 1)(7− x) = 12 =⇒ 7x− x2 + 7− x = 12

=⇒ 0 = x2 − 6x+ 5

=⇒ 0 = (x− 1)(x− 5)

=⇒ x = 1, x = 5

Since both give positive arguments in the logarithms, we have, in-
deed, two solutions x = 1 and x = 5.

b) We get log5((x− 7)(2− x)) = log5(4), and thus (x− 7)(2− x) = 4,
which can be rewritten as 2x − x2 − 14 + 7x = 4, and thus as
0 = x2− 9x+18. Factoring yields 0 = (x− 3)(x− 6), which has the
two possible solutions x = 3 and x = 6. However, 3 is not a solution,
since 2− 3 = −1 < 0; and 6 is not a solution since 2− 6 = −4 < 0.
We conclude that there is no solution.
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14.3 Exercises

Exercise 14.1

Combine the terms and write your answer as one logarithm.

a) 3 ln(x) + ln(y) b) log(x)− 2
3
log(y)

c) 1
3
log(x)− log(y) + 4 log(z) d) log(xy2z3)− log(x4y3z2)

e) 1
4
ln(x)− 1

2
ln(y) + 2

3
ln(z) f ) − ln(x2 − 1) + ln(x− 1)

g) 5 ln(x) + 2 ln(x4)− 3 ln(x) h) log5(a
2 + 10a+ 9)− log5(a+ 9) + 2

Exercise 14.2

Write the expressions in terms of elementary logarithms u = logb(x),
v = logb(y), and w = logb(z) (whichever are applicable). Assume that
x, y, z > 0.

a) log(x3 · y) b) log(
3
√
x2 · 4

√

y7) c) log
(√

x · 3
√
y
)

d) ln
(

x3

y4

)

e) ln
(

x2
√
y·z2

)

f ) log3

(√
x·y3√

z

)

g) log2

(
4√
x3·z
y3

)

h) log
(

100 5
√
z

y2

)

i) ln

(

3

√√
y·z4
e2

)

Exercise 14.3

Solve for x without using a calculator.

a) ln(2x+ 4) = ln(5x− 5) b) ln(x+ 6) = ln(x− 2) + ln(3)
c) log2(x+ 5) = log2(x) + 5 d) log(x) + 1 = log(5x+ 380)
e) log(x+ 5) + log(x) = log(6) f ) log2(x) + log2(x− 6) = 4
g) log6(x) + log6(x− 16) = 2 h) log5(x− 24) + log5(x) = 2
i) log4(x) + log4(x+ 6) = 2 j) log2(x+ 3) + log2(x+ 5) = 3



Chapter 15

Exponential equations and

applications

We now turn to exponential equations, and discuss the application of popu-
lation growth in Section 15.2. In the next chapter, we will study two more
common applications of exponential functions.

15.1 Exponential equations

Recall from Observation 14.5 that both the exponential and the logarithmic
functions are one-to-one:

bx = by ⇔ x = y

logb(x) = logb(y) ⇔ x = y

In Section 14.2 we used the second equivalence to solve logarithmic equations.
Now we use the first equivalence to solve exponential equations. Note that
we can immediately apply this to exponential equations with a common base.

Example 15.1

Solve for x.

a) 2x+7 = 32 b) 102x−8 = 0.01
c) 72x−3 = 75x+4 d) 53x+1 = 254x−7

Solution.
In these examples, we can always write both sides of the equation as

261
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an exponential expression with the same base.

a) 2x+7 = 32 =⇒ 2x+7 = 25 =⇒ x+ 7 = 5 =⇒ x = −2

b) 102x−8 = 0.01 =⇒ 102x−8 = 10−2 =⇒ 2x− 8 = −2

=⇒ 2x = 6 =⇒ x = 3

Here it is useful to recall the powers of 10, which were also used to
solve the equation above.

104 = 10, 000
103 = 1000
102 = 100
101 = 10
100 = 1
10−1 = 0.1
10−2 = 0.01
10−3 = 0.001
10−4 = 0.0001

In general (n ≥ 1) :







10n = 1 00 · · ·00
︸ ︷︷ ︸
n zeros

10−n = 0.0 · · ·00
︸ ︷︷ ︸

n zeros

1

c) 72x−3 = 75x+4 =⇒ 2x− 3 = 5x+ 4
(−5x+3)
=⇒ −3x = 7

=⇒ x = −7

3
d) 53x+1 = 254x−7 =⇒ 53x+1 = 52·(4x−7)

=⇒ 3x+ 1 = 2 · (4x− 7)

=⇒ 3x+ 1 = 8x− 14
(−8x−1)
=⇒ −5x = −15

=⇒ x = 3

By a similar reasoning, we can solve equations involving logarithms
whenever the bases coincide.

To solve exponential equations that do not have a common base on both
sides, we need to apply the logarithm, as stated in the following note.
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Note 15.2

An equation between two exponential expressions with the same base
can be simplified using the fact that the exponential is one-to-one.

bf(x) = bg(x) =⇒ f(x) = g(x)

To solve an equation between two exponential expressions with different
bases, we first apply a logarithm and then solve for x. Indeed, using the
identity logb(x

n) = n · logb(x) from (14.2), we can rewrite an exponent
as a coefficient and solve from there:

af(x) = bg(x) =⇒ log(af(x)) = log(bf(x))

=⇒ f(x) · log(a) = g(x) · log(b)

Example 15.3

Solve for x.

a) 3x+5 = 8 b) 132x−4 = 6 c) 5x−7 = 2x

d) 5.1x = 2.72x+6 e) 17x−2 = 3x+4 f ) 72x+3 = 113x−6

Solution.
We solve these equations by applying a logarithm (both log or ln will
work for solving the equation), and then we use the identity logb(x

n) =
n · logb(x) from (14.2).

a) 3x+5 = 8 =⇒ ln 3x+5 = ln 8 =⇒ (x+ 5) · ln 3 = ln 8

=⇒ x+ 5 =
ln 8

ln 3
=⇒ x =

ln 8

ln 3
− 5 ≈ −3.11

b) 132x−4 = 6 =⇒ ln 132x−4 = ln 6 =⇒ (2x− 4) · ln 13 = ln 6

=⇒ 2x− 4 =
ln 6

ln 13
=⇒ 2x =

ln 6

ln 13
+ 4

=⇒ x =
ln 6
ln 13

+ 4

2
=

ln 6

2 · ln 13 + 2 ≈ 2.35

c) 5x−7 = 2x =⇒ ln 5x−7 = ln 2x =⇒ (x− 7) · ln 5 = x · ln 2
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At this point, the calculation will proceed differently than the cal-
culations in parts (a) and (b). Since x appears on both sides of
(x − 7) · ln 5 = x · ln 2, we need to separate terms involving x from
terms without x. That is, we need to distribute ln 5 on the left:

(x− 7) · ln 5 = x · ln 2 =⇒ x · ln 5− 7 · ln 5 = x · ln 2

Next, we separate the terms with x from those without x by adding
7 · ln 5 and subtracting x · ln 2 to both sides:

=⇒ x · ln 5− x · ln 2 = 7 · ln 5
=⇒ x · (ln 5− ln 2) = 7 · ln 5

=⇒ x =
7 · ln 5

ln 5− ln 2
≈ 12.30

We apply the same solution strategy that we used in (c) for the
remaining parts (d)-(f ).

d) 5.1x = 2.72x+6 =⇒ ln 5.1x = ln 2.72x+6

=⇒ x · ln 5.1 = (2x+ 6) · ln 2.7
=⇒ x · ln 5.1 = 2x · ln 2.7 + 6 · ln 2.7
=⇒ x · ln 5.1− 2x · ln 2.7 = 6 · ln 2.7
=⇒ x · (ln 5.1− 2 · ln 2.7) = 6 · ln 2.7

=⇒ x =
6 · ln 2.7

ln 5.1− 2 · ln 2.7 ≈ −16.68

e) 17x−2 = 3x+4 =⇒ ln 17x−2 = ln 3x+4

=⇒ (x− 2) · ln 17 = (x+ 4) · ln 3
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=⇒ x · ln 17− 2 · ln 17 = x · ln 3 + 4 · ln 3
=⇒ x · ln 17− x · ln 3 = 2 · ln 17 + 4 · ln 3
=⇒ x · (ln 17− ln 3) = 2 · ln 17 + 4 · ln 3

=⇒ x =
2 · ln 17 + 4 · ln 3

ln 17− ln 3
≈ 5.80

f ) 72x+3 = 113x−6 =⇒ ln 72x+3 = ln 113x−6

=⇒ (2x+ 3) · ln 7 = (3x− 6) · ln 11
=⇒ 2x · ln 7 + 3 · ln 7 = 3x · ln 11− 6 · ln 11
=⇒ 2x · ln 7− 3x · ln 11 = −3 · ln 7− 6 · ln 11
=⇒ x · (2 · ln 7− 3 · ln 11) = −3 · ln 7− 6 · ln 11

=⇒ x =
−3 · ln 7− 6 · ln 11
2 · ln 7− 3 · ln 11 ≈ 6.13

Before we get to specific applications of exponential functions, we pause to
explain how we can identify the base b and the coefficient c of an exponential
function f(x) = c · bx.

Note 15.4

Let f(x) = c ·bx be an exponential function. Then, the parameters c and
b in the function f are uniquely determined by knowing the function
values f(x1) and f(x2) for any two distinct inputs x1 and x2.

Example 15.5

Let f(x) = c · bx. Determine the constant c and base b under the given
conditions.

a) f(0) = 5, f(1) = 20 b) f(0) = 3, f(4) = 48
c) f(2) = 160, f(7) = 5 d) f(−2) = 55, f(1) = 7

Solution.

a) Applying f(0) = 5 to f(x) = c · bx, we get

5 = f(0) = c · b0 = c · 1 = c
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Indeed, in general, we always have f(0) = c for any exponential
function. The base b is then determined by substituting the second
equation f(1) = 20.

20 = f(1) = c · b1 = 5 · b (÷5)
=⇒ b = 4

Therefore, f(x) = 5 · 4x. Note that in the last implication, we used
that the base must be positive.

b) As before, we get 3 = f(0) = c · b0 = c, and

48 = f(4) = c · b4 = 3 · b4 (÷3)
=⇒ 16 = b4

(exponentiate by 1
4
)

=⇒ b = 16
1
4 = 2

Recall that 4
√
a = a

1
4 , and so the 4th root can be calculated with the

graphing calculator either via the exponent 1
4

or via the 4th root.

Therefore, f(x) = 3 · 2x.

c) When f(0) is not given, it is easiest to solve for b first. We can see
this as follows. Since 160 = f(2) = c · b2 and 5 = f(7) = c · b7, the
quotient of these equations eliminates c.

160

5
=

c · b2
c · b7 =

1

b5
=⇒ 32 = b−5

(exponentiate by (− 1
5
))

=⇒ b = 32−
1
5 =

1

32
1
5

=
1

2
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Then c is determined by any of the original equations.

160 = f(2) = c · b2 = c ·
(1

2

)2

= c · 1
4

=⇒ c = 4 · 160 = 640

Therefore, f(x) = 640 ·
(
1
2

)x
.

d) This solution is similar to part (c).

55

7
=

f(−2)

f(1)
=

c · b−2

c · b1 =
1

b3
=⇒ b3 =

7

55

=⇒ b =
( 7

55

) 1
3 ≈ 0.503

55 = f(−2) = c · b−2 = c ·
(( 7

55

) 1
3
)−2

= c ·
( 7

55

)−2
3

=⇒ c =
55

(
7
55

)−2
3

= 55 ·
( 7

2
3

55
2
3

)

= 55
1
3 · 7 2

3 =
3
√
55 · 72 = 3

√
2695 ≈ 13.916

Therefore, f(x) = 3
√
2695 ·

(
3

√
7
55

)x

.

15.2 Applications of exponential functions

Exponential functions express situations where the growths of a quantity is
proportional to the amount of the quantity at a given time. This makes expo-
nential functions an important toy model for many applications. In this text
we will use exponential functions to model the following:

• population growths or decline

• compound interest on an investment

• radioactive decay
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In this section we will focus on population growth and decline, and we will
study compound interest and radioacitve decay in the next chapter.

Example 15.6

The mass of a bacteria sample is 2 · 1.02t grams after t hours.

a) What is the mass of the bacteria sample after 4 hours?
b) When will the mass reach 10 grams?

Solution.

a) The formula for the mass y in grams after t hours is y(t) = 2 · 1.02t.
Therefore, after 4 hours, the mass in grams is:

y(4) = 2 · 1.024 ≈ 2.16

b) We are seeking the number of hours t for which y = 10 grams.
Therefore, we have to solve:

10 = 2 · 1.02t (÷2)
=⇒ 5 = 1.02t

We need to solve for the variable in the exponent. In general, to solve
for a variable in the exponent requires an application of a logarithm
on both sides of the equation.

5 = 1.02t
(apply log)
=⇒ log(5) = log(1.02t)

Recall an important property that we can use to solve for t:

log(xt) = t · log(x) (15.1)

Using (15.1), we can now solve for t as follows:

log(5) = log(1.02t) =⇒ log(5) = t · log(1.02)
(divide by log(1.02))

=⇒ t =
log(5)

log(1.02)
≈ 81.3

After approximately 81.3 hours, the mass will be 10 grams.
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Example 15.7

The population size of a country was 12.7 million in the year 2010, and
14.3 million in the year 2020.

a) Assuming an exponential growth for the population size, find the
formula for the population depending on the year t.

b) What will the population size be in the year 2025, assuming the
formula holds until then?

c) When will the population reach 18 million?

Solution.

a) The growth is assumed to be exponential, so that y(t) = c · bt de-
scribes the population size depending on the year t, where we set
t = 0 corresponding to the year 2010. Then the example describes
y(0) = c as c = 12.7, which we assume in units of millions of people.
To find the base b, we substitute the data of t = 10 and y(t) = 14.3
into y(t) = c · bt.

14.3 = 12.7 · b10 =⇒ 14.3

12.7
= b10 =⇒

(14.3

12.7

) 1
10

= (b10)
1
10 = b

=⇒ b =
(14.3

12.7

) 1
10 ≈ 1.012

The formula for the population size is y(t) ≈ 12.7 · 1.012t.

b) We calculate the population size in the year 2025 by setting t =
2025− 2010 = 15:

y(15) = 12.7 · 1.01215 ≈ 15.2

c) We seek t so that y(t) = 18. We solve for t using the logarithm.

18 = 12.7 · 1.012t =⇒ 18

12.7
= 1.012t

=⇒ log
( 18

12.7

)

= log(1.012t)
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=⇒ log
( 18

12.7

)

= t · log(1.012)

=⇒ t =
log
(

18
12.7

)

log(1.012)
≈ 29.2

Adding 29.2 years to the year 2010, we see that the population will
reach 18 million in the year 2039.

In many instances the exponential function f(x) = c · bx is given via a rate
of growth r.

Definition 15.8: Rate of growth

An exponential function with a rate of growth r is a function f(x) = c·bx
with base

b = er

Note 15.9

Some textbooks use a different convention than the one given in Definition 15.8 for the rate
of growth. Indeed, sometimes a function with rate of growth r is defined as an exponential
function with base b = 1 + r, whereas we use a base b = er . Since er can be expanded as

er = 1+ r+ r2

2
+ . . . , this shows that the two versions only vary by a difference of order 2 (that

is they differ by r2

2
plus higher powers of r), and so, for small r, the base 1 + r and the base er

are approximately equal.

Example 15.10

The number of PCs that are sold in the US in the year 2021 is approxi-
mately 350 million. Assuming that the number grows exponentially at a
constant rate of 3.6% per year, how many PCs will be sold in the year
2027?

Solution.
Since the rate of growth is r = 3.6% = 0.036, we obtain a base of
b = er = e0.036. Therefore, we will model the number of PCs sold (in
millions of PCs) by the function y(t) = c · (e0.036)t = c · e0.036·t. If we
set t = 0 for the year 2021, we find that c = 350, so the number of
sales is given by y(t) = 350 · e0.036·t. Since the year 2027 corresponds
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to t = 2027 − 2021 = 6, we can calculate the number of sales in the
year 2027 as

y(4) = 350 · e0.036 ≈ 434.

Approximately 434 million PCs will be sold in the year 2027.

Example 15.11

The size of an ant colony is decreasing at a rate of 1% per month. How
long will it take until the colony has reached 80% of its original size?

Solution.
Since the population size is decreasing, the rate is negative, that is
r = −1% = −0.01. We therefore obtain the base b = er = e−0.01. We
have a colony size of y(t) = c · e−0.01·t after t months, where c is the
original size. We need to find t so that the size is at 80% of its original
size c, that is, y(t) = 80% · c = 0.8 · c.

0.8 · c = c · e−0.01·t (÷c)
=⇒ 0.8 = e−0.01·t

=⇒ ln(0.8) = ln(e−0.01·t)

=⇒ ln(0.8) = −0.01 · t · ln(e)
︸︷︷︸
=1

=⇒ t =
ln(0.8)

−0.01
≈ 22.3

After approximately 22.3 months, the ant colony has decreased to 80%
of its original size.
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Example 15.12

a) The number of flu cases in the fall was increasing at a rate of 9.8%
per week. How long did it take for the number of flu cases to double?

b) The number of flu cases in the spring was decreasing at a rate of
15% per week. How long did it take for the number of flu cases to
decrease to a quarter of its size?

Solution.

a) The rate of change is r = 9.8% = 0.098 per week, so that the number
of flu cases is an exponential function with base b = e0.098. Therefore,
f(x) = c · e0.098·x denotes the number of flu cases, with c being the
initial number of cases at the time corresponding to x = 0. In order
for the number of flu cases to double, f(x) has to reach twice its
initial size, that is:

f(x) = 2c =⇒ 2c = c · e0.098·x
(÷c)
=⇒ 2 = e0.098·x
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=⇒ ln(2) = ln(e0.098·x)

=⇒ ln(2) = 0.098 · x ln(e)

=⇒ x =
ln(2)

0.098
≈ 7.07

Therefore, it took about 7.07 weeks until the number of flu cases
doubled.

b) Since the number of flu cases was decreasing, the rate of growth is
negative, r = −15% = −0.15 per week, so that we have an expo-
nential function with base b = er = e−0.15. To reach a quarter of its
initial number of flu cases, we set f(x) = c · e−0.15·x equal to 1

4
c.

1

4
c = c · e−0.15·x (÷c)

=⇒ 1

4
= e−0.15·x

=⇒ ln(
1

4
) = −0.15 · x · ln(e)

=⇒ x =
ln(1

4
)

−0.15
≈ 9.24

It therefore took about 9.24 weeks until the number of flu cases de-
creased to a quarter.

15.3 Exercises

Exercise 15.1

Solve for x without using a calculator.

a) 6x−2 = 36 b) 23x−8 = 16
c) 105−x = 0.0001 d) 55x+7 = 1

125

e) 2x = 64x+1 f ) 4x+3 = 32x

g) 134+2x = 1 h) 3x+2 = 27x−3

i) 257x−4 = 52−3x j) 95+3x = 278−2x
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Exercise 15.2

Solve for x. First find the exact answer as an expression involving
logarithms. Then approximate the answer to the nearest hundredth
using a calculator.

a) 4x = 57 b) 9x−2 = 7 c) 2x+1 = 31
d) 3.82x+7 = 63 e) 5x+5 = 8x f ) 3x+2 = 0.4x

g) 1.022x−9 = 4.35x h) 4x+1 = 5x+2 i) 93−x = 4x−6

j) 2.47−2x = 3.83x+4 k) 49x−2 = 92x−4 l) 1.95−3x−4 = 1.24−7x

Exercise 15.3

Assuming that f(x) = c ·bx is an exponential function, find the constants
c and b from the given conditions.

a) f(0) = 4, f(1) = 12 b) f(0) = 5, f(3) = 40
c) f(0) = 3200, f(6) = 0.0032 d) f(3) = 12, f(5) = 48
e) f(−1) = 4, f(2) = 500 f ) f(2) = 3, f(4) = 15

Exercise 15.4

The number of downloads of a certain software application was 8.4
million in the year 2017 and 13.6 million in the year 2022.

a) Assuming an exponential growth for the number of downloads, find
the formula for the downloads depending on the year t.

b) Assuming the number of downloads will follow the formula from part
(a), what will the number of downloads be in the year 2026?

c) In what year will the number of downloaded applications reach the
25 million barrier?

Exercise 15.5

The population size of a city was 79, 000 in the year 1998 and 136, 000
in the year 2013. Assume that the population size follows an exponential
function.

a) Find the formula for the population size.
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b) What is the population size in the year 2030?

c) What is the population size in the year 2035?

d) When will the city reach its expected maximum capacity of one million
residents?

Exercise 15.6

The population of a city decreases at a rate of 2.3% per year. After how
many years will the population be at 90% of its current size? Round
your answer to the nearest tenth.

Exercise 15.7

A big company plans to expand its franchise and, with this, its number of
employees. For tax reasons, it is most beneficial to expand the number
of employees at a rate of 5% per year. If the company currently has
4730 employees, how many years will it take until the company has
6000 employees? Round your answer to the nearest hundredth.

Exercise 15.8

An ant colony has a population size of 4000 ants and is increasing at a
rate of 3% per week. How long will it take until the ant population has
doubled? Round your answer to the nearest tenth.

Exercise 15.9

The size of a beehive is decreasing at a rate of 15% per month. How
long will it take for the beehive to be at half of its current size? Round
your answer to the nearest hundredth.

Exercise 15.10

If the population size of the world is increasing at a rate of 0.5% per
year, how long does it take until the world population doubles in size?
Round your answer to the nearest tenth.



Chapter 16

More applications: Compound

interest and half-life

We have already encountered some applications of exponential functions in
Section 15.2. In this chapter we give two more applications that come from
finance (computing compound interest) and from physics (radioactive decay).

16.1 Compound interest

An important application of the exponential function is given by calculating
the interest and the current value of an investment. We start with a motivating
example in the following note.

Note 16.1

• We invest an initial amount of P = $500 for 1 year at a rate of
r = 6%. The initial amount P is also called the principal.

After 1 year, we receive the principal P together with the interest
r · P generated from the principal. The final amount A after 1
year is therefore

A = $500 + 6% · $500 = $500 · (1 + 0.06) = $530.

• We change the setup of the previous example by taking a quar-
terly compounding. This means that instead of receiving interest

276
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on the principal once at the end of the year, we receive the in-
terest 4 times within the year (after each quarter). However, we
now receive only 1

4
of the interest rate of 6%. We break down the

amount received after each quarter.

after first quarter: 500 ·
(

1 +
0.06

4

)

= 500 · 1.015

after second quarter: (500 · 1.015) ·
(

1 +
0.06

4

)

= 500 · 1.0152

after third quarter: (500 · 1.0152) ·
(

1 +
0.06

4

)

= 500 · 1.0153

after fourth quarter: (500 · 1.0153) ·
(

1 +
0.06

4

)

= 500 · 1.0154

=⇒ A ≈ 530.68

Note that in the second quarter, we receive interest on the amount
we had after the first quarter, and so on. So, in fact, we keep re-
ceiving interest on the interest of the interest, etc. For this rea-
son, the final amount received after 1 year A = $530.68 is slightly
higher when compounded quarterly than when compounded an-
nually (where A = $530.00).

• We make yet another variation to the above setup. Instead of
investing money for 1 year, we invest the principal for 10 years at
a quarterly compounding. We then receive interest every quarter
for a total of 4 · 10 = 40 quarters.

after first quarter: 500 ·
(

1 +
0.06

4

)

= 500 · 1.015

after second quarter: (500 · 1.015) ·
(

1 +
0.06

4

)

= 500 · 1.0152

after third quarter: (500 · 1.0152) ·
(

1 +
0.06

4

)

= 500 · 1.0153

...

after fortieth quarter: (500 · 1.01539) ·
(

1 +
0.06

4

)

= 500 · 1.01540

=⇒ A ≈ 907.01
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We state our observations from the previous example in the following
general observation.

Observation 16.2: Value of an investment compounded n times

A principal (=initial amount) P is invested for t years at a rate r and
compounded n times per year. The final amount A is given by

A = P ·
(

1 +
r

n

)n·t
where







P = principal (=initial) amount
A = final amount
r = annual interest rate
n = number of

compounding periods per year
t = number of years

We can consider performing the compounding in smaller and smaller time
intervals. Instead of quarterly compounding, we may take monthly compound-
ing, or daily, hourly, secondly compounding or compounding in even smaller
time intervals. Note that, in this case, the number of compounding periods n
in the above formula tends to infinity. In the limit when the time intervals go
to zero, we obtain what is called continuous compounding.

Observation 16.3: Value of an investment compounded continuously

A principal amount P is invested for t years at a rate r and with
continuous compounding. The final amount A is given by

A = P · er·t where







P = principal amount
A = final amount
r = annual interest rate
t = number of years
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Note 16.4

The reason the exponential function appears in the above formula is that the exponential is the
limit of the previous formula in Observation 16.2, when n approaches infinity; compare this with
Equation (13.1) on page 237.

lim
n→∞

(
1 +

r

n

)n
= er

A more detailed discussion of limits will be provided in a calculus course.

Example 16.5

Determine the final amount received on an investment under the given
conditions.

a) $700, compounded monthly, at 4%, for 3 years
b) $2500, compounded semi-annually, at 5.5%, for 6 years
c) $1200, compounded continuously, at 3%, for 2 years

Solution.

a) We can immediately apply the formula in which we substitute the
given values of P = 700, n = 12 (because “monthly” means com-
pounded 12 times per year), r = 4% = 0.04, and t = 3. Therefore,
we calculate

A = 700 ·
(

1 +
0.04

12

)12·3
= 700 ·

(

1 +
0.04

12

)36

≈ 789.09

b) We have P = 2500, n = 2, r = 5.5% = 0.055, and t = 6.

A = 2500 ·
(

1 +
0.055

2

)2·6
≈ 3461.96

c) We have P = 1200, r = 3% = 0.03, t = 2, and we use the formula
for continuous compounding.

A = 1200 · e0.03·2 = 1200 · e0.06 ≈ 1274.20

Instead of asking to find the final amount, we may also ask about any of
the other variables in the above formulas for investments.
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Example 16.6

a) Find the amount P that needs to be invested at 4.275% compounded
annually for 5 years to give a final amount of $3000. (This amount
P is also called the present value of the future amount of $3000 in
5 years.)

b) At what rate do we have to invest $800 for 6 years compounded
quarterly to obtain a final amount of $1200?

c) For how long do we have to invest $1000 at a rate of 2.5% com-
pounded continuously to obtain a final amount of $1100?

d) For how long do we have to invest at a rate of 3.2% compounded
monthly until the investment doubles its value?

Solution.

a) We have the following data: r = 4.275% = 0.04275, n = 1, t = 5,
and A = 3000. We want to find the present value P . Substituting
the given numbers into the appropriate formula, we can solve this for
P .

3000 = P ·
(

1 +
0.04275

1

)1·5
=⇒ 3000 = P · (1.04275)5

(divide by 1.042755)
=⇒ P =

3000

1.042755
≈ 2433.44

Therefore, if we invest $2433.44 today under the given conditions,
then this will be worth $3000 in 5 years.

b) Substituting the given numbers (P = 800, t = 6, n = 4, A = 1200)
into the formula gives:

1200 = 800 ·
(

1 +
r

4

)4·6 (divide by 800)
=⇒ 1200

800
=
(

1 +
r

4

)24

=⇒
(

1 +
r

4

)24

=
3

2

Next, we have to get the exponent 24 to the right side. This is done
by taking a power of 1

24
, or in other words, by taking the 24th root,

24

√
3
2
=
(

3
2

) 1
24

.
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((

1 +
r

4

)24
) 1

24

=

(
3

2

) 1
24

=⇒
(

1 +
r

4

)24· 1
24

=

(
3

2

) 1
24

=⇒ 1 +
r

4
=

(
3

2

) 1
24

=⇒ r

4
=

(
3

2

) 1
24

− 1

=⇒ r = 4 ·
((

3

2

) 1
24

− 1

)

Plugging this into the calculator gives r ≈ 0.06815 = 6.815%. There-
fore, the rate should be about 6.815%.

c) Again, we substitute the given values, P = 1000, r = 2.5% = 0.025,
A = 1100, but now we use the formula for continuous compounding.

1100 = 1000 · e0.025·t =⇒ 1100

1000
= e0.025·t =⇒ e0.025·t = 1.1

To solve for the variable t in the exponent, we need to apply the
logarithm. Here, it is most convenient to apply the natural logarithm,
because ln(x) is the inverse of the exponential ex with base e. Thus,
by applying ln to both sides, we see that

ln(e0.025·t) = ln(1.1) =⇒ 0.025 · t · ln(e) = ln(1.1)

Note that we have used that logb(x
n) = n · logb(x) for any number

n as we have seen in Proposition 14.2. Using that ln(e) = 1 (which
is the special case of the second equation in (13.3) on page 243 for
the base b = e), the above becomes

0.025 · t = ln(1.1) =⇒ t =
ln(1.1)

0.025
≈ 3.81

Therefore, we have to wait 4 years until the investment is worth (more
than) $1100.

d) We are given that r = 3.2% = 0.032 and n = 12, but no initial
amount P is provided. We are seeking to find the time t when the
investment doubles. This means that the final amount A is twice the
initial amount P , or as a formula: A = 2 · P . Substituting this into
the investment formula and solving gives the wanted answer.
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2P = P ·
(

1 +
0.032

12

)12·t
(divide by P )

=⇒ 2 =

(

1 +
0.032

12

)12·t

(apply ln)
=⇒ ln(2) = ln

((

1 +
0.032

12

)12·t
)

=⇒ ln(2) = 12 · t · ln
(

1 +
0.032

12

)

(divide by 12 · ln
(
1 + 0.032

12

)
)

=⇒ t =
ln(2)

12 · ln
(
1 + 0.032

12

) ≈ 21.69

So, after approximately 21.69 years, the investment will have doubled
in value.

16.2 Half-life

Recall from Definition 15.8 on page 270 that a function with rate of growth
r is an exponential function f(x) = c · bx with base b = er. Instead of using
the rate of growth, there are other ways to specify the base of an exponential
function. One way to specify the base is given by the notion of half-life. We
give a motivating example in the following note.

Note 16.7

Consider the function f(x) = 200 ·
(
1
2

)x
7 . We calculate the function

values f(x), for x = 0, 7, 14, 21, and 28.

f(0) = 200 ·
(
1

2

) 0
7

= 200 · 1 = 200

f(7) = 200 ·
(
1

2

) 7
7

= 200 · 1
2
= 100

f(14) = 200 ·
(
1

2

) 14
7

= 200 · 1
4
= 50
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f(21) = 200 ·
(
1

2

) 21
7

= 200 · 1
8
= 25

f(28) = 200 ·
(
1

2

) 28
7

= 200 · 1

16
= 12.5

From this calculation, we can see how the function values of f behave:
starting from f(0) = 200, the function takes half of its value whenever
x is increased by 7. For this reason, we say that f has a half-life of 7.
(The general definition will be given below.) The graph of the function
is displayed below.

x

y
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100
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200
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300

-50

We collect the ideas that are displayed in the above example in the defi-
nition and observation below.

Definition 16.8: Half-life

Let f be an exponential function f(x) = c · bx with a domain of all real
numbers, D = R. Then we say that f has a half-life of h if the base is
given by

b =

(
1

2

) 1
h

(16.1)

Note that we can also write h in terms of b. Converting (16.1) into

a logarithmic equation gives 1
h
= log 1

2
(b) = log b

log 1
2

, so that h =
log 1

2

log b
=

logb
(
1
2

)
.
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Observation 16.9: Graphical interpretation of half-life

Let f be the exponential function given for some real constants c > 0
and half-life h > 0, that is

f(x) = c ·
((

1

2

) 1
h

)x

= c ·
(
1

2

) x
h

.

Then we can calculate f(x+ h) as follows:

f(x+ h) = c ·
(
1

2

)x+h
h

= c ·
(
1

2

) x
h
+h

h

= c ·
(
1

2

) x
h
+1

= c ·
(
1

2

) x
h

·
(
1

2

)1

=
1

2
· f(x)

To summarize, f has the following property:

f(x+ h) =
1

2
f(x) for all x ∈ R. (16.2)

The above equation shows that whenever we add an amount of h to an
input x, the effect on f is that the function value decreases by half its
previous value. This is also displayed in the graph below.

x

y

c

h 2h 3h 4h

We will sometimes use a different letter for the input variable. In
particular, the function f(x) = c · (1

2
)
x
h is the same as the function

f(t) = c · (1
2
)

t
h .
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Many radioactive isotopes decay with well-known half-lives.1

Example 16.10

a) Chromium-51 has a half-life of 27.7 days.
How much of 3 grams of chromium-51 will
remain after 90 days?

b) An isotope decays within 20 hours from 5
grams to 2.17 grams. Find the half-life of
the isotope.

Solution.

a) We use the above formula y = c·
(
1
2

) t
h , where c = 3 grams is the initial

amount of chromium-51, h = 27.7 days is the half-life of chromium-
51, and t = 90 days is time that the isotope decayed. Substituting
these numbers into the formula for y, we obtain:

y = 3 ·
(
1

2

) 90
27.7

≈ 0.316

Therefore, after 90 days, 0.316 grams of the chromium-51 remains.

b) We have an initial amount of c = 5 grams and a remaining amount
of y = 2.17 grams after t = 20 hours. The half-life can be obtained
as follows.

2.17 = 5 ·
(
1

2

) 20
h (÷5)

=⇒ 0.434 =

(
1

2

) 20
h

(apply ln)
=⇒ ln(0.434) = ln

(

0.5
20
h

)

=⇒ ln(0.434) =
20

h
· ln (0.5)

(× h
ln(0.434)

)

=⇒ h =
20 · ln(0.5)
ln(0.434)

≈ 16.6

Therefore, the half-life of the isotope is approximately 16.6 hours.

1Half-lives are taken from http://en.wikipedia.org/wiki/List of radioactive nuclides by half-life

http://en.wikipedia.org/wiki/List_of_radioactive_nuclides_by_half-life
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Note 16.11: Half-life of carbon-14

An important isotope is the radioisotope carbon-14. It decays with a
half-life of 5730 years with an accuracy of ±40 years. For definiteness
we will take 5730 years as the half-life of carbon-14.

The half-life of carbon-14 is 5730 years.

One can use the knowledge of the half-life of carbon-14 in dating or-
ganic materials via the so called carbon dating method. Carbon-14 is
produced by a plant during the process of photosynthesis at a fixed level
until the plant dies. Therefore, by measuring the remaining amount
of carbon-14 in a dead plant, one can determine the date when the
plant died. Furthermore, since humans and animals consume plants,
the same argument can be applied to determine their (approximate)
dates of death.

Example 16.12

a) A dead tree trunk has 86% of its original carbon-14. (Approximately)
how many years ago did the tree die?

b) A dead animal at an archeological site has lost 41.3% of its carbon-
14. When did the animal die?

Solution.

a) Using the function y = c ·
(
1
2

) t
h , where c is the amount of carbon-14

that was produced by the tree until it died, y is the remaining amount
to date, t is the time that has passed since the tree has died, and h
is the half-life of carbon-14. Since 86% of the carbon-14 is left, we
have y = 86% · c. Substituting the half-life h = 5730 of carbon-14,
we can solve for t.

0.86 · c = c ·
(
1

2

) t
5730 (÷c)

=⇒ 0.86 =

(
1

2

) t
5730

(apply ln)
=⇒ ln(0.86) = ln

(

0.5
t

5730

)

=⇒ ln(0.86) =
t

5730
· ln (0.5)
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(× 5730
ln(0.5)

)

=⇒ 5730

ln(0.5)
· ln(0.86) = t

=⇒ t ≈ 1247

Therefore, the tree died approximately 1247 years ago.

b) Since 41.3% of the carbon-14 is gone, 100% − 41.3% = 58.7% re-

mains. Using y = c ·
(
1
2

) t
h with y = 58.7% · c and h = 5730, we

obtain

0.587 · c = c ·
(
1

2

) t
5730 (÷c)

=⇒ 0.587 =

(
1

2

) t
5730

(apply ln)
=⇒ ln(0.587) = ln

(

0.5
t

5730

)

=⇒ ln(0.587) =
t

5730
· ln (0.5)

(× 5730
ln(0.5)

)

=⇒ 5730

ln(0.5)
· ln(0.587) = t

=⇒ t ≈ 4404

The animal died 4404 years ago.

16.3 Exercises

Exercise 16.1

An investment of $5000 was locked in for 30 years. According to the
agreed-upon conditions, the investment will be worth $5000 · 1.08t after
t years.

a) How much is the investment worth after 5 years?
b) After how many years will the investment be worth $20, 000?
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Exercise 16.2

Determine the final amount in a savings account under the given con-
ditions.

a) $700, compounded quarterly, at 3%, for 7 years
b) $1400, compounded annually, at 2.25%, for 5 years
c) $1400, compounded continuously, at 2.25%, for 5 years
d) $500, compounded monthly, at 3.99%, for 2 years
e) $5000, compounded continuously, at 7.4%, for 3 years
f) $1600, compounded daily, at 3.333%, for 1 year
g) $750, compounded semi-annually, at 4.9%, for 4 years

Exercise 16.3

a) Find the amount P that needs to be invested at a rate of 5% com-
pounded quarterly for 6 years to give a final amount of $2000.

b) Find the present value P of a future amount of A = $3500 invested
at 6% compounded annually for 3 years.

c) Find the present value P of a future amount of $1000 invested at a
rate of 4.9% compounded continuously for 7 years.

d) At what rate do we have to invest $1900 for 4 years compounded
monthly to obtain a final amount of $2250?

e) At what rate do we have to invest $1300 for 10 years compounded
continuously to obtain a final amount of $2000?

f) For how long do we have to invest $3400 at a rate of 5.125% com-
pounded annually to obtain a final amount of $3700?

g) For how long do we have to invest $1000 at a rate of 2.5% com-
pounded continuously to obtain a final amount of $1100?

h) How long do you have to invest a principal at a rate of 6.75% com-
pounded daily until the investment doubles its value?

i) A certain amount of money has tripled its value while being in a
savings account that has an interest rate of 8% compounded contin-
uously. For how long was the money in the savings account?
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Exercise 16.4

An unstable element decays at a rate of 5.9% per minute. If 40mg of
this element has been produced, how long will it take until 2mg of the
element are left? Round your answer to the nearest thousandth.

Exercise 16.5

A substance decays radioactively with a half-life of 232.5 days. How
much of 6.8 grams of this substance is left after 1 year?

Exercise 16.6

Fermium-252 decays in 10 minutes to 76.1% of its original mass. Find
the half-life of fermium-252.

Exercise 16.7

How long do you have to wait until 15mg of beryllium-7 have decayed
to 4mg if the half-life of beryllium-7 is 53.12 days?

Exercise 16.8

If Pharaoh Ramses II died in the year 1213 BC, then what percent of
the carbon-14 was left in the mummy of Ramses II in the year 2000?

Exercise 16.9

In order to determine the age of a piece of wood, the amount of carbon-
14 was measured. It was determined that the wood had lost 33.1% of
its carbon-14. How old is this piece of wood?

Exercise 16.10

Archaeologists uncovered a bone at an ancient resting ground. It was
determined that 62% of the carbon-14 was left in the bone. How old is
the bone?



Review of exponential and

logarithmic functions

Exercise III.1

Let f(x) = ln(3x+7). Find the domain of f , the asymptote(s) of f , and
the x-intercept(s). Use this information to sketch a graph of f .

Exercise III.2

Combine to an expression with only one logarithm.

a)
2

3
ln(x) + 4 ln(y) b)

1

2
log2(x)−

3

4
log2(y) + 3 log2(z)

Exercise III.3

Assuming that x, y > 0, write the following expressions in terms of
u = log(x) and v = log(y):

a) log

(
3
√
x4

y2

)

b) log
(

x
√

y5
)

c) log
(

5
√

xy4
)

Exercise III.4

Solve without using the calculator: log3(x) + log3(x− 8) = 2

Exercise III.5

a) Find the exact solution of the equation: 6x+2 = 7x

b) Use the calculator to approximate your solution from part (a).
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Exercise III.6

The population of a country grows exponentially at a rate of 2.6% per
year. If the population was 35.7 million in the year 2020, then what is
the population size of this country in the year 2027?

Exercise III.7

The number of bees in a beehive decreases exponentially at a rate of
1.4% per month. How long will it take until half of the bees are left?

Exercise III.8

How much do you have to invest today at 3% compounded quarterly to
obtain $2000 in return in 3 years?

Exercise III.9

45mg of fluorine-18 decay in 3 hours to 14.4mg. Find the half-life of
fluorine-18.

Exercise III.10

A bone has lost 35% of its carbon-14. How old is the bone?
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Chapter 17

Trigonometric functions reviewed

In the next chapters, we will study trigonometric functions, such as y = sin(x),
y = cos(x), and y = tan(x) in terms of their function theoretic aspects.

17.1 Review of unit circle trigonometry

We start by reviewing some basic definitions and facts about trigonometry on
the unit circle.

Review 17.1: Angle in standard position

An angle in the plane is in standard position if its vertex is at the origin
and the initial side is at the positive x-axis.

initial side

terminal side

293
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The angle is measured in the counterclockwise direction, where a full
rotation measures as 360◦.

0◦ or 360◦180◦

90◦

270◦

45◦

225◦

60◦

240◦

30◦

210◦

135◦

315◦
330◦

150◦

300◦

120◦

Angles greater than 360◦ will span more than a full rotation, angles less
than 0◦ will rotate in the clockwise direction. Adding or subtracting 360◦

will give the same terminal side.

480◦

−120◦

Besides degree measure, we will also need to use radians for the measure
of an angle.

Definition 17.2: Radian

The radian measure of an angle is the length of the arc (shown below
in blue) on the unit circle from the initial side to the terminal side.

1

Note that a full rotation has a radian measure of 2π, and that degrees
and radians are linearly related via the conversion formula:

π = 180◦ (17.1)
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Example 17.3

Convert from radian to degree measure and vice versa.

a) 5π
4

b) 11π
6

c) 150◦ d) 240◦ e) 315◦

Solution.
Replace π with 180◦ and simplify as needed.

a) 5π
4
= 5·180◦

4
= 225◦

b) 11π
6

= 11·180◦
6

= 330◦

Conversely, using 180◦ = π, we get that 1◦ = π
180

. With this, we have:

c) 150◦ = 150 · π
180

= 150π
180

= 5π
6

(cancel with 30)

d) 240◦ = 240 · π
180

= 4π
3

(cancel with 60)

e) 315◦ = 315 · π
180

= 7π
4

(cancel with 45)

Observation 17.4: Radian and degree for multiples of 30◦ and 45◦

Below are all angles that are multiples of 30◦ or 45◦ between 0◦ and
360◦ in both degree and radian measure.

0 = 0◦ or 2π = 360◦π = 180◦

π
2
= 90◦

3π
2
= 270◦

π
4
= 45◦

5π
4
= 225◦

π
3
= 60◦

4π
3
= 240◦

π
6
= 30◦

7π
6
= 210◦

3π
4
= 135◦

7π
4
= 315◦

11π
6

= 330◦

5π
6
= 150◦

5π
3
= 300◦

2π
3
= 120◦
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We next define the “sine”, “cosine”, and “tangent” of an angle.

Motivation: Sine and cosine of an angle

Imagine riding in a Ferris wheel.

We may be interested in calculating the distance from the ground to
a passenger car when its position around the wheel is rotated at an
angle x. Alternatively, we can measure the vertical displacement of the
passenger car from the center of the Ferris wheel. Note that, in the
above picture, this distance is measured by the “silver sphere” figure
atop the ladder. (We think of placing a coordinate system so that the
center of the Ferris wheel is the origin (0, 0) of the coordinate system.)
If the Ferris wheel has a radius of 1, then the number sin(x) for a given
angle x is precisely what measures this vertical displacement of the
passenger car from the center of the wheel.
Similarly, we may ask how far the passenger car is displaced horizon-
tally from the center of the Ferris wheel. Note that this is what the
“copper cone” figure at the bottom left is measuring in the above pic-
ture. This distance is calculated by cos(x) for the angle x in the case
in which the Ferris wheel has a radius of 1.
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The sine over the cosine is the tangent:
sin(x)

cos(x)
= tan(x).

Using the idea of vertical and horizontal displacement from the center of the
Ferris wheel, we now define the trigonometric functions of an angle x.

Definition 17.5: Trigonometric functions

For an angle x, let P (a, b) be the intersection point of the terminal side
of x with the unit circle.
Then, we define the cosine of x to be the horizontal coordinate a of P ,
that is, cos(x) = a. We define the sine of x to be the vertical coordinate
b of P , that is, sin(x) = b. Moreover, we define the tangent of x to be

the quotient tan(x) = sin(x)
cos(x)

= b
a
.

x

(a, b) = (cos(x), sin(x))

cos(x) = a

sin(x) = b

c = 1

cos(x) = a

sin(x) = b

tan(x) = b
a

(17.2)

We also define the multiplicative inverses of these functions, which are
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called the secant, the cosecant, and the cotangent.

sec(x) = 1
cos(x)

csc(x) = 1
sin(x)

cot(x) = 1
tan(x)

(17.3)

Many elementary facts and identities immediately follow from the above
definition, and we will come back to these in Chapter 21. In the following
section we will instead show how to compute the trigonometric function values
for suitable angles (angles that are multiples of 30◦ or 45◦).

17.2 Computing trigonometric function values

First, we show how to compute sin(x), cos(x), and tan(x) for certain angles
x by hand. One way to do so is by using the special 45◦ − 45◦ − 90◦ and
30◦ − 60◦ − 90◦ triangles. We will review these triangles now.

Review 17.6: Special right triangles

Consider right triangles with angles either 45◦−45◦−90◦ or 30◦−60◦−
90◦. If the hypotenuse of the triangles are taken to be 1, then the other
side lengths are given as follows:

45◦ − 45◦ − 90◦ 30◦ − 60◦ − 90◦

45◦

√
2
2

45◦

√
2
2

90◦

1

30◦

1
2

60◦

√
3
2

90◦

1

Proof. In the 45◦ − 45◦ − 90◦ triangle, denote the side lengths by a,
b, and c. By assumption, the hypotenuse is c = 1, and by symmetry,
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the two side lengths a = b are equal. Using the Pythagorean theorem
a2 + b2 = c2, we get a2 + a2 = 12, which gives

2a2 = 1 =⇒ a2 =
1

2
=⇒ a =

√

1

2
=

1√
2
=

√
2

2
.

For the 30◦ − 60◦ − 90◦ triangle, we again denote the side lengths by
a, b, and c, with the hypotenuse c = 1 by assumption. Now reflect the
triangle on its edge opposite to the 60◦ angle.

30◦

b

30◦

b

60◦

a

60◦

a

90◦

90◦

1

1

The outer triangle is an equilateral triangle having all side lengths equal
to 1, so that 2b = 1, or b = 1

2
. Finally, we find a from the Pythagorean

theorem a2 + b2 = c2, that is, a2 + (1
2
)2 = 12, so that:

a2 +
1

4
= 1 =⇒ a2 = 1− 1

4
=

3

4
=⇒ a =

√

3

4
=

√
3

2

We use the above Review 17.6 to compute some trigonometric function
values by hand.

Example 17.7

Find sin(x), cos(x), and tan(x) for the angles

a) x = 30◦ b) x = 45◦ c) x = 60◦ d) x = 90◦

e) x = 150◦ f ) x = 225◦ g) x = 300◦

Solution.

a) We place a 30◦− 60◦− 90◦ right triangle (drawn below in yellow) in
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the coordinate plane as shown below.

P (
√
3
2
, 1
2
)

30◦

unit circle

√
3
2

1
2

1

cos(30◦) = a =
√
3
2

sin(30◦) = b = 1
2

tan(30◦) = b
a
=

1
2√
3

2

= 1
2
· 2√

3

= 1√
3
=

√
3
3

The coordinates of the intersection point P of the terminal side of 30◦

with the unit circle are (a, b) = (
√
3
2
, 1
2
), so these give the cos(30◦) =

a =
√
3
2

and sin(30◦) = b = 1
2
.

b) For the 45◦ angle, we place a 45◦ − 45◦ − 90◦ right triangle (drawn
in yellow) in the coordinate plane as shown below.

(
√
2
2
,
√
2
2
)

45◦

√
2
2

√
2
2

1
cos(45◦) = a =

√
2
2

sin(45◦) = b =
√
2
2

tan(45◦) = b
a
=

√
2

2√
2

2

= 1

c) We place a 30◦− 60◦− 90◦ triangle with the 60◦ angle at the origin.

(1
2
,
√
3
2
)

60◦

1
2

√
3
2

1

cos(60◦) = a = 1
2

sin(60◦) = b =
√
3
2

tan(60◦) = b
a
=

√
3

2
1
2

=
√
3
2
· 2
1
=

√
3
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d) The terminal side of a 90◦ angle is the positive y-axis, intersecting
with the unit circle at (0, 1).

90◦

(0, 1)
cos(90◦) = a = 0

sin(90◦) = b = 1

tan(90◦) = b
a

is undefined (since a = 0)

e) To obtain the intersection point for terminal side of 150◦ with the unit
circle, we place a 30◦ − 60◦ − 90◦ triangle in quadrant II. Thus, the

coordinates of the intersection point P (−
√
3
2
, 1
2
) are in quadrant II and

therefore have a negative x-coordinate and a positive y-coordinate.

(−
√
3
2
, 1
2
)

150◦

30◦

√
3
2

1
2

1

cos(150◦) = a = −
√
3
2

sin(150◦) = b = 1
2

tan(150◦) = b
a
=

1
2

−
√

3
2

= −1
2
· 2√

3

= − 1√
3
= −

√
3
3

f )

(−
√
2
2
,−

√
2
2
)

225◦

45◦

√
2
2

√
2
2

1

cos(225◦) = a = −
√
2

2

sin(225◦) = b = −
√
2

2

tan(225◦) = b
a
=

−
√

2
2

−
√

2
2

= 1

Note that for an angle in quadrant III, both coordinates are negative,
and thus both sine and cosine are negative.
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g)

(1
2
,−

√
3
2
)

300◦

60◦

1
2

√
3
2

1

cos(300◦) = a = 1
2

sin(300◦) = b = −
√
3
2

tan(300◦) = b
a
=

−
√

3
2

1
2

= −
√
3
2
· 2
1

= −
√
3

For an angle in quadrant IV, the cosine is positive and the sine is
negative.

Note 17.8

The method from the previous example can be used to obtain the sine,
cosine, and tangent of any angle x that is a multiple of 30◦ or 45◦.

• The sine, cosine, and tangent are given by the coordinates of the
intersection of the terminal side of x with the unit circle. These
intersection points for angles x from 0◦ to 360◦ (where x are
multiples of 30◦ or 45◦) are:

at 0◦: (1, 0)at 180◦: (−1, 0)

at 90◦: (0, 1)

at 270◦: (0,−1)

at 45◦: (
√
2
2
,
√
2
2
)

at 225◦: (−
√
2
2
,−

√
2
2
)

at 135◦: (−
√
2
2
,
√
2
2
)

at 315◦: (
√
2
2
,−

√
2
2
)

at 30◦: (
√
3
2
, 1
2
)

at 210◦: (−
√
3
2
,−1

2
)

at 60◦: (1
2
,
√
3
2
)

at 240◦: (−1
2
,−

√
3
2
)

at 150◦: (−
√
3
2
, 1
2
)

at 330◦: (
√
3
2
,−1

2
)

at 300◦: (1
2
,−

√
3
2
)

at 120◦: (−1
2
,
√
3
2
)

• This gives the trigonometric function values for all angles that are
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multiples of 30◦ or 45◦. In particular:

x 0◦ = 0 30◦ = π
6

45◦ = π
4

60◦ = π
3

90◦ = π
2

sin(x) 0 1
2

√
2
2

√
3
2

1

cos(x) 1
√
3
2

√
2
2

1
2

0

tan(x) 0
√
3
3

1
√
3 undef.

• Angles that differ by 360◦ have the same terminal side and, there-
fore, the same trigonometric function values.

sin(x± 360◦) = sin(x) cos(x± 360◦) = cos(x) (17.4)

When using a scientific calculator, the computations of the trigonometric
function values becomes significantly easier. However, some of the answers
from the calculator may require an appropriate interpretation. We demon-
strate this in the following observation.

Observation 17.9: Trigonometric function values with the calculator

We want to use a calculator to find cos(120◦) and sin(120◦). We enter
“cos(120)” and “sin(120)” into the calculator and, since our angles are
in degree, we check in our settings that we have the degree mode

selected. (The mode can be changed with the wrench symbol .)
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Note that the calculator correctly shows the cosine cos(120◦) = −0.5 =
−1

2
. However, for sine, we only get an approximation sin(120◦) ≈ 0.866,

which we have to interpret as sin(120◦) =
√
3
2

. Fortunately, there are
only a few possible numbers that appear as the coordinates of the points
on the unit circle in Note 17.8. Up to sign, these are the following:

0
1

2

√
2

2
≈ 0.707

√
3

2
≈ 0.866 1 (17.5)

Thus, these are the possible sine and cosine values (up to ±-sign) for
the angles shown in Note 17.8.
For the tangent tan(x) = sin(x)

cos(x)
, we need to look at quotients of the

above numbers. These are (compare Example 17.7):

0

√
3

3
≈ 0.577 1

√
3 ≈ 1.732 (17.6)

We demonstrate the above observation on the method for finding trigono-
metric function values with the calculator in the following example.

Example 17.10

Use the calculator to find sin(x), cos(x), and tan(x) for:

a) x = 240◦ b) x = 495◦ c) x = 11π
6

d) x = −9π
4

Solution.
We use the calculator and interpret approximations as shown in (17.5)
and (17.6).

a)

sin(240◦) = −
√
3
2

cos(240◦) = −1
2

tan(240◦) =
√
3
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b)

sin(495◦) =
√
2
2

cos(495◦) = −
√
2
2

tan(495◦) = −1

Note that 495◦ − 360◦ = 135◦, so that 495◦ and 135◦ have the same
trigonometric function values.

c) For the angle 11π
6

, we need to change the calculator to radian mode.

sin(11π
6
) = −1

2

cos(11π
6
) =

√
3
2

tan(11π
6
) = −

√
3
3

d)

sin(−9π
4
) = −

√
2
2

cos(−9π
4
) =

√
2
2

tan(−9π
4
) = −1

We can also compute exact trigonometric function values for at least some
angles other than those in Note 17.8. One possible way to do so is to use
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the addition and subtraction of angles formulas. We will state these formulas
in this section and show they apply in our setting. A proof for these formulas
will be given in Section 21.2.

Proposition 17.11: Addition and subtraction of angles formulas

For any angles α and β, we have the following addition and subtraction

of angles formulas:

sin(α + β) = sinα cos β + cosα sin β

sin(α− β) = sinα cos β − cosα sin β

cos(α + β) = cosα cos β − sinα sin β

cos(α− β) = cosα cos β + sinα sin β

tan(α + β) =
tanα+ tan β

1− tanα tanβ

tan(α− β) =
tanα− tan β

1 + tanα tan β

Example 17.12

Find the exact values of the trigonometric functions.

a) cos(75◦) b) sin
(
11π
12

)
c) tan(15◦)

Solution.

a) Note that 75◦ is not one of the angles we computed in Note 17.8, but
it is the sum of two such angles, since 75◦ = 30◦ + 45◦. To compute
cos(75◦), we therefore use the formula for cos(α + β) with α = 30◦

and β = 45◦.

cos(75◦) = cos(30◦ + 45◦) = cos(30◦) cos(45◦)− sin(30◦) sin(45◦)

=

√
3

2
·
√
2

2
− 1

2
·
√
2

2
=

√
6

4
−

√
2

4
=

√
6−

√
2

4

b) Again we want to write the angle 11π
12

as a sum or difference of angles
from Note 17.8. It might be a bit easier to first convert the angle
from radian into degree:

11π

12
=

11 · 180
12

= 165◦
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Now, there are several ways in which we can write 165◦ as a sum or
difference of known angles: 165◦ = 45◦ + 120◦ or 165◦ = 210◦ − 45◦,
etc. We will use the difference 165◦ = 210◦−45◦ for our computation,
but we note that other choices would work just as well. We thus get:

sin(165◦) = sin(210◦ − 45◦) = sin 210◦ cos 45◦ − cos 210◦ sin 45◦

= −1

2
·
√
2

2
−
(

−
√
3

2

)

·
√
2

2
= −

√
2

4
+

√
6

4
=

√
6−

√
2

4

c) For tan(15◦) we note that 15◦ = 60◦ − 45◦. We get that:

tan(15◦) = tan(60◦ − 45◦) =
tan 60◦ − tan 45◦

1 + tan 60◦ tan 45◦

=

√
3− 1

1 +
√
3 · 1

=

√
3− 1

1 +
√
3

To fully simplify this expression, we rationalize the denominator by
multiplying 1−

√
3 to both numerator and denominator:

tan(15◦) =

√
3− 1

1 +
√
3
· 1−

√
3

1−
√
3
=

√
3−

√
3
2 − 1 +

√
3

12 −
√
3
2

=
2
√
3− 3− 1

1− 3
=

2
√
3− 4

−2
= −

√
3 + 2 = 2−

√
3

Using Proposition 17.11 we can also obtain certain identities among the
trigonometric functions.

Example 17.13

Rewrite cos(x+ π
2
) by using the addition formula.

Solution.

cos
(

x+
π

2

)

= cosx · cos π
2
− sin x · sin π

2
= cosx · 0 + sin x · 1 = sin(x)
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Another set of useful formulas concerns the trigonometric function values
of half- and double-angles.

Proposition 17.14: Half- and double-angle formulas

Let α be an angle. Then we have the half-angle formulas:

sin
α

2
= ±

√

1− cosα

2

cos
α

2
= ±

√

1 + cosα

2

tan
α

2
=

1− cosα

sinα
=

sinα

1 + cosα
= ±

√

1− cosα

1 + cosα

Here, the signs “±” are determined by the quadrant in which the angle
α
2

lies. (For more on the signs, see also page 310.)
Furthermore, we have the double-angle formulas:

sin(2α) = 2 sinα cosα

cos(2α) = cos2 α− sin2 α = 1− 2 sin2 α = 2 cos2 α− 1

tan(2α) =
2 tanα

1− tan2 α

Here is an example involving the half-angle identities.

Example 17.15

Find the trigonometric functions using the half-angle formulas.

a) sin(22.5◦) b) cos
(
7π
8

)
c) tan

(
π
8

)

Solution.

a) Since 22.5◦ = 45◦

2
, we use the half-angle formula with α = 45◦.

sin (22.5◦) = sin

(
45◦

2

)

= ±
√

1− cos 22.5◦

2
= ±

√

1−
√
2
2

2

= ±

√

2−
√
2

2

2
= ±

√

2−
√
2

4
= ±

√

2−
√
2

2
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Since 22.5◦ is in the first quadrant, the sine is positive, so that

sin(22.5◦) =

√
2−

√
2

2
.

b) Note that 7π
8
= 7·180◦

2
= 157.5◦ and 157.5◦ = 315◦

2
, so that we use the

half-angle formulas for α = 315◦.

cos(157.5◦) = cos

(
315◦

2

)

= ±
√

1 + cos 315◦

2

Now, 157.5◦ is in the second quadrant, so that the cosine is negative.

Using that cos(315◦) =
√
2
2

, we thus get

cos(157.5◦) = −

√

1 +
√
2
2

2
= −

√

2+
√
2

2

2
= −

√

2 +
√
2

4
= −

√

2 +
√
2

2
.

c) Note that π
8
= 180◦

8
= 22.5◦ and that 22.5◦ = 45◦

2
. We therefore get

(using the first formula for tan α
2

from Proposition 17.14):

tan(22.5◦) = tan

(
45◦

2

)

=
1− cos 45◦

sin 45◦
=

1−
√
2
2√

2
2

=
(

1−
√
2

2

)

· 2√
2

=
2√
2
− 1 =

2√
2
·
√
2√
2
− 1 =

2
√
2

2
− 1 =

√
2− 1

We end this section by noting where the trigonometric functions are pos-
itive or negative.

Note 17.16: Signs by quadrant

Following the notation from Defintion 17.5, let x be an angle, and let
P (a, b) be the intersection point of the terminal side of x with the unit
circle. Then, the horizontal coordinate a = cos(x) of P is positive when
P is in quadrant I and IV, whereas the vertical coordinate b = sin(x) of

P is positive when P is in quadrant I and II. Since tan(x) = sin(x)
cos(x)

the

sign of tan(x) is determined by the signs of sin(x) and cos(x). Thus the
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trigonometric functions are positive/negative according to the chart:

Quadrant I

sin(x) is positive

cos(x) is positive

tan(x) is positive

Quadrant II

sin(x) is positive

cos(x) is negative

tan(x) is negative

Quadrant III

sin(x) is negative

cos(x) is negative

tan(x) is positive

Quadrant IV

sin(x) is negative

cos(x) is positive

tan(x) is negative

17.3 Exercises

Exercise 17.1

Convert from radian to degree.

a) π
4

b) 2π
3

c) 5π
6

d) 7π
4

e) 3π
2

f ) 5π
4

g) 13π
6

h) −5π
3

Exercise 17.2

Convert from degree to radian.

a) 120◦ b) 60◦ c) 300◦ d) 135◦

e) 90◦ f ) 225◦ g) 480◦ h) −150◦
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Exercise 17.3

Find sin(x), cos(x), and tan(x) for the following angles.

a) x = 150◦ b) x = 45◦ c) x = 210◦ d) x = 60◦

e) x = 30◦ f ) x = 300◦ g) x = 90◦ h) x = 315◦

i) x = 225◦ j) x = 180◦ k) x = 120◦ l) x = 270◦

m) x = 405◦ n) x = −135◦ o) x = −240◦ p) x = 690◦

q) x = 5π
3

r) x = π
6

s) x = 4π
3

t) x = 5π
6

u) x = 7π
3

v) x = 7π
4

w) x = −π
2

x) x = 13π
3

Exercise 17.4

Find the trigonometric function values by using the addition and sub-
traction formulas.

a) sin(75◦) b) cos(15◦) c) tan(105◦) d) sin(195◦)

e) cos(345◦) f ) sin(15◦) g) cos(285◦) h) tan(165◦)

i) cos
(
11π
12

)
j) sin

(
π
12

)
k) tan

(
13π
12

)
l) sin

(
23π
12

)

Exercise 17.5

Find the exact trigonometric function values by using the half-angle
formulas.

a) cos(22.5◦) b) sin(15◦) c) cos(15◦) d) tan(15◦)

e) sin(7.5◦) f ) tan(105◦) g) sin
(
3π
8

)
h) cos

(
11π
12

)

Exercise 17.6

Simplify the function f using the addition and subtraction formulas.

a) f(x) = sin
(
x+ π

2

)
b) f(x) = cos

(
x− π

4

)
c) f(x) = tan (π − x)

d) f(x) = sin
(
π
6
− x
)

e) f(x) = cos
(
2π
3
− x
)

f ) f(x) = cos
(
x+ 11π

12

)



Chapter 18

Graphing trigonometric functions

We now turn to function theoretic aspects of the trigonometric functions de-
fined in the last chapter. In particular, we will study the graphs of trigono-
metric functions.

18.1 Graphs of y = sin(x), y = cos(x), and y =

tan(x)

To graph the functions y = sin(x), y = cos(x), and y = tan(x), we review
a few trigonometric function values in the table below. Here, the angles x,
which are the inputs of the trigonometric functions, are most conveniently
taken in radian measure.

Note 18.1

We showed in the previous chapter how these function values were
defined and how they can be computed, in particular, with the help of
a calculator.

x 0 π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6

π . . .

sin(x) 0 1
2

√
2
2

√
3
2

1
√
3
2

√
2
2

1
2

0 . . .

cos(x) 1
√
3
2

√
2
2

1
2

0 −1
2

−
√
2

2
−
√
3

2
−1 . . .

tan(x) 0
√
3
3

1
√
3 undef. −

√
3 −1 −

√
3

3
0 . . .

312
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We start with the graph of the sine function.

Observation 18.2: Graph of y = sin(x)

Graph the function y = sin(x).

Solution.
We graph the function y = sin(x) by plotting the corresponding (x, y)
values in the plane. This can be done by hand, for example, by using
the values from the above table and connecting the dots. While this is
a great exercise, we will instead use the graphing calculator to do the
main work for us.

From this, we make the following observations. The domain of y =
sin(x) is all real numbers, D = R, since sin(x) is defined for any angle
x (see Definition 17.5).
Next, the graph is bounded (in the y-direction) between −1 and +1,

−1 ≤ sin(x) ≤ 1 for all x.

This follows from Definition 17.5, where we defined sin(x) = b
r

with
−r ≤ b ≤ r. Therefore, the range of y = sin(x) is R = [−1, 1].
Moreover, the graph shows that y = sin(x) is a periodic function, that
is, a function that repeats its output values after adding a fixed constant
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to the input. More precisely, y = f(x) is periodic if there is a number
P 6= 0 called a period so that

f(x+ P ) = f(x) for all x.

Note that y = sin(x) has a period of P = 2π, since the function does
not change its value when adding 360◦ = 2π to its argument (and this
is, in fact, the smallest positive number with that property):

sin(x+ 2π) = sin(x)

The graph of y = sin(x) has the following specific values:

x

y = sin(x)

π
2

−π
2

π−π

3π
2

−3π
2

2π

−2π 5π
2

−5π
2

3π−3π

︸ ︷︷ ︸

period 2π

1

−1

This can also be seen with the graphing calculator by clicking on the
points of interest.

We say that y = sin(x) has a period of 2π, and an amplitude of 1.

Next, we graph the cosine.
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Observation 18.3: Graph of y = cos(x)

Graph the function y = cos(x).

Solution.
Using the graphing calculator, we obtain the graph below.

Just as we argued for the sin(x), we have the following similar obser-
vations for y = cos(x).
The domain of y = cos(x) is all real numbers, D = R. The range is
R = [−1, 1], that is, cos(x) is bounded between −1 and 1.
The function y = cos(x) is a periodic function with period P = 2π, that
is,

cos(x+ 2π) = cos(x) for all x.

Some precise function values of y = cos(x) are displayed below:

x

y = cos(x)

π
2

−π
2

π−π

3π
2

−3π
2

2π−2π 5π
2

−5π
2

3π−3π

︸ ︷︷ ︸

period 2π

1

−1
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These values can also be seen with the graphing calculator:

We say that y = cos(x) has a period of 2π, and an amplitude of 1.

Note 18.4

Many properties of sin and cos can be observed from the above graphs
(as well as from the unit circle definition). For example, the graph of
y = cos(x) appears to be that of y = sin(x) shifted to the left by π

2
.

Algebraically, this can be expressed with the following identity:

cos(x) = sin
(

x+
π

2

)

(18.1)

Moreover, the graph of y = sin(x) appears to be symmetric with respect
to the origin, the graph of y = cos(x) appears to be symmetric with
respect to the y-axis. Algebraically, this means that the sine and cosine
functions satisfy the following relations:

sin(−x) = − sin(x) and cos(−x) = cos(x) (18.2)

We will show in Observations 21.8 and 21.9, that these identities are
indeed true.
Note, in particular, that this means that y = sin(x) is an odd function,
while y = cos(x) is an even function (see Observation 4.24).

Finally, we also graph the tangent.
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Observation 18.5: Graph of y = tan(x)

Graph of y = tan(x).

Solution.
We graph the function y = tan(x) with the graphing calculator.

First, we observe that the tangent is periodic with a period of π:

tan(x+ π) = tan(x) (18.3)

Zooming into this graph, we see that y = tan(x) has vertical asymptotes
x = π

2
≈ 1.6 and x = −π

2
≈ −1.6. This is also supported by the

fact that tan(π
2
) and tan(−π

2
) are undefined. Since y = tan(x) is

periodic, there are, in fact, infinitely many vertical asymptotes: x =
π
2
, −π

2
, 3π

2
, −3π

2
, 5π

2
, −5π

2
, . . . , or, in short

asymptotes of y = tan(x) : x = n · π
2
, where n = ±1,±3,±5, . . .

In particular, the domain of y = tan(x) is

D = R−
{

x : x = n · π
2
, where n = ±1,±3,±5, . . .

}

The range of y = tan(x) is all real numbers R = R.
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The graph of y = tan(x) with some more specific function values is
shown below.

x

y = tan(x)

π
4

−π
4

π
2

−π
2

π−π 3π
2

−3π
2 2π−2π 5π

2
−5π
2

︸ ︷︷ ︸

period π

1

−1

Furthermore, the tangent is an odd function, since it is symmetric with
respect to the origin (see Observation 4.24):

tan(−x) = − tan(x) (18.4)

18.2 Amplitude, period, and phase shift

Recall from Section 4.3 how adding or multiplying constants affects the graph
of the function, such as:

• graph of f(x) + c is the graph of f(x) shifted up by c (or down when
c < 0)

• graph of f(x+ c) is the graph of f(x) shifted to the left by c (or to the
right when c < 0)

• the graph of c ·f(x) (for c > 0) is the graph of f(x) stretched away from
the x-axis by a factor c (or compressed when 0 < c < 1)

• the graph of f(c · x) (for c > 0) is the graph of f(x) compressed toward
the y-axis by a factor c (or stretched away the y-axis when 0 < c < 1)
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With this, we can graph some variations of the basic trigonometric functions.

Example 18.6

Graph the functions:

f(x) = sin(x) + 3, g(x) = 4 · sin(x), h(x) = sin(x+ 2), i(x) = sin(3x)

j(x) = 2 · cos(x) + 3, k(x) = cos(2x− π), l(x) = tan(x+ 2) + 3

Solution.
The functions f , g, h, and i have graphs that are variations of the basic
y = sin(x) graph. The graph of f(x) = sin(x) + 3 shifts the graph of
y = sin(x) up by 3, whereas the graph of g(x) = 4 · sin(x) stretches
y = sin(x) away from the x-axis.

x

y

π
2

−π
2

π−π

3π
2

−3π
2

2π

−2π 5π
2

−5π
2

3π−3π

1

−1

2

3

−2

−3

4

−4

f(x) = sin(x) + 3

g(x) = 4 · sin(x)

The graph of h(x) = sin(x+2) shifts the graph of y = sin(x) to the left
by 2, and i(x) = sin(3x) compresses y = sin(x) toward the y-axis.

x

y

π−π 2π−2π

h(x) = sin(x+ 2)

π − 2

x

y

π−π 2π−2π

i(x) = sin(3 · x)

π
3

2π
3
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Next, j(x) = 2 · cos(x) + 3 has a graph of y = cos(x) stretched by a
factor 2 away from the x-axis, and shifted up by 3.

x

y

π
2

−π
2

π−π 3π
2

−3π
2 2π−2π 5π

2
−5π
2 3π−3π

1

−1

2

3

−2

4

5

j(x) = 2 · cos(x) + 3

For the graph of k(x) = cos(2x − π) = cos(2 · (x − π
2
)), we need to

compress the graph of y = cos(x) by a factor 2 (we obtain the graph of
the function y = cos(2x)), and then shift this by π

2
to the right.

x

y

π−π 2π−2π

k(x) = cos(2 · x− π)

We will explore this case below in more generality. In fact, whenever
y = cos(b · x+ c) = cos(b · (x− −c

b
)), the graph of y = cos(x) is shifted

to the right by −c
b

, and compressed by a factor b, so that it has a period
of 2π

b
.

Finally, l(x) = tan(x + 2) + 3 shifts the graph of y = tan(x) up by 3
and to the left by 2.

x

y

π−π 2π−2π
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We collect some of the above observations in the following definition.

Definition 18.7: Amplitude, period, phase shift

Let f be one of the functions:

f(x) = a · sin(b · x+ c) or f(x) = a · cos(b · x+ c)

We define the amplitude A, the period P , and the phase shift S to be

A = |a| amplitude (18.5)

P =

∣
∣
∣
∣

2π

b

∣
∣
∣
∣

period (18.6)

S =
−c

b
phase shift (18.7)

In physical applications, the period is sometimes denoted by T = P =
∣
∣2π

b

∣
∣ and the frequency f is defined as the reciprocal, f = 1

P
.

Using the amplitude, period, and phase shift, we know precisely how the
shape of a sine or cosine function has been shifted or stretched.

Observation 18.8: Graphing sin or cos over one full period

With the above definition, we analyze the graph of, for example, f(x) =
a · sin(b · x+ c) with positive a > 0 and b > 0 as follows.

• First, consider g(x) = a · sin(b · x), that is, the function where we
put c = 0. The graph of g is that of y = sin(x) stretched by a
factor A away from the x-axis, and stretched (away or toward the
y-axis) in such a way that it has a period of P = 2π

b
.

• Then, the graph of f(x) = a · sin(b · x+ c) = a · sin
(
b ·
(
x+ c

b

))
is

that of g(x) = a · sin(b · x) shifted by the phase shift S = −c
b

. In
other words, one full period of the graph starts at (S, 0) and ends
at (S + P, 0).
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x

y = a · sin(b · x+ c)

S = −c
b S + P = −c

b
+
∣
∣2π

b

∣
∣

︸ ︷︷ ︸

period P=| 2πb |

A = |a|

−A = −|a|

We thus have the following strategy for graphing f(x) = a · sin(b ·x+c)
over one full period, starting at the phase shift S:

1. Mark the starting point of the period at (S, 0) = (−c
b
, 0).

2. Mark the endpoint of the period at (S + P, 0) = (−c
b
+
∣
∣2π

b

∣
∣ , 0).

3. Draw the graph of f(x) = a · sin(b · x+ c) from S to S +P as the
graph of y = sin(x) from 0 to 2π stretched and shifted so that it
starts at S and ends at S +P , and so that it has an amplitude of
A.

Note that the root(s), the maxima, and the minima of the graph within
the drawn period are in equal distance from each other. The values of
these can be found, for example, by calculating the midpoint between
(S, 0) and (S + P, 0) and midpoints between these and the resulting
midpoint:

S S + 1
4
P S + 1

2
P S + 3

4
P S + P

A similar graph can be obtained for f(x) = a ·cos(b ·x+c) by replacing
the graph of y = sin(x) with the graph of y = cos(x) over the period
from 0 to 2π.
Moreover, note that when a and b are not positive, appropriate reflec-
tions may have to be applied as well.
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Example 18.9

Find the amplitude, period, and phase shift, and sketch the graph over
one full period starting at the phase shift. Label all roots, maxima, and
minima.

a) f(x) = 3 · sin(2x− π) b) f(x) = 4 · cos(5x− π
2
)

c) f(x) = 6 · sin(3x+ π) d) f(x) = −2 · cos(x
2
− π

4
)

e) f(x) = 5 · sin
(
−2x+ π

3

)

Solution.

a) The amplitude is A = |a| = 3, the period is P =
∣
∣ 2π

b

∣
∣ =

∣
∣2π
2

∣
∣ = π,

and the phase shift is S = −c
b
= −(−π)

2
= π

2
. We graph one full period

from S = π
2

to S + P = π
2
+ π = 3π

2
.

x

y = 3 · sin(2 · x− π)

S = π
2

3π
4

π 5π
4

3π
2
= S + P

3

−3

Note that the zero at the center of this period is given at (π
2
+ 3π

2
)÷2 =

4π
2
· 1
2
= π. The maximum is at (π

2
+π)÷2 = 3π

2
· 1
2
= 3π

4
. The minimum

is at (π + 3π
2
) ÷ 2 = 5π

2
· 1
2
= 5π

4
. This is also confirmed with the

graphing calculator.
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b) For f(x) = 4 · cos(5x − π
2
), we have the amplitude A = 4, period

P = 2π
5

, and phase shift S = −(−π/2)
5

= π
2
· 1
5
= π

10
. Therefore, the

endpoint of the period is at S + P = π
10

+ 2π
5
= 5π

10
= π

2
.

The minimum is at
(

π
10

+ π
2

)
÷ 2 = 6π

10
· 1

2
= 3π

10
, the roots are at

(
π
10

+ 3π
10

)
÷ 2 = 4π

10
· 1
2
= π

5
and

(
3π
10

+ π
2

)
÷ 2 = 8π

10
· 1
2
= 2π

5
.

x

y = 4 cos(5x− π
2
)

π
10 π

5

3π
10

2π
5

π
2

4

−4

c) For f(x) = 6 · sin(3x + π), we have the amplitude A = 6, period
P = 2π

3
, and phase shift S = −π

3
. Therefore, the endpoint of the

period is at S + P = −π
3
+ 2π

3
= π

3
.



18.2. AMPLITUDE, PERIOD, AND PHASE SHIFT 325

The root is at
(−π

3
+ π

3

)
÷ 2 = 0, the maximum is at

(−π
3
+ 0
)
÷ 2 =

−π
3
· 1
2
= −π

6
, the minimum is at

(
0 + π

3

)
÷ 2 = π

3
· 1
2
= π

6
.

x

y = 6 sin(3x+ π)

−π
3

π
3

−π
6

π
6

6

−6

d) For f(x) = −2 · cos(x
2
− π

4
), we have the amplitude A = | − 2| = 2,

period P = 2π
1
2

= 2π · 2
1
= 4π, and phase shift S = −(−π/4)

1
2

= π
4
· 2
1
= π

2
.

Therefore, the endpoint of the period is at S + P = π
2
+ 4π = 9π

2
.

Since the coefficient a = −2 is negative, we need to graph the cosine
reflected over the x-axis. We have the maximum at

(
π
2
+ 9π

2

)
÷ 2 =

10π
2

· 1
2
= 5π

2
, the roots are at

(
π
2
+ 5π

2

)
÷ 2 = 6π

2
· 1

2
= 3π

2
and

(
5π
2
+ 9π

2

)
÷ 2 = 14π

2
· 1
2
= 7π

2
.

x

y = −2 cos(x
2
− π

4
)

π
2

3π
2

5π
2

7π
2 9π

2

2

−2
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e) For f(x) = 5 · sin
(
−2x+ π

3

)
, we have the amplitude A = 5, period

P =
∣
∣ 2π
−2

∣
∣ = π, and phase shift S = −(π/3)

−2
= π

3
· 1
2
= π

6
. Therefore,

the endpoint of the period is at S + P = π
6
+ π = 7π

6
.

To graph f(x), we recall from (18.2) that sin(−x) = − sin(x), so
that f(x) can be rewritten as f(x) = 5 · sin

(
−(2x− π

3
)
)
= −5 ·

sin
(
2x− π

3

)
. Writing f(x) in this way gives the same period and

phase shift as before, since now P =
∣
∣2π
2

∣
∣ = π and S = −(−π/3)

2
=

π
3
· 1
2
= π

6
. Since f(x) = −5 · sin

(
2x− π

3

)
has a negative leading

coefficient, we need to reflect the sine graph over the x-axis. Thus,
we get the root at

(
π
6
+ 7π

6

)
÷ 2 = 8π

6
· 1
2
= 8π

12
= 2π

3
; the minimum is

at
(
π
6
+ 2π

3

)
÷ 2 = 5π

6
· 1
2
= 5π

12
, the maximum is at

(
2π
3
+ 7π

6

)
÷ 2 =

11π
6

· 1
2
= 11π

12
.

x

y = 5 sin(−2x+ π
3
)

π
6

5π
12

2π
3

11π
12

7π
6

5

−5
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Application: Sound waves

Sound is created from a source, for example, from a loudspeaker. A
vibrating membrane within the loudspeaker creates vibrations of the
molecules in the surrounding air, creating regions of higher and lower
pressures.1 These differences in pressures transmit via sound waves
and are perceived by the brain as sound.

The above picture shows a vibrating molecule (in red) in regions of
variable pressure. Note that it is not any overall motion of the molecules
that create the sound wave, but molecules vibrating at their equilibrium
positions. The displacement s(t) of a molecule from its equilibrium
position is given by a sin or cos function in time.

s(t) = a · cos(ωt+ c) (18.8)

In the formula above, ω is called the angular frequency, and so the
period is given by P = 2π

ω
. If we recall that the frequency f = 1

P
is the

reciprocal of the period, we see that ω = 2π
P

= 2πf .

1For more information, see https://openstax.org/books/university-physics-volume-1/pages/17-1-sound-waves

https://openstax.org/books/university-physics-volume-1/pages/17-1-sound-waves
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We can interpret the amplitute, period, and phase shift from (18.8) in
terms of the perceived sound as follows:

• Sound waves can be perceived by humans for frequencies ranging
from 20 Hz to 20, 000 Hz. The higher the frequency (or the smaller
the period), the higher the perceived pitch of the sound.

• The amplitude is perceived as the volume of the sound.

• While the phase shift cannot be perceived directly from the sound,
we can see the effect of the phase shift from applications such as
noise canceling headphones. The idea for this is that for a given
displacement s(t) of a molecule, if we can create a displacement
in the opposite direction, then the overall effect is no displacement
at all, which yields a cancellation of the sound.

t

s(t)

t

−s(t)

t
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18.3 Exercises

Exercise 18.1

Graph the function and describe how the graph can be obtained from
one of the basic graphs y = sin(x), y = cos(x), or y = tan(x).

a) f(x) = sin(x) + 2 b) f(x) = cos(x− π) c) f(x) = tan(x)− 4
d) f(x) = 5 · sin(x) e) f(x) = cos(2 · x) f ) f(x) = sin(x− 2)− 5

Exercise 18.2

Identify the formulas with the graphs.

f(x) = sin(x) + 2, g(x) = tan(x− 1), h(x) = 3 sin(x)
i(x) = 3 cos(x), j(x) = cos(x− π), k(x) = tan(x)− 1

a)

x

y

b)

x

y

c)

x

y

d)

x

y

e)

x

y

f )

x

y
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Exercise 18.3

Find the formula of a function whose graph is the one displayed below.

a) b)

c) d)

e) f)

Exercise 18.4

Find the amplitude, period, and phase shift of the function.

a) f(x) = 5 sin(2x+ π) b) f(x) = 3 sin(4x− π
2
)

c) f(x) = 4 sin(6x) d) f(x) = 2 cos(7x+ π
4
)

e) f(x) = 8 cos(2x− 3π) f ) f(x) = 3 sin(x
4
)

g) f(x) = −4 cos(5x+ π
3
) h) f(x) = 7 sin(1

2
x− 6π

5
)

i) f(x) = cos(−2x) j) f(x) = 6 cos(πx− π)
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Exercise 18.5

Find the amplitude, period, and phase shift of the function. Use this
information to graph the function over a full period. Label all roots,
maxima, and minima of the function.

a) y = 5 cos(2x) b) y = −4 sin(πx) c) y = 4 sin(5x− π)

d) y = 6 cos(2x− π) e) y = 5 sin(2x− π
2
) f ) y = 7 cos(3x− π

2
)

g) y = 5 sin(3x− π
4
) h) y = 3 sin(4x+ π) i) y = 2 cos(5x+ π)

j) y = 4 sin(2x+ π
2
) k) y = 3 cos(6x+ π

2
) l) y = 3 cos

(
2x+ π

4

)

m) y = 7 sin
(
1
4
x+ π

4

)
n) y = −2 sin

(
1
5
x− π

10

)
o) y = 1

3
cos
(
14
5
x− 6π

5

)



Chapter 19

Inverse trigonometric functions

The inverse trigonometric functions are the inverse functions of the y = sin x,
y = cos x, and y = tanx functions restricted to appropriate domains. In this
chapter we give a precise definition of these functions.

19.1 The functions sin−1, cos−1, and tan−1

We start with the inverse to the tangent function y = tan(x).

The function y = tan−1(x)

Note 19.1

Recall that the graph of y = tan(x):

x

y = tan(x)

π
2

−π
2

π−π 3π
2

−3π
2 2π−2π 5π

2
−5π
2

332



19.1. THE FUNCTIONS sin−1, cos−1, AND tan−1 333

The graph has vertical asymptotes at x = ±π
2
,±3π

2
,±5π

2
, . . . . Note that

y = tan(x) is not a one-to-one function in the sense of defintion 6.1 on
page 92. (For example, the horizontal line y = 1 intersects the graph
at x = π

4
, x = π

4
± π, x = π

4
± 2π, etc.) However, when we restrict the

function to the domain D = (−π
2
, π
2
), that is, the red part of the above

graph, then the restricted function is one-to-one, and for this restricted
function, we may take its inverse function.

Definition 19.2: Inverse tangent function

The inverse of the function y = tan(x) with restricted domain D =
(−π

2
, π
2
) and range R = R is called the inverse tangent function. It is

defined by

x = tan(y) ⇐⇒ y = tan−1(x) , for y ∈
(

−π

2
,
π

2

)

Alternatively, the inverse tangent function is also written as the arc-

tangent function:
y = tan−1(x) = arctan(x)

The arctangent reverses the input and output of the tangent function,
so that the arctangent has domain D = R and range R = (−π

2
, π
2
). The

graph is displayed below.

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-3

-2

-1

0

1

2

3

x

y

π
2

−π
2

= tan−1(x) = arctan(x)

The inverse tangent function has horizontal asymptotes at y = π
2

and
y = −π

2
.
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Note 19.3: tan−1 is odd

We note that the inverse tangent function is an odd function:

tan−1(−x) = − tan−1(x) (19.1)

This can be seen by observing that the tangent y = tan(x) is an odd function (that is tan(−x) =
− tan(x)), and this also is confirmed by the the symmetry of the graph of y = tan−1(x) with
respect to the origin (0, 0).

Note 19.4

The exponent notation of tan−1(x) is unfortunately somewhat inconsistent, since the exponent
can refer to two different concepts. Indeed, writing tan−1(x) = arctan(x) means that we consider
the inverse function of the tan(x) function. However, when we write tan2(x), we mean

tan2(x) = (tan(x))2 = tan(x) · tan(x)

Therefore, tan−1(x) is the inverse function of tan(x) with respect to the composition operation,
whereas tan2(x) is the square with respect to the product in R. Note also that the inverse
function of the tangent with respect to the product in R is y = 1

tan(x)
= cot(x), which is the

cotangent.

The next example calculates some inverse tangent function values.

Example 19.5

Compute the inverse tangent function values.

a) tan−1(
√
3) b) tan−1(−1) c) tan−1(4.3)

Solution.

a) We will first show how to compute tan−1(
√
3) without the use of a

calculator, and then more easily with the use of a calculator. Recall
the exact values of the tangent function from Section 17.1:

x 0 = 0◦ π
6
= 30◦ π

4
= 45◦ π

3
= 60◦ π

2
= 90◦

tan(x) 0
√
3
3

1
√
3 undef.

Since, by Definition 19.2, y = tan−1(x) is given by x = tan(y) (for
−π

2
< y < π

2
), we can rewrite y = tan−1(

√
3) as

√
3 = tan(y). The

above table shows that tan(π
3
) =

√
3 and so, tan−1(

√
3) = y = π

3
=

60◦.
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Alternatively, we can use a calculator. Many calculators will not
display the exact radian measure for the angle, but only an approxi-
mation. Nevertheless, we can use degree measure and then convert
to radian if needed.

b) Similarly, we can compute the other values with the calculator.

We see that tan−1(−1) = −45◦ = −π
4
.

c) For tan−1(4.3), we do not have an exact value that appears in our
table above. However, we can still find an approximate answer using
the calculator, tan−1(4.3) ≈ 76.91.

The function y = sin−1(x)

Next, we define the inverse sine function.
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Note 19.6

We recall the graph of the y = sin(x) function, and note that it is not

one-to-one.

x

y = sin(x)

π
2

−π
2

π−π

3π
2

−3π
2

2π

−2π

1

−1

However, when restricting the sine to the domain
[−π

2
, π
2

]
(drawn in the

red part in the above graph), the restricted function is one-to-one. Note
furthermore, that when restricting the domain to

[−π
2
, π
2

]
, the range is

[−1, 1], and therefore we cannot extend this to a larger domain in a
way such that the function remains a one-to-one function. We use the
domain

[−π
2
, π
2

]
to define the inverse sine function.

Definition 19.7: Inverse sine function

The inverse of the function y = sin(x) with restricted domain D =
[−π

2
, π
2

]
and range R = [−1, 1] is called the inverse sine function. It is

defined by

x = sin(y) ⇐⇒ y = sin−1(x) , for y ∈
[

−π

2
,
π

2

]

Alternatively, the inverse sine function is also written as the arcsine

function:
y = sin−1(x) = arcsin(x)

The arcsine reverses the input and output of the sine function, so that
the arcsine has domain D = [−1, 1] and range R =

[−π
2
, π
2

]
. The graph
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of the arcsine is drawn below.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y = sin−1(x)

= arcsin(x)

π
2

−π
2

Note 19.8: sin−1 is odd

The inverse sine function is odd:

sin−1(−x) = − sin−1(x) (19.2)

This can again be seen by observing that the sine y = sin(x) is an odd function (that is,
sin(−x) = − sin(x)), and is also confirmed by the symmetry of the graph with respect to the
origin (0, 0).

We calculate some function values of the inverse sine.

Example 19.9

Compute the inverse sine function values.

a) sin−1
(1

2

)
b) sin−1

(
−

√
3

2

)
c) sin−1(4.3)

Solution.

a) We may either use the definition or a calculator to evaluate the
expressions. Since y = sin−1(1

2
) is equivalent to 1

2
= sin(y), we need

to find such a y with −π
2
≤ y ≤ π

2
. For this, recall the known values

of the sine.

x 0 = 0◦ π
6
= 30◦ π

4
= 45◦ π

3
= 60◦ π

2
= 90◦

sin(x) 0 1
2

√
2
2

√
3
2

1
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We see that y = π
6
, so that sin−1(1

2
) = y = π

6
= 30◦. Alternatively,

we can obtain the answers using the calculator in degree mode.

b) From the calculator we get that sin−1(−
√
3
2
) = −60◦ = −π

3
.

c) As for sin−1(4.3), we note that this is undefined, since the sin−1 has
a domain of [−1, 1] and so is only defined for x with −1 ≤ x ≤ 1.

The function y = cos−1(x)

Lastly, we define the inverse cosine.

Note 19.10

Recall the graph of y = cos(x), and note again that the function is not

one-to-one.

x

y = cos(x)

π
2

−π
2

π−π

3π
2

−3π
2

2π−2π

1

−1

Again, we need to restrict the cosine to a smaller domain so that the
restricted function becomes one-to-one. By convention, the cosine is
restricted to the domain [0, π] (see the red part above). This provides a
function that is one-to-one, which is used to define the inverse cosine.
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Definition 19.11: Inverse cosine function

The inverse of the function y = cos(x) with restricted domain D = [0, π]
and range R = [−1, 1] is called the inverse cosine function. It is defined
by

x = cos(y) ⇐⇒ y = cos−1(x) , for y ∈ [0, π]

Alternatively, the inverse cosine function is also written as the arcco-

sine function:
y = cos−1(x) = arccos(x)

The arccosine reverses the input and output of the cosine function, so
that the arccosine has domain D = [−1, 1] and range R = [0, π]. The
graph of the arccosine is drawn below.

-3 -2 -1 0 1 2 3

-1

0

1

2

3

4

5

x

y = cos−1(x)

= arccos(x)

π
2

π

Note 19.12: cos−1 is neither even nor odd

The inverse cosine function is neither even nor odd. That is, the function cos−1(−x) cannot be
computed by simply taking ± cos−1(x). But it does have some symmetry given algebraically by
the more complicated relation

cos−1(−x) = π − cos−1(x) (19.3)

Proof of Equation (19.3). We can see that if we shift the graph down by π
2

the resulting function is odd.

That is to say the function with the rule cos−1(x)− π
2

is odd:

cos−1(−x)− π

2
= −(cos−1(x)− π

2
),

which yields 19.3 upon distributing and adding π
2

.
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Another, more formal approach, is as follows. The right relation of (21.12) on page 367 states that we have
the relation cos(π − y) = − cos(y) for all y. Let −1 ≤ x ≤ 1, and denote by y = cos−1(x). This means
that y is the number 0 ≤ y ≤ π with cos(y) = x. Then we have

−x = − cos(y) = cos(π − y) (by Equation (21.12))

Applying cos−1 to both sides gives:

cos−1(−x) = cos−1(cos(π − y)) = π − y

The last equality follows, since cos and cos−1 are inverse to each other, and 0 ≤ y ≤ π, so that
0 ≤ π − y ≤ π are also in the range of the cos−1. Rewriting y = cos−1(x) gives the wanted result:

cos−1(−x) = π − cos−1(x)

Example 19.13

Compute the inverse cosine function values.

a) cos−1
(
√
2

2

)
b) cos−1

(
− 1

2

)
c) cos−1(4.3)

Solution.

a) Evaluating these expressions by hand requires the use of specific
values of the cosine function. We recall the known values of the
cosine.

x 0 = 0◦ π
6
= 30◦ π

4
= 45◦ π

3
= 60◦ π

2
= 90◦

cos(x) 1
√
3
2

√
2
2

1
2

0

Since y = cos−1(x) is given by x = cos(y) for 0 ≤ y ≤ π, we see

that for y = cos−1(
√
2
2
), we need a y with

√
2
2

= cos(y). According to
the above table, we get y = π

4
, so that cos−1(x) = y = π

4
= 45◦.

Alternatively, we can obtain the answer with the calculator.
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b) Using the calculator, we obtain cos−1(−1
2
) = 120◦ = 2π

3
. Note that

this is not the same as the negative of cos−1(1
2
) = 60◦, but the

identity (19.3) holds: cos−1(−1
2
) = 180◦ − cos−1(1

2
), that is, 120◦ =

180◦ − 60◦.

c) cos−1(4.3) is undefined, since the domain of y = cos−1(x) is D =
[−1, 1].

19.2 Exercises

Exercise 19.1

Graph the function with the calculator. Use both radian and degree
mode to display your graph. Zoom to an appropriate window for each
mode to display a graph which includes the main features of the graph.

a) y = sin−1(x) b) y = cos−1(x) c) y = tan−1(x)

Exercise 19.2

Find the exact value of the inverse trigonometric function.

a) tan−1(
√
3) b) sin−1(1

2
) c) cos−1(1

2
) d) tan−1(0)

e) cos−1(
√
2
2
) f ) cos−1(−

√
2
2
) g) sin−1(−1) h) tan−1(−

√
3)

i) cos−1(−
√
3
2
) j) sin−1(−

√
2
2
) k) sin−1(−

√
3
2
) l) tan−1(− 1√

3
)

Exercise 19.3

Find the inverse trigonometric function value using the calculator. Ap-
proximate your answer to the nearest hundredth.

• For parts (a)-(f ), write your answer in radian mode.

a) cos−1(0.2) b) sin−1(−0.75) c) cos−1(1
3
)

d) tan−1(100, 000) e) tan−1(−2) f ) cos−1(−2)
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• For parts (g)-(l), write your answer in degree mode.

g) cos−1(0.68) h) tan−1(−1) i) sin−1(
√
2+

√
6

4
)

j) tan−1(100, 000) k) cos−1(

√
2−

√
2

2
) l) tan−1(2 +

√
3−

√
6−

√
2)



Chapter 20

Solving trigonometric equations

Using the inverse trigonometric functions, we now solve equations that contain
sin, cos, or tan.

20.1 Basic trigonometric equations

In this section, we solve equations such as tan(x) =
√
3. We can easily

check that x = tan−1(
√
3) = π

3
solves this equation. However, there are other

solutions, such as x = 4π
3

or x = 7π
3

. Below, we will find all solutions of
equations of the form sin(x) = c, cos(x) = c, and tan(x) = c. We start with
equations involving the tangent.

The equation tan(x) = c

Example 20.1

Solve for x: tan(x) =
√
3

x

y = tan(x)

√
3

π
3

π
3
+ π π

3
+ 2ππ

3
− ππ

3
− 2π

343
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Solution.
There is an obvious solution given by x = tan−1(

√
3) = 60◦ = π

3
, as

we studied in the last section. However, there are more solutions, as
the graph of tan(x) =

√
3 above shows. To find the other solutions, we

look for all points where the graph of the y = tan(x) intersects with the
horizontal line y =

√
3. Since the function y = tan(x) is periodic with

period π, we see that the other solutions of tan(x) =
√
3 besides x = π

3

are

π

3
+π,

π

3
+2π,

π

3
+3π, . . . , and

π

3
−π,

π

3
−2π,

π

3
−3π, . . .

In general, we write the solution as

x =
π

3
+ n · π, where n = 0,±1,±2,±3, . . .

The graph also shows that these are all solutions of tan(x) =
√
3.

In a similar fashion, we can solve the equation tan(x) = c by replacing√
3 in the above example with c. We get the following general solution of

tan(x) = c.

Observation 20.2: Solving tan(x) = c

To solve tan(x) = c, we first determine one solution x = tan−1(c). Then
the general solution is given by

x = tan−1(c) + n · π where n = 0,±1,±2,±3, . . . (20.1)

Example 20.3

Solve for x:

a) tan(x) = 1 b) tan(x) = −1 c) tan(x) = 5.1 d) tan(x) = −3.7

Solution.

a) First, we find tan−1(1) = 45◦ = π
4
. The general solution is thus:

x =
π

4
+ n · π where n = 0,±1,±2,±3, . . .
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b) We first compute one solution, tan−1(−1) = −45◦ = −π
4
. The gen-

eral solution of tan(x) = −1 is therefore,

x = −π

4
+ n · π, where n = 0,±1,±2, . . .

For parts (c) and (d), we do not have an exact solution, so that the
solution can only be approximated with the calculator.

c)

x = tan−1(5.1) + nπ ≈ 1.377 + nπ, where n = 0,±1,±2

d)

x = tan−1(−3.7) + nπ ≈ −1.307 + nπ, where n = 0,±1,±2

The equation cos(x) = c

Next, we consider equations that contain a cosine. We start again by solving
a specific example from which we infer the general solution.

Example 20.4

Solve for x: cos(x) = 1
2

x

y = cos(x)

π
3

−π
3

π−π

︸ ︷︷ ︸

one full period

Solution.
We have the obvious solution to the equation x = cos−1(1

2
) = 60◦ = π

3
.

However, since cos(−x) = cos(x), there is another solution given by
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taking x = −π
3
:

cos
(

− π

3

)

= cos
(π

3

)

=
1

2

Moreover, the y = cos(x) function is periodic with period 2π, that is,
we have cos(x + 2π) = cos(x). Thus, all of the following numbers are
solutions of the equation cos(x) = 1

2
:

. . . , π
3
− 4π, π

3
− 2π, π

3
, π

3
+ 2π, π

3
+ 4π, . . . ,

and: . . . , −π
3
− 4π, −π

3
− 2π, −π

3
, −π

3
+ 2π, −π

3
+ 4π, . . . .

From the graph we see that there are only two solutions of cos(x) = 1
2

within one period. Thus, the above list constitutes all solutions of the
equation. With this observation, we may write the general solution as:

x = π
3
+ 2n · π

or x = −π
3
+ 2n · π where n = 0,±1,±2,±3, . . .

In short, we write this as: x = ±π
3
+ 2n · π with n = 0,±1,±2,±3, . . . .

We generalize this example as follows.

Observation 20.5: Solving cos(x) = c

To solve cos(x) = c, we first determine one solution x = cos−1(c). Then
the general solution is given by

x = cos−1(c) + 2n · π
or x = − cos−1(c) + 2n · π where n = 0,±1,±2,±3, . . . (20.2)

In short, we can also write this as

x = ± cos−1(c) + 2n · π where n = 0,±1,±2,±3, . . .

Example 20.6

Solve for x.

a) cos(x) = −
√
2
2

b) cos(x) = 0.6 c) cos(x) = −3 d) cos(x) = −1
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Solution.

a) First, we need to find cos−1(−
√
2
2
) = 135◦ = 3π

4
. The general solution

is therefore,

x = ±3π

4
+ 2nπ, where n = 0,±1,±2,±3, . . .

b) We calculate cos−1(0.6) ≈ 0.927 with the calculator. The general
solution is therefore,

x = ± cos−1(0.6) + 2nπ ≈ ±0.927 + 2nπ,

where n = 0,±1,±2,±3, . . .

c) Since the cosine is always −1 ≤ cos(x) ≤ 1, the cosine can never
be −3. Therefore, there is no solution to the equation cos(x) = −3.
This can also be seen from the graph, which does not intersect with
the horizontal line y = −3.

x

y = cos(x)

−3

1

−1

d) A special solution of cos(x) = −1 is cos−1(−1) = 180◦ = π, so that
the general solution is

x = ±π + 2nπ, where n = 0,±1,±2,±3, . . .

However, since −π+2π = +π, the solutions π+2nπ and −π+2nπ
(for n = 0,±1,±2, . . . ) can be identified with each other, and there
is only one solution in each period. Thus, the general solution can
be written as

x = π + 2nπ, where n = 0,±1,±2,±3, . . .
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The graphs of y = cos(x) and y = −1 confirm this solution.

x

y = cos(x)

1

−1

π 3π−π−3π

The equation sin(x) = c

Finally, we consider equations with a sine.

Example 20.7

Solve for x: sin(x) =
√
2
2

x

y = sin(x)

π
4

π − π
4

︸ ︷︷ ︸

one full period

Solution.
First, we can find one obvious solution x = sin−1(

√
2
2
) = 45◦ = π

4
.

Furthermore, another solution appears to be given at an input with the
same distance π

4
from π, that is at π − π

4
:

sin
(

π − π

4

)

= sin

(
3π

4

)

=

√
2

2

In fact, we have the general identity sin(π−x) = sin(x) for any x, which
will be shown in (21.12). These are all solutions within one period, as
can be confirmed from the graph above. The function y = sin(x) is
periodic with period 2π, so that adding 2n ·π for any n = 0,±1,±2, . . .
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gives all solutions of sin(x) =
√
2
2

. This means that the general solution
is given by:

x = π
4
+ 2n · π

or x = (π − π
4
) + 2n · π for n = 0,±1,±2,±3, . . .

We can evaluate the second solution a bit further, since π − π
4
= 3π

4
, so

that the final answer is:

x = π
4
+ 2n · π

or x = 3π
4
+ 2n · π for n = 0,±1,±2,±3, . . .

We have the following general statement.

Observation 20.8: Solving sin(x) = c

To solve sin(x) = c, we first determine one solution x = sin−1(c). Then
the general solution is given by

x = sin−1(c) + 2n · π
or x = (π − sin−1(c)) + 2n · π where n = 0,±1,±2,±3, . . .

(20.3)

Example 20.9

Solve for x.

a) sin(x) = 1
2

b) sin(x) = −1
2

c) sin(x) = −5
7

d) sin(x) = −1

Solution.

a) First, we calculate sin−1(1
2
) = 30◦ = π

6
. A second solution is then

given by π − π
6
= 5π

6
. The general solution is therefore,

x = π
6
+ 2n · π

or x = 5π
6
+ 2n · π for n = 0,±1,±2,±3, . . .

b) First, we calculated sin−1(−1
2
) = −30◦ = −π

6
. We find a second

solution by taking π − (−π
6
) = π + π

6
= 7π

6
. We thus state the
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general solution as

x = −π
6
+ 2n · π

or x = 7π
6
+ 2n · π for n = 0,±1,±2,±3, . . .

c) We do not have an exact value of sin−1(−5
7
), so that we either need to

leave it as is, or approximate it with the calculator to be sin−1(−5
7
) ≈

−0.796. A second solution is given by π − sin−1(−5
7
) ≈ 3.937. We

get the solution:

x ≈ −0.796 + 2n · π
or x ≈ 3.937 + 2n · π for n = 0,±1,±2,±3, . . .

d) We calculate sin−1(−1) = −90◦ = −π
2
, and π − (−π

2
) = π + π

2
= 3π

2
.

The solution is therefore,

x = −π
2
+ 2n · π

or x = 3π
2
+ 2n · π for n = 0,±1,±2,±3, . . .

Note however, that 3π
2
= −π

2
+ 2π, so that the various solutions can

be identified with each other. This can also be seen on the graph of
y = sin(x):

x

y = sin(x)

1

−1

−π
2−5π

2
3π
2

A complete solution is therefore given by

x = −π

2
+ 2n · π, for n = 0,±1,±2,±3, . . .

Writing the solution in this way has the advantage that it does not
repeat any of the solutions, and is therefore preferred.



20.1. BASIC TRIGONOMETRIC EQUATIONS 351

Summary

We summarize the different formulas we used to solve the basic trigonometric
equations in the following table.

Solve: sin(x) = c Solve: cos(x) = c Solve: tan(x) = c

First, find one solution: First, find one solution: First, find one solution:
sin−1(c) cos−1(c) tan−1(c)

The general solution is: The general solution is: The general solution is:

x = sin−1(c) + 2nπ
x = (π − sin−1(c)) + 2nπ

x = cos−1(c) + 2nπ
x = − cos−1(c) + 2nπ

x = tan−1(c) + nπ

where n = 0,±1,±2, . . . where n = 0,±1,±2, . . . where n = 0,±1,±2, . . .

Example 20.10

Find the general solution of the equation, and state at least 6 distinct
solutions.

a) sin(x) = −1
2

b) cos(x) = −
√
3
2

Solution.

a) We already calculated the general solution in Example 20.9(b). The
solution is

x = −π
6
+ n · 2π

or x = 7π
6
+ n · 2π for n = 0,±1,±2,±3, . . .

We simplify the solutions for n = 0, 1,−1:

n = 0 : x = −π

6
+ 0 · 2π = −π

6

n = 1 : x = −π

6
+ 1 · 2π = −π

6
+

12π

6
=

11π

6

n = −1 : x = −π

6
+ (−1) · 2π = −π

6
− 12π

6
= −13π

6

and

n = 0 : x =
7π

6
+ 0 · 2π =

7π

6
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n = 1 : x =
7π

6
+ 1 · 2π =

7π

6
+

12π

6
=

19π

6

n = −1 : x =
7π

6
+ (−1) · 2π =

7π

6
− 12π

6
= −− 5π

6

b) Since cos−1(−
√
3
2
) = 150◦ = 5π

6
, the solutions of cos(x) = −

√
3
2

are:

x = ±5π

6
+ n · 2π, where n = 0,±1,±2,±3, . . .

We write the 6 solutions with n = 0,+1,−1, and for each use the
two distinct first terms +5π

6
and −5π

6
.

n = 0 : x = +
5π

6
+ 0 · 2π =

5π

6

n = 1 : x = +
5π

6
+ 1 · 2π =

5π

6
+ 2π =

5π + 12π

6
=

17π

6

n = −1 : x = +
5π

6
+ (−1) · 2π =

5π

6
− 2π =

5π − 12π

6
=

−7π

6

and

n = 0 : x = −5π

6
+ 0 · 2π = −5π

6

n = 1 : x = −5π

6
+ 1 · 2π = −5π

6
+ 2π =

−5π + 12π

6
=

7π

6

n = −1 : x = −5π

6
+ (−1) · 2π = −5π

6
− 2π =

−5π − 12π

6

=
−17π

6

Further solutions can be found by taking values n = +2,−2,+3,−3, . . . .

20.2 Equations involving trigonometric functions

The previous section explained how to solve the basic trigonometric equations

sin(x) = c, cos(x) = c, and tan(x) = c.
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The next examples can be reduced to these basic equations.

Example 20.11

Solve for x.

a) 2 sin(x)−
√
3 = 0 b) sec(x) = −

√
2 c) 7 cot(x) + 3 = 0

Solution.

a) Solving for sin(x), we get

2 sin(x)−
√
3 = 0

(+
√
3)

=⇒ 2 sin(x) =
√
3

(÷2)
=⇒ sin(x) =

√
3

2

One solution of sin(x) =
√
3
2

is sin−1(
√
3
2
) = 60◦ = π

3
. Another

solution is given by π − π
3
= 2π

3
. The general solution is

x = π
3
+ 2nπ

or x = 2π
3
+ 2nπ

for n = 0,±1,±2,±3, . . .

b) Recall that sec(x) = 1
cos(x)

. Therefore,

sec(x) = −
√
2 =⇒ 1

cos(x)
= −

√
2

(reciprocal)
=⇒ cos(x) = − 1√

2
= −

√
2

2

A special solution of cos(x) = −
√
2
2

is cos−1(−
√
2
2
) = 135◦ = 3π

4
. The

general solution is

x = ±3π

4
+ 2nπ, where n = 0,±1,±2, . . .

c) Recall that cot(x) = 1
tan(x)

. So

7 cot(x) + 3 = 0
(−3)
=⇒ 7 cot(x) = −3

(÷7)
=⇒ cot(x) = −3

7

=⇒ 1

tan(x)
= −3

7

(reciprocal)
=⇒ tan(x) = −7

3

The solution is

x = tan−1

(

−7

3

)

+ nπ ≈ −1.166 + nπ, where n = 0,±1,±2, . . .
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For the next problems we combine quadratic functions with trigonometric
functions. It is customary to use the following notation.

Convention 20.12: Square of a trigonometric function

We denote the square of a trigonometric function as follows:

sin2 α := (sinα)2 cos2 α := (cosα)2 tan2 α := (tanα)2

In order to solve quadratic trigonometric equations, it can be helpful to
substitute u for a trigonometric expression first, then solve for u, and finally
apply the rules from the previous section to solve for the wanted variable.
This method is shown in the next example.

Example 20.13

Solve for x.

a) 2 sin2(x) +
√
3 sin(x) = 0 b) 2 cos2(x)− 1 = 0

c) tan2(x) + 2 tan(x) + 1 = 0

Solution.

a) We first need to solve 2 sin2(x)+
√
3 sin(x) = 0 for sin(x). In this case,

this can be done either by factoring sin(x) directly, that is, by writing
sin(x) · (2 sin(x) +

√
3) = 0, or, more thoroughly, by substituting

u = sin(x), and then solving for u, for which we get:

2u2 +
√
3u = 0

(factor u)
=⇒ u · (2u+

√
3) = 0 =⇒ u = 0 or 2u+

√
3 = 0

We get two trigonometric equations that we need to solve:

sin(x) = 0 2 sin(x) +
√
3 = 0

=⇒ 2 sin(x) = −
√
3

=⇒ sin(x) = −
√
3
2

then: sin−1(0) = 0◦ = 0 then: sin−1
(

−
√
3
2

)

= −60◦ = −π
3

and: π − 0 = π and: π − (−π
3
) = π + π

3
= 4π

3

=⇒ x = 0 + 2nπ =⇒ x = −π
3
+ 2nπ

or x = π + 2nπ or x = 4π
3
+ 2nπ

where n = 0,±1,±2, . . . where n = 0,±1,±2, . . .
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The general solution is therefore,

x = 0 + 2nπ, or x = −π

3
+ 2nπ,

or x = π + 2nπ, or x =
4π

3
+ 2nπ, where n = 0,±1,±2, . . .

b) Substituting u = cos(x), we get

2u2 − 1 = 0
(+1)
=⇒ 2u2 = 1

(÷2)
=⇒ u2 =

1

2

=⇒ u = ±
√

1

2
= ± 1√

2
= ±

√
2

2

=⇒ u = +

√
2

2
or u = −

√
2

2

For each of the two cases, we need to solve the corresponding
trigonometric equation after replacing u = cos(x).

cos(x) =
√
2
2

cos(x) = −
√
2
2

then: cos−1
(√

2
2

)

= 45◦ = π
4

then: cos−1
(

−
√
2
2

)

= 135◦ = 3π
4

=⇒ x = ±π
4
+ 2nπ =⇒ x = ±3π

4
+ 2nπ

where n = 0,±1,±2, . . . where n = 0,±1,±2, . . .

Thus, the general solution is,

x = ±π

4
+2nπ, or x = ±3π

4
+2nπ, where n = 0,±1,±2, . . .

c) Substituting u = tan(x), we have to solve the equation

u2+2u+1 = 0
(factor)
=⇒ (u+1)(u+1) = 0 =⇒ u+1 = 0

(−1)
=⇒ u = −1

Resubstituting u = tan(x), we have to solve tan(x) = −1. Using the
fact that tan−1(−1) = −45◦ = −π

4
, we have the general solution

x = −π

4
+ nπ, where n = 0,±1,±2, . . .
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Example 20.14

Solve the equation with the calculator. Approximate the solution to the
nearest thousandth.

a) 2 sin(x) = 4 cos(x) + 3 b) 5 cos(2x) = tan(x)

Solution.

a) We rewrite the equation as 2 sin(x) − 4 cos(x) − 3 = 0, and use
the calculator to find the graph of the function f(x) = 2 sin(x) −
4 cos(x) − 3. The zeros of the function f are the solutions of the
initial equation. The graph that we obtain is displayed below.

The graph indicates that the function f(x) = 2 sin(x)− 4 cos(x)− 3
is periodic. This can be confirmed by observing that both sin(x) and
cos(x) are periodic with period 2π, and thus also f(x).

f(x+ 2π) = 2 sin(x+ 2π)− 4 cos(x+ 2π)− 3

= 2 sin(x)− 4 cos(x)− 3 = f(x)

The solution of f(x) = 0 can be approximated by clicking on the
roots.

The general solution is thus

x ≈ 1.842+2nπ or x ≈ 3.513+2nπ, where n = 0,±1,±2, . . .
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b) We rewrite the equation as 5 cos(2x) − tan(x) = 0 and graph the
function f(x) = 5 cos(2x)− tan(x) in the standard window.

Note again that the function f is periodic. The period of cos(2x) is
2π
2
= π (see Definition 18.7 on page 321), and the period of tan(x)

is also π (see Equation (18.3) on page 317). Thus, f is also periodic
with period π. The solutions in one period are approximated by
finding the zeros with the calculator.

The general solution is given by any of these numbers, with possibly
an additional shift by any multiple of π.

x ≈ 1.788 + nπ or x ≈ 2.224 + nπ or x ≈ 3.842 + nπ,

where n = 0,±1,±2,±3, . . .
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20.3 Exercises

Exercise 20.1

Find all solutions of the equation, and simplify as much as possible. Do
not approximate the solution.

a) tan(x) =
√
3
3

b) sin(x) =
√
3
2

c) sin(x) = −
√
2
2

d) cos(x) =
√
3
2

e) cos(x) = 0 f ) cos(x) = −0.5 g) cos(x) = 1 h) sin(x) = 5

i) sin(x) = 0 j) sin(x) = −1 k) tan(x) = −
√
3 l) cos(x) = 0.2

Exercise 20.2

Find all solutions of the equation. Approximate your solution with the
calculator.

a) tan(x) = 6.2 b) cos(x) = 0.45 c) sin(x) = 0.91
d) cos(x) = −.772 e) tan(x) = −0.2 f ) sin(x) = −0.06

Exercise 20.3

Find at least 5 distinct solutions of the equation.

a) tan(x) = −1 b) cos(x) =
√
2
2

c) sin(x) = −
√
3
2

d) tan(x) = 0
e) cos(x) = 0 f ) cos(x) = 0.3 g) sin(x) = 0.4 h) sin(x) = −1

Exercise 20.4

Solve for x. State the general solution without approximation.

a) tan(x)− 1 = 0 b) 2 sin(x) = 1 c) 2 cos(x) +
√
3 = 0

d)
√
2 cos(x)− 1 = 0 e) sec(x) = −2 f ) cot(x) =

√
3
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Exercise 20.5

Solve for x. State the general solution without approximation.

a) 2 sin2(x)−
√
2 sin(x) = 0 b) tan2(x) + tan(x) = 0

c) 2 cos2(x) +
√
3 cos(x) = 0 d) sin2(x) + sin(x) = 0

e) tan2(x)− 3 = 0 f ) 4 cos2(x)− 1 = 0
g) 4 sin2(x)− 3 = 0 h) cos(x) sin(x) + sin(x) = 0

i) tan(x) cos(x) +
√
3 cos(x) = 0 j) cos2(x) + 7 cos(x) + 6 = 0

k) 4 cos2(x)− 4 cos(x) + 1 = 0 l) 2 sin2(x) + 11 sin(x) = −5
m) 2 sin2(x) + sin(x)− 1 = 0 n) 2 cos2(x)− 3 cos(x) + 1 = 0
o) 2 cos2(x) + 9 cos(x) = 5 p) tan3(x)− tan(x) = 0

Exercise 20.6

Use the calculator to find all solutions of the given equation. Approxi-
mate the answer to the nearest thousandth.

a) 2 cos(x) = 2 sin(x) + 1 b) 7 tan(x) · cos(2x) = 1
c) 4 cos2(3x) + cos(3x) = sin(3x) + 2 d) sin(x) + tan(x) = cos(x)



Chapter 21

Trigonometric identities

In this section, we state and summarize various important identities of trigono-
metric functions, some of which we have already used in previous sections.
We will look at four kinds of identities:

1. Reciprocal identities and quotient identities

2. Pythagorean identities

3. Identities involving signs

4. Identities from adding π
2

or π to an angle

5. Addition, subtraction of angles formulas, half- and double-angle formu-
las

21.1 Reciprocal, Pythagorean, and sign identities

We start by recalling the definition of the trigonometric functions. In fact,
going beyond the unit circle, we will restate the definition in a slightly more
general setting, that is, stating the trigonometric functions for any point on
the terminal side of the angle.

Observation 21.1: sin, cos, tan via point on the terminal side

Let x be an angle. Consider the terminal side of the angle x, and
assume that the point P (a, b) is a point on the terminal side of x (not

360
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necessarily on the unit circle). Let c be the distance from P to the
origin (0, 0). Note that the the Pythagorean theorem states that

a2 + b2 = c2 =⇒ c =
√
a2 + b2 (21.1)

Now, dividing the coordinates of P by c gives another point Q also
on the terminal side of x with coordinates (a

c
, b
c
), and moreover, Q is

on the unit circle, since its distance to the origin is
√

(a
c
)2 + ( b

c
)2 =

√
a2

c2
+ b2

c2
=
√

a2+b2

c2
=
√

c2

c2
=

√
1 = 1.

P (a, b)

x

a

b

c

terminal side of x

Q

unit circle

Therefore, the trigonometric function values of x are given by the coor-
dinates of Q(a

c
, b
c
), that is:

sin(x) =
b

c
cos(x) =

a

c
tan(x) =

b

a
(21.2)

where we used that tan(x) = sin(x)
cos(x)

=
b
c
a
c

= b
c
· c
a
= b

a
. Moreover, the

cosecant, the secant, and the cotangent are given by:

csc(x) =
1

sin(x)
=

c

b
sec(x) =

1

cos(x)
=

c

a
cot(x) =

1

tan(x)
=

a

b
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1. Reciprocal identities and quotient identities

From the above observation, we have the following immediate identities be-
tween the trigonometric functions:

Observation 21.2: Reciprocal identities and quotient identities

The following reciprocal identities hold true:

sin(x) =
1

csc(x)
cos(x) =

1

sec(x)
tan(x) =

1

cot(x)
(21.3)

csc(x) =
1

sin(x)
sec(x) =

1

cos(x)
cot(x) =

1

tan(x)
(21.4)

The quotient identities hold true:

tan(x) =
sin(x)

cos(x)
cot(x) =

cos(x)

sin(x)
(21.5)

Example 21.3

Write the expression as one of the six trigonometric functions.

a) sin(x) · cot(x) b) cot(x)
csc(x) cos(x)

· tan(x)
sin(x)

Solution.

a) sin(x) · cot(x) = sin(x) · cos(x)
sin(x)

= cos(x)

b) We rewrite in terms of sin(x) and cos(x) and cancel:

cot(x)

csc(x) cos(x)
· tan(x)
sin(x)

=

cos(x)
sin(x)

1
sin(x)

cos(x)
·

sin(x)
cos(x)

sin(x)
=

1

cos(x)
= sec(x)
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Example 21.4

Determine whether the identity is true or false.

a) sec(x) · tan(x) = 1
csc(x)

b) cos(x)
csc(x)

= sin2(x)
tan(x)

Solution.

a) Since sec(x) · tan(x) = 1
cos(x)

sin(x)
cos(x)

= sin(x)
cos2(x)

and 1
csc(x)

= 1
1

sin(x)

=

sin(x), we see that the expression on the right-hand side is different
from the expression on the left-hand side, and so, the identity is false.
We can also check this by graphing both sides with the calculator,
which, indeed, shows that the two expressions are different.

b) Note that the calculator appears to show the same graph for cos(x)
csc(x)

and sin2(x)
tan(x)

.

To confirm this, calculate cos(x)
csc(x)

= cos(x)
1

sin(x)

= cos(x) · sin(x) and sin2(x)
tan(x)

=

sin2(x)
sin(x)
cos(x)

= sin2(x) cos(x)
sin(x)

= sin(x) · cos(x), which are, indeed, equal.

Therefore, the identity is true.
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2. Pythagorean identities

The next identities come from the Pythagorean theorem.

Observation 21.5: Pythagorean identities

The Pythagorean identities hold true:

sin2(x) + cos2(x) = 1 (21.6)

sec2(x) = 1 + tan2(x) (21.7)

csc2(x) = 1 + cot2(x) (21.8)

Proof. In the notation of Observation 21.1, where P (a, b) is a point on the
terminal side of x with distance c to the origin, the Pythagorean theorem
states a2 + b2 = c2 (see (21.1)). Therefore, from (21.2), we have

sin2(x) + cos2(x) =
(b

c

)2

+
(a

c

)2

=
b2 + a2

c2
=

c2

c2
= 1

Similarly, 1 + tan2(x) = 1 +
(
b
a

)2
= a2+b2

a2
= c2

a2
=
(
c
a

)2
= sec2(x), and

1 + cot2(x) = 1 +
(
a
b

)2
= b2+a2

b2
= c2

b2
=
(
c
b

)2
= csc2(x).

Example 21.6

Simplify the expression as much as possible.

a) (cos(x)− 1) · (cos(x) + 1) b)
1−sec2(x)
cot(x)

c)
sin(x)
cos(x)

+ cos(x)
sin(x)

Solution.

a) (cos(x)− 1) · (cos(x) + 1) = cos2(x)− 1
(21.6)
= − sin2(x)

b) 1−sec2(x)
cot(x)

(21.7)
= − tan2(x)

1
tan(x)

= − tan2(x) · tan(x)
1

= − tan3(x)

c) sin(x)
cos(x)

+ cos(x)
sin(x)

= sin2(x)
sin(x) cos(x)

+ cos2(x)
sin(x) cos(x)

= sin2(x)+cos2(x)
sin(x) cos(x)

= 1
sin(x) cos(x)



21.1. RECIPROCAL, PYTHAGOREAN, AND SIGN IDENTITIES 365

Example 21.7

Determine whether the identity is true or false.

a) cos(x) tan(x) + csc(x) sin2(x) = 2 sin(x)

b) cos2(x)−1
1−sec2(x)

= cos(x)+1
2

Solution.

a) We use the calculator to check for differences between the right- and
left-hand sides of the equation. The two sides appear to be equal.

To verify the identity, we compute:

cos(x) tan(x) + csc(x) sin2(x) = cos(x)
sin(x)

cos(x)
+

1

sin(x)
sin2(x)

= sin(x) + sin(x) = 2 sin(x)

b) The calculator shows that the two sides differ. The identity is false.
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3. Identities involving signs

When changing an angle to its negative angle, the trigonometric functions
also transform in a well-behaved manner. We now state and prove these
transformation identities.

Observation 21.8: Identities involving signs

The definition of sin(x) and cos(x) gives the following behavior under
sign change.

sin(−x) = − sin(x) cos(−x) = cos(x) (21.9)

csc(−x) = − csc(x) sec(−x) = sec(x) (21.10)

tan(−x) = − tan(x) cot(−x) = − cot(x) (21.11)

Proof. The negative of an angle has a terminal side that is reflected about the x-axis, so that the cosine
(which is the x-coordinate of a point on the terminal side) stays the same, and the sine (which is the
y-coordinate of a point on the terminal side) becomes the negative of the original angle.

angle

 

(a, b)

−angle

(a,−b)

While the above picture is for an angle in the first quadrant, the argument holds in general. Convince
yourself that the same holds in other quadrants as well!

The other identities (21.10) and (21.11) then follow from the reciprocal and quotient identities (21.4) and
(21.5).

21.2 Optional section: Further identities revisited

To give a more complete picture, we now state and provide a proof for some
further identities. Several of these identities have already been encountered
in previous sections.
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4. Identities from adding π
2

or π to an angle

Observation 21.9: Identities from adding π
2

or π to an angle

sin(π − x) = sin(x) cos(π − x) = − cos(x) (21.12)

sin(x+
π

2
) = cosx cos(x+

π

2
) = − sin(x) (21.13)

sin(x− π

2
) = − cos x cos(x− π

2
) = sin(x) (21.14)

Proof. Just as in the proof to Observation 21.8, we will give the argument in general, but only provide
pictures for an angle in the first quadrant. Convince yourself that the same argument holds in other
quadrants as well!

Taking (π−angle) = (180◦−angle) reflects the terminal side of the angle about the y-axis. Therefore, the
cosine becomes negative, and the sine stays the same.

angle

 

(a, b)
180◦−angle

angle

(−a, b)

For the identity sin(x + π
2
) = cos x, note that adding π

2
= 90◦ rotates the terminal side by 90◦ . If

P (a, b) are coordinates on the terminal side of the angle, then consider the triangle △OQP , given by the

points O(0, 0) and Q(a, 0). Note that triangle △OQP is congruent to triangle △OQ̃P̃ where Q̃(0, a)

and P̃ (−b, a), and they have the same angle x at the origin.

x  

P (a, b)

Q(a, 0)

x

P̃ (−b, a)
Q̃(0, a)

Note that the point P̃ (−b, a) lies on the terminal side of x+ 90◦ . Thus, sin(x+ 90◦) = a is the vertical

coordinate of P̃ (−b, a), which equals cos(x) = a, the horizontal coordinate of P (a, b). We have shown
that sin(x+ π

2
) = cos x for all x.

We check the remaining identities with the identities we have already proved. Applying cos(u) = sin(u+
π
2
) to u = x+ π

2
gives:

cos(x+
π

2
) = sin(x+

π

2
+

π

2
) = sin(x+ π)

(21.12)
= sin(π − (x+ π))

(21.9)
= sin(−x) = − sin(x)
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This proves (21.13). For (21.14), note that:

− cos(x)
(21.12)
= cos(π − x)

(21.9)
= cos(x− π)

(21.13)
= sin(x− π +

π

2
) = sin(x− π

2
)

sin(x)
(21.12)
= sin(π − x)

(21.9)
= − sin(x− π)

(21.13)
= cos(x− π +

π

2
) = cos(x− π

2
)

Example 21.10

Simplify the expression as much as possible.

a) cos(x+ π) b) tan(x+ π
2
)

Solution.

a) cos(x+ π) = cos(π − (−x))
(21.12)
= − cos(−x)

(21.9)
= − cos(x)

b) tan(x+ π
2
) =

sin(x+π
2
)

cos(x+π
2
)

(21.13)
= cos(x)

− sin(x)
= − cot(x)

5. Addition, subtraction of angles formulas, half- and double-angle formulas

We end this section by revisiting the addition and subtraction of angles for-
mulas, and the half- and double-angle formulas. In fact, we will give a proof
of these identities. We first recall the identities and give an example.

Proposition 21.11: Addition and subtraction of angles formulas

For any angles α and β, we have the following addition and subtraction

of angles formulas:

sin(α + β) = sinα cos β + cosα sin β

sin(α− β) = sinα cos β − cosα sin β

cos(α + β) = cosα cos β − sinα sin β

cos(α− β) = cosα cos β + sinα sin β

tan(α + β) =
tanα+ tan β

1− tanα tanβ

tan(α− β) =
tanα− tan β

1 + tanα tan β
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Proposition 21.12: Half- and double-angle formulas

Let α be an angle. Then we have the half-angle formulas:

sin
α

2
= ±

√

1− cosα

2

cos
α

2
= ±

√

1 + cosα

2

tan
α

2
=

1− cosα

sinα
=

sinα

1 + cosα
= ±

√

1− cosα

1 + cosα

Here, the signs “±” are determined by the quadrant in which the angle
α
2

lies. (For more on the signs, see also page 310.)
Furthermore, we have the double-angle formulas:

sin(2α) = 2 sinα cosα

cos(2α) = cos2 α− sin2 α = 1− 2 sin2 α = 2 cos2 α− 1

tan(2α) =
2 tanα

1− tan2 α

Example 21.13

Find the trigonometric functions of 2α when α has the properties below.

a) sin(α) = 3
5
, and α is in quadrant II

b) tan(α) = 12
5

, and α is in quadrant III

Solution.

a) From sin2(α) + cos2(α) = 1, we find that cos2(α) = 1 − sin2(α), and
since α is in the second quadrant, cos(α) is negative, so that

cos(α) = −
√

1− sin2(α) = −
√

1−
(3

5

)2

= −
√

1− 9

25

= −
√

25− 9

25
= −

√

16

25
= −4

5
,

and

tan(α) =
sinα

cosα
=

3
5
−4
5

=
3

5
· 5

−4
= −3

4
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From this we can calculate the solution by plugging these values
into the double-angle formulas.

sin(2α) = 2 sinα cosα = 2 · 3
5
· (−4)

5
=

−24

25

cos(2α) = cos2(α)− sin2(α) =
(−4

5

)2

−
(3

5

)2

=
16

25
− 9

25
=

7

25

tan(2α) =
2 tanα

1− tan2 α
=

2 ·
(−3

4

)

1−
(−3

4

)2 =
−3
2

1− 9
16

=
−3
2

16−9
16

=
−3

2
· 16
7

=
−24

7

b) Similar to the calculation in part (a), we first calculate sin(α) and
cos(α), which are both negative in the third quadrant. Recall from
Equation (21.6) on page 364 that sec2 α = 1+ tan2 α, where secα =

1
cosα

. Therefore,

sec2 α = 1+
(12

5

)2

= 1+
144

25
=

25 + 144

25
=

169

25
=⇒ secα = ±13

5

Since cos(α) is negative (in quadrant III), so is sec(α), so that we
get,

cosα =
1

secα
=

1

−13
5

= − 5

13

Furthermore, sin2 α = 1 − cos2 α, and sinα is negative (in quadrant
III), we have

sinα = −
√
1− cos2 α = −

√

1−
(

− 5

13

)2

= −
√

1− 25

169

= −
√

169− 25

169
= −

√

144

169
= −12

13

Thus, we obtain the solution as follows:

sin(2α) = 2 sinα cosα = 2 · (−12)

13
· (−5)

13
=

120

169

cos(2α) = cos2(α)− sin2(α) =
(−5

13

)2

−
(−12

13

)2
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=
25

169
− 144

169
=

−119

169

tan(2α) =
2 tanα

1− tan2 α
=

2 · 12
5

1−
(
12
5

)2 =
24
5

1− 144
25

=
24
5

25−144
25

=
24

5
· 25

−119
=

120

−119

We now give a proof of Proposition 21.11.

Proof of Proposition 21.11. We start with the proof of the formulas for sin(α+β) and cos(α+β) when α
and β are angles between 0 and π

2
= 90◦ . We prove the addition formulas (for α, β ∈ (0, π

2
)) in a quite

elementary way, and then show that the addition formulas also hold for arbitrary angles α and β.

To find sin(α+ β), consider the following setup.

x

y

α

β γ

γ

α

a

b

d

c

f

e

Note that there are vertically opposite angles, labelled by γ, which are therefore equal. These angles are
angles in two right triangles, with the third angle being α. We therefore see that the angle α appears
again as the angle among the sides b and f . With this, we can now calculate sin(α+ β).

sin(α + β) =
opposite

hypotenuse
=

e+ f

d
=

e

d
+

f

d
=

a

d
+

f

d
=

a

c
· c
d
+

f

b
· b
d

= sin(α) cos(β) + cos(α) sin(β)

The above figure displays the situation when α + β ≤ π
2

. There is a similar figure for π
2

< α + β < π.
(We recommend as an exercise to draw the corresponding figure for the case of π

2
< α+ β < π.)
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Next, we prove the addition formula for cos(α+ β). The following figure depicts the relevant objects.

x

y

α

β

α b

d

c

g h

k

We calculate cos(α+ β) as follows.

cos(α + β) =
adjacent

hypotenuse
=

g

d
=

g + h

d
− h

d
=

g + h

d
− k

d
=

g + h

c
· c
d
− k

b
· b
d

= cos(α) cos(β)− sin(α) sin(β)

Again, there is a corresponding figure when the angle α+β is greater than π
2

. (We encourage the student
to check the addition formula for this situation as well.)

We therefore have proved the addition formulas for sin(α+ β) and cos(α + β) when α and β are angles
between 0 and π

2
, which we will now extend to all angles α and β. First, note that the addition formulas

are trivially true when α or β are 0. (Check this!) Next, by observing that sin(x) and cos(x) can be
converted to each other via shifts of π

2
, (that is, by using the identities (21.13) and (21.14)), we obtain that

sin(x+
π

2
) = cos x, cos(x+

π

2
) = − sin(x),

sin(x− π

2
) = − cos x, cos(x− π

2
) = sin(x).

With this, we extend the addition identities for α by ±π
2

as follows:

sin
(
(α+

π

2
) + β

)
= sin(α + β +

π

2
) = cos(α + β) = cos(α) cos(β)− sin(α) sin(β)

= sin(α +
π

2
) cos(β) + cos(α +

π

2
) sin(β),

sin
(
(α− π

2
) + β

)
= sin(α + β − π

2
) = − cos(α+ β) = − cos(α) cos(β) + sin(α) sin(β)

= sin(α − π

2
) cos(β) + cos(α − π

2
) sin(β),

cos
(
(α+

π

2
) + β

)
= cos(α+ β +

π

2
) = − sin(α+ β) = − sin(α) cos(β) − cos(α) sin(β)

= cos(α+
π

2
) cos(β)− sin(α +

π

2
) sin(β),

cos
(
(α− π

2
) + β

)
= cos(α+ β − π

2
) = sin(α + β) = sin(α) cos(β) + cos(α) sin(β)

= cos(α− π

2
) cos(β)− sin(α − π

2
) sin(β).
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There are similar proofs to extend the identities for β. An induction argument shows the validity of the
addition formulas for arbitrary angles α and β.

The remaining formulas now follow via the use of trigonometric identities.

tan(α+ β) =
sin(α+ β)

cos(α+ β)
=

sinα cos β + cosα sinβ

cosα cos β − sinα sinβ
=

sinα cos β+cosα sinβ
cosα cos β

cosα cos β−sinα sinβ
cosα cos β

=

sinα
cosα

+ sinβ
cos β

1− sinα
cosα

sinβ
cos β

This shows that tan(α + β) = tanα+tan β

1−tanα tan β
. For the relations with α − β, we use the fact that sin and

tan are odd functions, whereas cos is an even function. See identities (18.2) and (18.4).

sin(α − β) = sin(α + (−β)) = sin(α) cos(−β) + cos(α) sin(−β) = sinα cos β − cosα sinβ,

cos(α − β) = cos(α + (−β)) = cos(α) cos(−β) − sin(α) sin(−β) = cosα cos β + sinα sinβ,

tan(α − β) = tan(α+ (−β)) =
tan(α) + tan(−β)

1− tan(α) tan(−β)
=

tanα− tan β

1 + tanα tan β
.

This completes the proof of the proposition.

Finally, using Proposition 21.11, we also prove Proposition 21.12.
Proof of Proposition 21.12. We start with the double angle formulas. Using Proposition 21.11, we have:

sin(2α) = sin(α+ α) = sinα cosα+ cosα sinα = 2 sinα cosα

cos(2α) = cos(α+ α) = cosα cosα− sinα sinα = cos2 α− sin2 α

tan(2α) = tan(α + α) =
tanα+ tanα

1− tanα tanα
=

2 tanα

1− tan2 α

Notice that cos(2α) = cos2 α− sin2 α can be rewritten using sin2 α+ cos2 α = 1 as follows:

cos2 α− sin2 α = (1− sin2 α)− sin2 α = 1− 2 sin2 α

and cos2 α− sin2 α = cos2 α− (1 − cos2 α) = 2 cos2 α− 1

This shows the double-angle formulas. These formulas can now be used to prove the half-angle formulas.

cos(2α) = 1− 2 sin2 α =⇒ 2 sin2 α = 1− cos(2α) =⇒ sin2 α =
1− cos(2α)

2

=⇒ sinα = ±
√

1− cos(2α)

2

replace α by α
2=⇒ sin

α

2
= ±

√
1− cosα

2

cos(2α) = 2 cos2 α− 1 =⇒ 2 cos2 α = 1 + cos(2α) =⇒ cos2 α =
1 + cos(2α)

2

=⇒ cosα = ±
√

1 + cos(2α)

2

replace α by α
2=⇒ cos

α

2
= ±

√
1 + cosα

2

in particular: tan
α

2
=

sin(α
2
)

cos(α
2
)
=

±
√

1−cosα
2

±
√

1+cosα
2

= ±
√

1− cosα

1 + cosα

For the first two formulas for tan α
2

we simplify sin(2α) · tan(α) and (1 + cos(2α)) · tan(α) as follows.

sin(2α) · tan(α) = 2 sinα cosα · sinα

cosα
= 2 sin2 α = 1− cos(2α)

=⇒ tan(α) =
1− cos(2α)

sin(2α)

replace α by α
2=⇒ tan(

α

2
) =

1− cos(α)

sin(α)

(1 + cos(2α)) · tan(α) = 2 cos2 α · sinα

cosα
= 2 sinα cosα = sin(2α)

=⇒ tan(α) =
sin(2α)

1 + cos(2α)

replace α by α
2=⇒ tan(

α

2
) =

sin(α)

1 + cos(α)

This completes the proof of the proposition.
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21.3 Exercises

Exercise 21.1

Write the expression as one of the six trigonometric functions.

a) cos(x) · tan(x) b) sec(x) · cot(x) c) csc(x)
sec(x)

d) tan(x) · cot(x)
sin(x)

e) cot(x)
csc(x)

f ) sin(x)
cot(x)

· csc2(x)

Exercise 21.2

Determine if the identity is true or false. If the identity is true, then
give an argument for why it is true.

a) cos(x) · csc(x) = sin(x) · sec(x)
b) sin(x)

cot(x)
= tan(x)

csc(x)

c) csc(x)
sin(x)

= cot(x)
tan(x)

d) sin(x) · cos(x) · csc2(x) = csc(x)
sec(x)

Exercise 21.3

Simplify the expression as much as possible.

a) cos2(x)−1
sin(x)

b) 1−sin2(x)
cot(x)

c) 1 + cos2(x)

sin2(x)
d) tan2(x)

sec2(x)
− 1

e) cos(x) + sin2(x)
cos(x)

f ) sec(x)− tan2(x)
sec(x)

g) (1 + sin(x)) · (1− sin(x)) h) (1− sec(x)) · (1 + sec(x))

i) (csc(x)− 1) · (csc(x) + 1) j) sec(x)
tan(x)

− tan(x)
sec(x)

k) cos4(x)− sin4(x) l) tan4(x)− sec4(x)
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Exercise 21.4

Determine whether the identity is true or false. If the identity is true,
then give an argument for why it is true.

a) sin(x)− sin(x) cos2(x) = sin3(x)

b) cot2(x)− csc2(x) = tan2(x)− sec2(x)

c) tan2(x) + sec2(x) = 1

d) sin3(x)− sin(x) = − sin(x) · cos2(x)
e) sin(x) · (cos(x)− sin(x)) = cos2(x)

f ) (sin(x)− cos(x))2 = 1− 2 sin(x) cos(x)

Exercise 21.5

Simplify the expression as much as possible.

a) sin(x+ π) b) tan(π − x) c) cot(x+ π
2
) d) cos(x+ 3π

2
)

Exercise 21.6

Find the exact values of the trigonometric functions of α
2

and of 2α by
using the half-angle and double-angle formulas.

a) sin(α) = 4
5
, and α in quadrant I

b) cos(α) = 7
13

, and α in quadrant IV

c) sin(α) = −3
5

, and α in quadrant III

d) tan(α) = 4
3
, and α in quadrant III

e) tan(α) = −5
12

, and α in quadrant II

f ) cos(α) = −2
3

, and α in quadrant II



Review of trigonometric functions

Exercise IV.1

a) Convert from radian to degree: 4π
3

b) Convert from degree to radian: 315◦

Exercise IV.2

Fill in all the trigonometric function values in the table below.

0 π
6

π
4

π
3

π
2

sin(x)
cos(x)
tan(x)

Exercise IV.3

Find the exact value of the trigonometric function.

a) sin
(
5π
4

)
b) cos

(
11π
6

)
c) cos(300◦)

d) tan(7π
6
) e) tan(120◦) f ) tan(3π

2
)

Exercise IV.4

a) Use the addition and subtraction of angles formulas to find cos
(

π
12

)
.

b) Use the half-angles formulas to find cos
(
3π
8

)
.

376



Exercise IV.5

Find the amplitude, period, and the phase shift of the given function.
Draw the graph over a one-period interval. Label all maxima, minima,
and intercepts.

a) y = 3 cos
(
4x− π

)
b) y = 5 sin

(
x+ π

2

)

Exercise IV.6

Find the exact value and write it in radian.

a) sin−1
(
1
2

)
b) cos−1

(
−

√
3
2

)
c) tan−1

(
−

√
3
3

)

Exercise IV.7

Solve for x:

a) 2 sin(x) +
√
3 = 0 b)

√
3 tan(x)− 1 = 0

Exercise IV.8

Solve for x:

a) tan2(x)− 3 = 0 b) 4 cos2(x)− 1 = 0

Exercise IV.9

Solve for x.

a) 2 sin2(x) + sin(x) = 0 b) 2 cos2(x) +
√
2 cos(x) = 0

Exercise IV.10

Verify the identity: tan2(x) cos(x)− sec(x) = − cos(x)
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Chapter 22

Vectors in the plane

So far, we have discussed functions in general, as well as specific examples,
such as polynomials, rational functions, exponential and logarithmic functions,
and trigonometric functions. In the next chapters we study vectors, complex
numbers, sequences, and series. We start in this chapter with vectors in the
plane.

22.1 Introduction to vectors

Vectors are used in many applications, as they are useful to describe concepts
that have a direction and a magnitude. Examples of these include:

• the velocity of a (moving) object,

• the acceleration of an object,

• the force applied to an object.

Definition 22.1: Geometric vector

A geometric vector is a geometric object that is given by a magnitude

and a direction. We denote a vector by ~v, that is, by placing an arrow
on top of the symbol for the variable.
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Note 22.2

Vectors are often represented by directed line segments ~v =
−→
PQ.

Two directed line segments represent the same vector if one can be
moved to the other by parallel translation (without changing its direc-
tion or magnitute).

We will now study vectors in the plane R2 in more detail.

Observation 22.3: Vectors at the origin

A vector ~v =
−→
PQ in the plane R2 can be represented by arranging the

starting point of ~v to the origin O(0, 0).

-2 -1 0 1 2 3 4 5 6 7 8 9 10

-2

-1

0

1

2

3

4

5

x

y

~v

P

Q

~v

~v

~v
O

R
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If R is given in coordinates by R(a, b), then we also write for ~v =
−→
OR,

~v = 〈a, b〉 or, alternatively, ~v =

[
a
b

]

. (22.1)

Example 22.4

Graph the vectors ~v, ~w,~r, ~s,~t in the plane, where ~v =
−→
PQ with P (6, 3)

and Q(4,−2), and

~w = 〈3,−1〉, ~r = 〈−4,−2〉, ~s = 〈0, 2〉, ~t = 〈−5, 3〉.

Solution.

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

-4

-3

-2

-1

0

1

2

3

4

5

x

y

~w
~r

~s

~t
~v

P

Q

We now compute the magnitude and the direction angle of a vector given
in coordinates, ~v = 〈a, b〉.
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Observation 22.5: Magnitude

Let ~v = 〈a, b〉 = −→
OR be a vector in the plane, where R(a, b) is the point

with coordinates (a, b).

x

y

c = ||~v||
~v

a

b

The magnitude of ~v is the length c of the line segment
−→
OR. The

Pythagorean theorem for the shaded right triangle above gives

a2 + b2 = c2 =⇒ c =
√
a2 + b2

The magnitude of ~v is usually denoted by ||~v||. Therefore, we have:

||~v|| =
√
a2 + b2 (22.2)

Example 22.6

Find the magnitude of the given vectors.

a) ~v = 〈8,−6〉 b) ~v = 〈−5,−5〉 c) ~v = 〈4, 4
√
3〉

Solution.

a) ||~v|| = ||〈8,−6〉|| =
√

82 + (−6)2 =
√
64 + 36 =

√
100 = 10

b) ||~v|| = ||〈−5,−5〉|| =
√

(−5)2 + (−5)2 =
√
25 + 25 =

√
50 =√

25 · 2 = 4
√
2

c) ||~v|| = ||〈4, 4
√
3〉|| =

√

42 + (4
√
3)2 =

√

42 + 42
√
3
2

=√
16 + 16 · 3 =

√
16 + 48 =

√
64 = 8
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Next, we identify the direction angle of a vector ~v = 〈a, b〉.

Observation 22.7: Direction angle

Let ~v = 〈a, b〉 = −→
OR be a vector in the plane, where R(a, b) is the point

with coordinates (a, b).

x

y

c

~v

a

b

θ

c · cos(θ)

c · sin(θ)

The direction angle of ~v is the angle θ (read as ”theta”) determined

by the line segment
−→
OR. Denoting by c = ||~v||, the length of the

vector ~c, then, by (21.2), we have cos(θ) = a
c

and sin(θ) = b
c
, and so,

tan(θ) = sin θ
cos θ

=
b
c
a
c

= b
c
· c
a
= b

a
:

tan θ =
b

a
(22.3)

Note that we can recover the vector ~v = 〈a, b〉 in coordinate form from
the magnitude ||~v|| = c and the angle θ, since cos(θ) = a

c
and sin(θ) = b

c

gives
a = c · cos(θ) and b = c · sin(θ) (22.4)

and therefore:

~v = 〈a, b〉 = 〈 ||~v|| · cos(θ) , ||~v|| · sin(θ) 〉 (22.5)

To find the angle θ from identity tan θ = b
a
, we need to be a bit careful,

because there is more than one angle θ whose tangent is b
a
. This is illustrated

in the next example.
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Example 22.8

Find the direction angle for the vectors

~v = 〈2, 2〉 and ~w = 〈−2,−2〉

Solution.
For ~v = 〈2, 2〉, the direction angle satisfies tan(θ) = 2

2
= 1, and we can

compute θ = tan−1(1) = 45◦. This fits well with the depiction of ~v in
the plane:

x

y

~v

45◦ x

y

~w

Now, the direction angle for ~w = 〈−2,−2〉 satisfies tan(θ) = −2
−2

= 1,
but tan−1(1) = 45◦ is not the angle for ~w, since ~w is in the third
quadrant (while 45◦ is in the first quadrant). The issue is that the
tangent function has the same output values when adding 180◦, that
is, tan(x + 180◦) = tan(x) for all angle x. On the other hand, the
outputs of the tan−1 function are in the interval (−π

2
, π
2
) = (−90◦, 90◦)

(see Definition 19.2) which are in the first and fourth quadrant. We
therefore need to add 180◦ to the tan−1( b

a
) whenever the vector lies in

the second or third quadrant. We thus get:

(angle of ~v ) = 45◦

(angle of ~w ) = 45◦ + 180◦ = 225◦

We can thus summarize the formulas for the magnitude and direction angle
as follows.
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Observation 22.9: Magnitude and direction angle

Let ~v = 〈a, b〉 =
−→
OR be a vector in the plane R2 pointing from the

origin to R(a, b).

x

y

~v

a

b

θ

quadrant Iquadrant II

quadrant III quadrant IV

Then the magnitude and direction angle of ~v are given by:

||~v|| =
√
a2 + b2 and (22.6)

θ =







tan−1( b
a
) if R is in quadrant I or IV

tan−1( b
a
) + 180◦ if R is in quadrant II or III

(22.7)

Here R is the endpoint of the vector ~v =
−→
OR when placed at the origin

(0, 0).

Example 22.10

Find the magnitude and direction angle of the given vectors.

a) 〈−6, 6〉 b) 〈4,−3〉 c) 〈−2
√
3,−2〉

d) 〈8, 4
√
5〉 e)

−→
PQ, where P (9, 2) and Q(3, 10)

Solution.

a) We use formulas (22.6) and (22.7). The magnitude of ~v = 〈−6, 6〉 is

||~v|| =
√

(−6)2 + 62 =
√
36 + 36 =

√
72 =

√
36 · 2 = 6

√
2.
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The direction angle θ is given by tan(θ) = 6
−6

= −1. Since
tan−1(−1) = − tan−1(1) = −45◦ is in the fourth quadrant, but
~v = 〈−6, 6〉 drawn at the origin O(0, 0) has its endpoint in the second
quadrant, we see that the angle θ = −45◦ + 180◦ = 135◦.

x

y

6

−6 −45◦

b) The magnitude of ~v = 〈4,−3〉 is

||~v|| =
√

42 + (−3)2 =
√
16 + 9 =

√
25 = 5.

The direction angle is given by tan(θ) = −3
4

. Since tan−1(−3
4
) ≈

−36.9◦ is in the fourth quadrant, and ~v = 〈4,−3〉 is indeed in the
fourth quadrant, we see that

θ = tan−1
(−3

4

)

≈ −36.9◦.

Sometimes it may be preferable to describe the angle between 0◦

and 360◦. To obtain such and angle for ~v, we can add 360◦, which
gives and angle of ≈ −36.9◦ + 360◦ = 323.1◦ for ~v.

c) The magnitude of ~v = 〈−2
√
3,−2〉 is

||~v|| =
√

(−2
√
3)2 + (−2)2 =

√
4 · 3 + 4 =

√
12 + 4 =

√
16 = 4.

The direction angle is given by tan(θ) = −2
−2

√
3
= 1√

3
=

√
3
3

. Note that

tan−1(
√
3
3
) = 30◦ is in the first quadrant, whereas ~v = 〈−2

√
3,−2〉

is in the third quadrant. Therefore, the angle is given by adding an
additional 180◦ to the angle:

θ = 30◦ + 180◦ = 210◦
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d) The magnitude of ~v = 〈8, 4
√
5〉 is

||~v|| =
√

82 + (4
√
5)2 =

√
64 + 16 · 5 =

√
64 + 80 =

√
144 = 12.

The direction angle is given by the equation tan(θ) = 4
√
5

8
=

√
5
2

.

Since both tan−1(
√
5
2
) ≈ 48.2◦ and the endpoint of ~v (represented

with beginning point at the origin) are in the first quadrant, we have:

θ = tan−1
(
√
5

2

)

≈ 48.2◦.

e) We first need to find the vector ~v =
−→
PQ in the form ~v = 〈a, b〉. The

vector in the plane below shows that ~v is given by

~v = 〈3− 9, 10− 2〉 = 〈−6, 8〉

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

1
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Q

~v

3− 9

10− 2

From this we calculate the magnitude to be

||~v|| =
√

(−6)2 + 82 =
√
36 + 64 =

√
100 = 10.

The direction angle is given by tan(θ) = 8
−6

= −4
3
. Note that

tan−1(−4
3
) ≈ −53.1◦ is in quadrant IV, whereas ~v = 〈−6, 8〉 has its

endpoint in quadrant II (when representing ~v with starting point at
the origin O(0, 0)). Therefore, the direction angle is

θ = tan−1
(

− 4

3

)

+ 180◦ ≈ 126.9◦
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22.2 Operations on vectors

There are two basic operations on vectors, which are the scalar multiplication

and the vector addition. First, let’s look at the scalar multiplication.

Definition 22.11: Scalar multiplication

The scalar multiplication of a real number r with a vector ~v = 〈a, b〉 is
defined to be the vector given by multiplying r to each coordinate.

r · 〈a, b〉 := 〈r · a, r · b〉 (22.8)

We study the effect of scalar multiplication with an example.

Example 22.12

Multiply and graph the vectors.

a) 4 · 〈−2, 1〉 b) (−3) · 〈−6,−2〉
Solution.

a) The calculation is straightforward.

4 · 〈−2, 1〉 = 〈4 · (−2), 4 · 1〉 = 〈−8, 4〉
The vectors are displayed below. We see that 〈−2, 1〉 and 〈−8, 4〉
both have the same direction angle, and the latter stretches the
former by a factor 4.

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2

-1

0

1

2

3

4

5

x

y

〈−8, 4〉

〈−2, 1〉

b) Algebraically, we calculate the scalar multiplication as follows:

(−3) · 〈−6,−2〉 = 〈(−3) · (−6), (−3) · (−2)〉 = 〈18, 6〉
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Furthermore, graphing the vectors gives:

x

y

〈−6,−2〉

〈18, 6〉

We see that the direction angle of the two vectors differs by 180◦.
Indeed, 〈18, 6〉 is obtained from 〈−6,−2〉 by reflecting it at the origin
O(0, 0) and then stretching the result by a factor 3.

We see from the above example, that scalar multiplication by a positive
number c does not change the angle of the vector, but it multiplies the mag-
nitude by c.

Observation 22.13: Geometric interpretation of scalar multiplication

Let ~v be a vector with magnitude ||~v|| and angle θ~v . Then, for a positive
scalar, r > 0, the scalar multiple r · ~v has the same angle as ~v, and a
magnitude that is r times the magnitude of ~v:

for r > 0: ||r · ~v|| = r · ||~v|| and θr·~v = θ~v

x

y

θr·~v = θ~v

~v

r · ~v
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Definition 22.14: Unit vector

A vector ~u is called a unit vector if it has a magnitude of 1.

~u is a unit vector ⇐⇒ ||~u|| = 1

There are two special unit vectors, which are the vectors pointing in
the x- and the y-direction.

~i := 〈1, 0〉 and ~j := 〈0, 1〉 (22.9)

Example 22.15

Find a unit vector in the direction of ~v.

a) 〈8, 6〉 b) 〈−2, 3
√
7〉

Solution.

a) Note that the magnitude of ~v = 〈8, 6〉 is

||〈8, 6〉|| =
√
82 + 62 =

√
64 + 36 =

√
100 = 10.

Therefore, if we multiply 〈8, 6〉 by 1
10

we obtain 1
10
· 〈8, 6〉 = 〈 8

10
, 6
10
〉 =

〈4
5
, 3
5
〉, which (according to Observation 22.13 above) has the same

direction angle as 〈8, 6〉, and has a magnitude of 1:
∣
∣
∣
∣

∣
∣
∣
∣

1

10
· 〈8, 6〉

∣
∣
∣
∣

∣
∣
∣
∣
=

1

10
· ||〈8, 6〉|| = 1

10
· 10 = 1

b) The magnitude of 〈−2, 3
√
7〉 is

||〈−2, 3
√
7〉|| =

√

(−2)2 + (3
√
7)2 =

√
4 + 9 · 7 =

√
4 + 63 =

√
67.

Therefore, we have the unit vector

1√
67

· 〈−2, 3
√
7〉 = 〈 −2√

67
,
3
√
7√
67

〉

= 〈−2
√
67

67
,
3
√
7
√
67

67
〉 = 〈−2

√
67

67
,
3
√
469

67
〉
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which again has the same direction angle as 〈−2, 3
√
7〉. We can

also check that 1√
67

· 〈−2, 3
√
7〉 is a unit vector, because || 1√

67
·

〈−2, 3
√
7〉|| = 1√

67
· ||〈−2, 3

√
7〉|| = 1√

67
·
√
67 = 1.

The second operation on vectors is vector addition, which we discuss now.

Definition 22.16: Vector addition

Let ~v = 〈a, b〉 and ~w = 〈c, d〉 be two vectors. Then the vector addition

~v + ~w is defined by component-wise addition:

〈a, b〉+ 〈c, d〉 := 〈a+ c, b+ d〉 (22.10)

In terms of the plane, the vector addition corresponds to placing the
vectors ~v and ~w as the edges of a parallelogram, so that ~v+ ~w becomes
its diagonal. This is displayed below.

x

y

~v

~w
~w

~v

~v + ~w

a

b

c

d

Example 22.17

Perform the vector addition and simplify as much as possible.

a) 〈3,−5〉+ 〈6, 4〉 b) 5 · 〈−6, 2〉 − 7 · 〈1,−3〉 c) 4~i+ 9~j

d) find 2~v + 3~w for ~v = −6~i− 4~j and ~w = 10~i− 7~j

e) find −3~v + 5~w for ~v = 〈8,
√
3〉 and ~w = 〈0, 4

√
3〉

Solution.
We can find the answer by direct algebraic computation.

a) 〈3,−5〉+ 〈6, 4〉 = 〈3 + 6,−5 + 4〉 = 〈9,−1〉
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b) 5 · 〈−6, 2〉 − 7 · 〈1,−3〉 = 〈−30, 10〉+ 〈−7, 21〉 = 〈−37, 31〉
c) 4~i+ 9~j = 4 · 〈1, 0〉+ 9 · 〈0, 1〉 = 〈4, 0〉+ 〈0, 9〉 = 〈4, 9〉

From the last calculation, we see that every vector can be written as a
linear combination of the vectors ~i and ~j.

〈a, b〉 = a ·~i+ b ·~j (22.11)

We will use this equation for the next example (d). Here, ~v = −6~i−4~j =
〈−6,−4〉 and ~w = 10~i− 7~j = 〈10,−7〉. Therefore, we obtain:

d) 2~v + 3~w = 2 · 〈−6,−4〉+ 3 · 〈10,−7〉
= 〈−12,−8〉+ 〈30,−21〉 = 〈18,−29〉

e) −3~v + 5~w = −3 · 〈8,
√
3〉+ 5 · 〈0, 4

√
3〉

= 〈−24,−3
√
3〉+ 〈0, 20

√
3〉 = 〈−24, 17

√
3〉

Note that the answer could also be written as −3~v + 5~w = −24~i +
17
√
3~j.

In many applications in the sciences, vectors play an important role, since
many quantities are naturally described by vectors. Examples for this in
physics include the velocity ~v, acceleration ~a, and the force ~F applied to an
object.

Example 22.18

The forces ~F1 and ~F2 are applied to an object. Find the resulting total
force ~F = ~F1+ ~F2. Determine the magnitude and direction angle of the
total force ~F . Approximate these values as necessary. Recall that the
international system of units for force is the newton [1N = 1kg·m

s2
].

a) ~F1 has magnitude 3 newtons, and angle θ1 = 45◦,
~F2 has magnitude 5 newtons, and angle θ2 = 135◦

b) || ~F1|| = 7 newtons, and θ1 =
π
6
, and

|| ~F2|| = 4 newtons, and θ2 =
5π
3
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Solution.

a) The vectors ~F1 and ~F2 are given by their magnitudes and direction
angles. However, the addition of vectors (in Definition 22.16) is
defined in terms of their components. Therefore, our first task is to
find the vectors in component form. As was stated in Equation (22.5)
on page 383, the vectors are calculated by ~v = 〈 ||~v|| ·cos(θ) , ||~v|| ·
sin(θ) 〉. Therefore,

~F1 = 〈3 · cos(45◦), 3 · sin(45◦)〉

= 〈3 ·
√
2

2
, 3 ·

√
2

2
〉 = 〈3

√
2

2
,
3
√
2

2
〉

~F2 = 〈5 · cos(135◦), 5 · sin(135◦)〉

= 〈5 · −
√
2

2
, 5 ·

√
2

2
〉 = 〈−5

√
2

2
,
5
√
2

2
〉

The total force is the sum of the forces.

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-1

0
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4

5

6

x

y

~F1

~F2

~F1 + ~F2

~F = ~F1 + ~F2 = 〈3
√
2

2
,
3
√
2

2
〉+ 〈−5

√
2

2
,
5
√
2

2
〉

= 〈3
√
2

2
+

−5
√
2

2
,
3
√
2

2
+

5
√
2

2
〉 = 〈3

√
2− 5

√
2

2
,
3
√
2 + 5

√
2

2
〉

= 〈−2
√
2

2
,
8
√
2

2
〉 = 〈−

√
2, 4

√
2〉

The total force applied in components is ~F = 〈−
√
2, 4

√
2〉. It has

a magnitude of ||~F || =
√

(−
√
2)2 + (4

√
2)2 =

√
2 + 16 · 2 =

√
34 ≈
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5.83 newton. The direction angle is given by tan(θ) = 4
√
2

−
√
2
= −4.

Since tan−1(−4) ≈ −76.0◦ is in quadrant IV, and ~F = 〈−
√
2, 4

√
2〉

is in quadrant II, we see that the direction angle of ~F is

θ = 180◦ + tan−1(−4) ≈ 180◦ − 76.0◦ ≈ 104◦.

b) We solve this example in much the same way we solved part (a).
First, ~F1 and ~F2 in components is given by

~F1 = 〈7 · cos
(π

6

)

, 7 · sin
(π

6

)

〉 = 〈7 ·
√
3

2
, 7 · 1

2
〉 = 〈7

√
3

2
,
7

2
〉

~F2 = 〈4 · cos
(5π

3

)

, 4 · sin
(5π

3

)

〉 = 〈4 · 1
2
, 4 · −

√
3

2
〉 = 〈2,−2

√
3〉

The total force is therefore:

~F = ~F1 + ~F2 = 〈7
√
3

2
,
7

2
〉+ 〈2,−2

√
3〉 = 〈7

√
3

2
+ 2,

7

2
− 2

√
3〉

≈ 〈8.06, 0.04〉

The magnitude is approximately

||~F || ≈
√

(8.06)2 + (0.04)2 ≈ 8.06 newton.

The direction angle is given by tan(θ) ≈ 0.04
8.06

. Since ~F is in quadrant
I, we see that θ ≈ tan−1(0.04

8.06
) ≈ 0.3◦.

Note 22.19: Vector space

In general, a vector space is an abstract algebraic notion that is fundamental to many areas
of mathematics. Although we do not explicitly use this structure in this text, we will state its
definition. A vector space is a set V , with the following structures and properties. The elements
of V are called vectors, denoted by the usual symbol ~v. For any vectors ~v and ~w there is a vector
~v+ ~w, called the vector addition. For any real number r and vector ~v, there is a vector r ·~v called
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the scalar product. These operations have to satisfy the following properties.

Associativity: (~u+ ~v) + ~w = ~u+ (~v + ~w)
Commutativity: ~v + ~w = ~w + ~v
Zero element: there is a vector ~o such that ~o+ ~v = ~v and ~v + ~o = ~v for every vector ~v
Negative element: for every ~v there is a vector −~v such that ~v + (−~v) = ~o and (−~v) + ~v = ~o
Distributivity (1): r · (~v + ~w) = r · ~v + r · ~w
Distributivity (2): (r + s) · ~v = r · ~v + s · ~v
Scalar compatibility: (r · s) · ~v = r · (s · ~v)
Identity: 1 · ~v = ~v

An important example of a vector space is the 2-dimensional plane V = R2 as it was discussed in
this chapter. A thorough introduction to this topic will be provided in a course in linear algebra.

22.3 Exercises

Exercise 22.1

Graph the vectors in the plane.

a)
−→
PQ with P (2, 1) and Q(4, 7) b)

−→
PQ with P (−3, 3) and Q(−5,−4)

c)
−→
PQ with P (0,−4) and Q(6, 0) d) 〈−2, 4〉

e) 〈−3,−3〉 f ) 〈5, 5
√
2〉

Exercise 22.2

Find the magnitude and direction angle of the vector.

a) 〈6, 8〉 b) 〈−2, 5〉 c) 〈−4,−4〉
d) 〈3,−3〉 e) 〈2,−2〉 f ) 〈4

√
3, 4〉

g) 〈−
√
3,−1〉 h) 〈−4, 4

√
3〉 i) 〈−2

√
3,−2〉

j)
−→
PQ, where P (3, 1) and Q(7, 4)

k)
−→
PQ, where P (4,−2) and Q(−5, 7)
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Exercise 22.3

Perform the operation on the vectors.

a) 5 · 〈3, 2〉 b) 2 · 〈−1, 4〉
c) (−10) · 〈−3

2
,−7

5
〉 d) 〈2, 3〉+ 〈6, 1〉

e) 〈5,−4〉 − 〈−8,−9〉 f ) 3 · 〈5, 3〉+ 4 · 〈2, 8〉
g) (−2)〈−5,−4〉 − 6〈−1,−2〉 h) 2

3
〈−3, 6〉 − 7

5
〈10,−15〉

i)
√
2 · 〈

√
8
6
, −5

√
2

12
〉 − 2〈2

3
, 5
3
〉 j) 6~i− 4~j

k) −5~i+~j + 3~i l) 3 · 〈−4, 2〉 − 8~j + 12~i

m) find 4~v + 7~w for ~v = 〈2, 3〉 and ~w = 〈5, 1
√
3〉

n) find ~v − 2~w for ~v = 〈−11,−6〉 and ~w = 〈−3, 2〉
o) find 3~v − ~w for ~v = −4~i+ 7~j and ~w = 6~i+~j

p) find −~v −
√
5~w for ~v = 5~j and ~w = −8~i+

√
5~j

Exercise 22.4

Find a unit vector in the direction of the given vector.

a) 〈8,−6〉 b) 〈−3,−
√
7〉 c) 〈9, 2〉

d) 〈−
√
5,
√
31〉 e) 〈5

√
2, 3

√
10〉 f ) 〈0,−3

5
〉

Exercise 22.5

Find the approximate magnitude and direction angle of sum ~v = ~v1+ ~v2
of the given vectors ~v1 and ~v2 (see Example 22.18).

a) ||~v1|| = 6, and θ1 = 60◦, and
||~v2|| = 2, and θ2 = 180◦

b) ||~v1|| = 3.7, and θ1 = 92◦, and
||~v2|| = 2.2, and θ2 = 253◦

c) ||~v1|| = 8, and θ1 =
3π
4

, and

||~v2|| = 8
√
2, and θ2 =

3π
2



Chapter 23

Complex numbers

We have already encountered complex numbers in the previous chapters. We
now go a bit further by representing them in the plane and use the trigono-
metric functions to rewrite complex numbers in polar form. We will see that
this can simplify the multiplication and division of complex numbers.

23.1 Polar form of complex numbers

We now recall the definition of complex numbers and show how to represent
them in the complex plane.

Definition 23.1: Imaginary unit

We define the imaginary unit or complex unit to be

imaginary unit: i =
√
−1 (23.1)

In other words, i is a solution of the equation:

i2 = −1 (23.2)

Using the imaginary unit, a complex number is defined as a number with
a real part and an imaginary part.

397
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Definition 23.2: Complex number

A complex number is a number of the form

a+ bi

where a and b are any real numbers, and i is the complex unit. The
number a is called the real part of a+bi, and bi is called the imaginary

part of a+ bi.
The set of all complex numbers is denoted by C.

Example 23.3

Here are some examples of complex numbers:

3 + 2i, 1− 1 · i,
√
2 + π · i, 5 + 0 · i, 0 + 3 · i

Note that we can write 5 + 0 · i = 5, which has an imaginary part of
zero, and so we see that the real number 5 is also a complex number.
Indeed, any real number a = a + 0 · i is also a complex number.
Note also that 0 + 3 · i = 3i is a complex number, and similarly any
multiple of i is a complex number; these numbers are called purely

imaginary.

We briefly recall the usual operations on complex numbers.

Example 23.4

Perform the operation.

a) (2− 3i) + (−6 + 4i) b) (3 + 5i) · (−7 + i) c)
5 + 4i

3 + 2i

Solution.

a) Adding real and imaginary parts, respectively, gives,

(2− 3i) + (−6 + 4i) = 2− 3i− 6 + 4i = −4 + i.

b) We multiply (using FOIL), and use that i2 = −1.

(3 + 5i) · (−7 + i) = −21 + 3i− 35i+ 5i2 = −21− 32i+ 5 · (−1)

= −21− 32i− 5 = −26− 32i
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c) Recall that we may simplify a quotient of complex numbers by mul-
tiplying the complex conjugate of the denominator to both numerator
and denominator.

5 + 4i

3 + 2i
=

(5 + 4i) · (3− 2i)

(3 + 2i) · (3− 2i)
=

15− 10i+ 12i− 8i2

9− 6i+ 6i− 4i2

=
15 + 2i+ 8

9 + 4
=

23 + 2i

13
=

23

13
+

2

13
i

The real part of the solution is 23
13

; the imaginary part is 2
13
i.

Complex numbers can be pictured as points in the plane.

Observation 23.5: Complex plane

In analogy to Section 1.1, where we represented the real numbers on
the number line, we can represent complex numbers in the complex

plane:

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-4

-3

-2

-1

0

1

2

3

4

Re

Im

The complex number a+ bi is represented as the point with coordinates
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(a, b) in the complex plane.

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-4

-3

-2

-1

0

1

2

3

4

Re

Im

3 + 2i

−2 + i

−5− 3i

3 + 0i

Just as with the magnitude and the direction angle of vectors, we can use
the planar representation of a complex number to study its distance from the
origin, as well as its direction angle. We start with the distance of a complex
number a + bi to the origin 0, which is called the absolute value |a + bi| of
a+ bi.

Observation 23.6: Absolute value or modulus

Let a + bi be a complex number. The absolute value or modulus of
a+ bi, denoted by |a+ bi|, is the length between the point a+ bi in the
complex plane and the origin (0, 0).

Re

Im

a+ bi

|a+ bi|

a

bi

Just as in Observation 22.5, we can use the Pythagorean theorem to
calculate |a+ bi| as a2 + b2 = |a+ bi|2, and so

|a+ bi| =
√
a2 + b2 (23.3)
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Example 23.7

Find the absolute value of the complex numbers below.

a) 5− 3i b) − 8− 6i c) − 3 + 3i d) 4
√
3 + 4i e) 7i

Solution.
The absolute values are calculated as follows.

a) |5− 3i| =
√

52 + (−3)2 =
√
25 + 9 =

√
34

b) | − 8− 6i| =
√

(−8)2 + (−6)2 =
√
64 + 36 =

√
100 = 10

c) | − 3 + 3i| =
√

(−3)2 + 32 =
√
9 + 9 =

√
18 =

√
9 · 2 = 3 ·

√
2

d)
∣
∣
∣4
√
3 + 4i

∣
∣
∣ =

√

(4
√
3)2 + 42 =

√
16 · 3 + 16 =

√
64 = 8

e) |7i| = |0 + 7i| =
√

02 + (7)2 =
√
0 + 49 = 7

Next, we apply the concept of the direction angle to a complex number.

Observation 23.8: Angle or argument

Let a+ bi be a complex number. Just as in Observation 22.7, we define
the angle or argument of a + bi to be the angle θ (read as ”theta”)
determined by the line segment connecting the origin to a+ bi.

Re

Im

a+ bi

θ

r = |a+ bi|

r · cos(θ)

r · sin(θ)

a

bi

Repeating the calculation from Observation 22.7, we write r = |a+ bi|
for the absolute value, so that using (21.2), the coordinates a and b in
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the plane are given by sin(θ) = b
r

and cos(θ) = a
r
. The angle is given

by tan(θ) = sin(θ)
cos(θ)

=
b
r
a
r

= b
r
· r
a
= b

a
, which evaluates as in Note 22.9 to

θ =







tan−1( b
a
) if a+ bi is in quadrant I or IV

tan−1( b
a
) + 180◦ if a+ bi is in quadrant II or III

(23.4)

We can rewrite a complex number via its absolute value and angle.

Definition 23.9: Polar form

For a complex number a+bi, we write r = |a+bi| for the absolute value,
and θ for the angle (given by (23.4)). Then, using that a = r · cos(θ),
and b = r · sin(θ)), the real and imaginary parts of the complex number
a+ bi can be rewritten as follows:

a+ bi = r · cos(θ) + r · sin(θ) · i

After factoring r, we get:

a + bi = r ·
(
cos(θ) + i · sin(θ)

)
(23.5)

We say a complex number is in polar form if it is written in the form
r · (cos(θ) + i · sin(θ)).
We say a complex number is in standard form or rectangular form if it
is written as a+ bi.

We can convert a complex number from standard form to polar form and
vice versa, which we do in the next two examples.

Example 23.10

Convert the complex number to polar form.

a) 3 + 3i b) −2 − 2
√
3i c) −6

√
3 + 6i d) 4− 3i e) −4i

Solution.

a) First, the absolute value is r = |3+3i| =
√
32 + 32 =

√
18 =

√
9 · 2 =
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3
√
2. Furthermore, since a = 3 and b = 3, we have tan(θ) = b

a
=

3
3
= 1. To obtain θ, we calculate tan−1(1) = 45◦. Note that 45◦ is in

the first quadrant, and so is the complex number 2 + 3i

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

Re

Im

3 + 3i

45◦

Therefore, θ = 45◦, and we obtain our answer:

2 + 3i = 3
√
2 ·
(
cos(45◦) + i sin(45◦)

)
.

b) For −2 − 2
√
3i, we first calculate the absolute value:

r =

√

(−2)2 + (−2
√
3)2 =

√
4 + 4 · 3 =

√
4 + 12 =

√
16 = 4.

Furthermore, tan(θ) = b
a
= −2

√
3

−2
=

√
3. We have that tan−1(

√
3) =

60◦. However, graphing the angle 60◦ and the number −2 − 2
√
3i,

we see that 60◦ is in the first quadrant, whereas −2− 2
√
3i is in the

third quadrant.

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

Re

Im

−2− 2
√
3i

60◦
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Therefore, we have to add 180◦ to 60◦ to get the correct angle for
−2 − 2

√
3i, that is, θ = 60◦ + 180◦ = 240◦. Our complex number in

polar form is

−2 − 2
√
3i = 4 ·

(
cos
(
240◦

)
+ i sin

(
240◦

))
.

c) The absolute value of −6
√
3 + 6i is r = | − 6

√
3 + 6i| =

√

(−6
√
3)2 + 62 =

√
36 · 3 + 36 =

√
144 = 12. The angle satis-

fies tan(θ) = b
a
= 6

−6
√
3
= 1

−
√
3
, and tan−1( 1

−
√
3
) = −30◦, which is in

quadrant IV. Graphing −6
√
3 + 6i in the complex plane shows it is

in quadrant II.

Re

Im−6
√
3 + 6i

−30◦

Therefore, the angle is θ = −30◦ + 180◦ = 150◦, and so

−6
√
3 + 6i = 12 ·

(
cos
(
150◦

)
+ i sin

(
150◦

))
.

d) For 4 − 3i we calculate r =
√

42 + (−3)2 =
√
16 + 9 =

√
25 = 5.

The angle tan−1(−3
4
) ≈ −36.9◦ is in the fourth quadrant, and the

complex number 4− 3i is in the fourth quadrant as well.

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-4

-3

-2

-1

0

1

2

Re

Im

4− 3i

−36.9◦



23.1. POLAR FORM OF COMPLEX NUMBERS 405

Therefore, θ ≈ −36.9◦, and we write

4− 3i ≈ 5 ·
(
cos(−36.9◦) + i sin(−36.9◦)

)

If we prefer an angle between 0◦ and 360◦, then we can also use the
angle −36.9◦ + 360◦ = 323.1◦, and write

4− 3i ≈ 5 ·
(
cos(323.19◦) + i sin(323.1◦)

)

e) We calculate the absolute value of 0 − 4i as r =
√

02 + (−4)2 =√
16 = 4. However, when calculating the angle θ of 0 − 4i, we are

led to consider tan−1(−4
0
), which is undefined! The reason for this

can be seen by plotting the number −4i in the complex plane.

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-5

-4

-3

-2

-1

0

1

2

Re

Im

−4i

270◦ = 3π
2

The angle θ = 270◦ (or alternatively θ = −90◦), so that the complex
number is

−4i = 4 · (cos(270◦) + i sin(270◦))

= 4 ·
(
cos
(3π

2

)
+ i sin

(3π

2

))

Note that we can always write our answer with an angle either in
degree or radian mode, as we did in the last equality.

Conversely, we can convert a complex number from polar form to standard
form a+ bi by evaluation the sin and the cos.
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Example 23.11

Convert the number from polar form to standard form a + bi.

a) 4 · (cos(330◦) + i sin(330◦)) b) 3 · (cos(117◦) + i sin(117◦))

Solution.

a) We compute that cos(330◦) =
√
3
2

and sin(330◦) = −1
2
, which is easily

done with the calculator, since
√
3
2

≈ 0.866 (review Example 17.10 if
needed).

With this, we obtain the complex number in standard form.

4 · (cos(330◦) + i sin(330◦)) = 4 ·
(√

3

2
+ i

(

−1

2

))

=
4
√
3

2
− i · 4

2
= 2

√
3− 2 · i

b) Since we do not have an exact formula for cos(117◦) or sin(117◦), we
use the calculator to obtain approximate values.

3 ·(cos(117◦)+i sin(117◦)) ≈ 3 ·(−0.454+i ·0.891) = −1.362+2.673i
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23.2 Multiplication and division of complex num-

bers in polar form

It turns out that the angle of a product (or quotient) of complex numbers
changes by adding (or subtracting) the angles. This is precisely stated in the
following proposition.

Proposition 23.12

Let r1(cos(θ1) + i sin(θ1)) and r2(cos(θ2) + i sin(θ2)) be two complex
numbers in polar form. Then the product and quotient of these are
given by:

r1(cos(θ1) + i sin(θ1)) · r2(cos(θ2) + i sin(θ2))
= r1r2 · (cos(θ1 + θ2) + i sin(θ1 + θ2))

(23.6)

r1(cos(θ1) + i sin(θ1))

r2(cos(θ2) + i sin(θ2))
=

r1
r2

· (cos(θ1 − θ2) + i sin(θ1 − θ2)) (23.7)

Proof. The proof uses the addition formulas for trigonometric functions sin(α + β) and cos(α + β) from
Proposition 17.11 on page 306.

r1(cos(θ1) + i sin(θ1)) · r2(cos(θ2) + i sin(θ2))

= r1r2 · (cos(θ1) cos(θ2) + i cos(θ1) sin(θ2) + i sin(θ1) cos(θ2) + i2 sin(θ1) sin(θ2))

= r1r2 · ((cos(θ1) cos(θ2)− sin(θ1) sin(θ2)) + i(cos(θ1) sin(θ2) + sin(θ1) cos(θ2)))

= r1r2 · (cos(θ1 + θ2) + i sin(θ1 + θ2))

For the division formula, note that the multiplication formula (23.6) gives

r2(cos(θ2) + i sin(θ2)) ·
1

r2
(cos(−θ2) + i sin(−θ2)) = r2

1

r2
(cos(θ2 − θ2) + i sin(θ2 − θ2))

= 1 · (cos 0 + i sin 0) = 1 · (1 + i · 0) = 1

=⇒ 1

r2(cos(θ2) + i sin(θ2))
=

1

r2
(cos(−θ2) + i sin(−θ2)),

so that

r1(cos(θ1) + i sin(θ1))

r2(cos(θ2) + i sin(θ2))
= r1(cos(θ1) + i sin(θ1)) ·

1

r2(cos(θ2) + i sin(θ2))

= r1(cos(θ1) + i sin(θ1)) ·
1

r2
(cos(−θ2) + i sin(−θ2)) =

r1

r2
· (cos(θ1 − θ2) + i sin(θ1 − θ2)).
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Example 23.13

Multiply or divide the complex numbers and write your answer in both
polar form and standard form.

a) 5(cos(48◦) + i sin(48◦)) · 8(cos(87◦) + i sin(87◦))

b) 3(cos(5π
8
) + i sin(5π

8
)) · 12(cos(7π

8
) + i sin(7π

8
))

c)
8(cos(257◦) + i sin(257◦))

6(cos(47◦) + i sin(47◦))
d)

32(cos(π
4
) + i sin(π

4
))

10(cos(7π
12
) + i sin(7π

12
))

Solution.
We will multiply and divide the complex numbers using Equations (23.6)
and (23.7), respectively, and then convert them to standard form.

a) For the product of the two complex numbers, we multiply the absolute
values and add the angles.

5(cos(48◦) + i sin(48◦)) · 8(cos(87◦) + i sin(87◦))

= 5·8·(cos(48◦+87◦)+i sin(48◦+87◦)) = 40(cos(135◦)+i sin(135◦))

To write this in standard form, we evaluate cos(135◦) = −
√
2
2

and

sin(135◦) =
√
2
2

. Thus, we get

40 ·
(

−
√
2

2
+ i

√
2

2

)

= −40
√
2

2
+ i

40
√
2

2
= −20

√
2 + 20

√
2i

b) Similarly, we obtain the next product.

3
(

cos(
5π

8
) + i sin(

5π

8
)
)

· 12
(

cos(
7π

8
) + i sin(

7π

8
)
)

= 36
(

cos(
5π

8
+

7π

8
) + i sin(

5π

8
+

7π

8
)
)

Now,
5π

8
+

7π

8
=

5π + 7π

8
=

12π

8
=

3π

2
, for which cos(3π

2
) = 0 and

sin(3π
2
) = −1. Therefore, we obtain that the product is

36
(

cos(
3π

2
) + i sin(

3π

2
)
)

= 36(0 + i · (−1)) = −36i
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c) Next, we calculate

8(cos(257◦) + i sin(257◦))

6(cos(47◦) + i sin(47◦))
=

4

3
·
(

cos(210◦) + i sin(210◦)
)

.

Computing cos(210◦) = −
√
3
2

and sin(210◦) = −1
2
, we obtain

4

3
·
(

cos(210◦) + i sin(210◦)
)

=
4

3
·
(

−
√
3

2
− i · 1

2

)

= −4 ·
√
3

3 · 2 − i · 4 · 1
3 · 2 = −2

√
3

3
− 2

3
· i

d) For the quotient, we use the subtraction formula (23.7).

32(cos(π
4
) + i sin(π

4
))

10(cos(7π
12
) + i sin(7π

12
))

=
32

10

(

cos(
π

4
− 7π

12
) + i sin(

π

4
− 7π

12
)
)

The difference in the argument of cos and sin is given by

π

4
− 7π

12
=

3π − 7π

12
=

−4π

12
= −π

3

and cos(−π
3
) = 1

2
and sin(−π

3
) = −

√
3
2

. With this, we obtain

32(cos(π
4
) + i sin(π

4
))

10(cos(7π
12
) + i sin(7π

12
))

=
32

10

(

cos(−π

3
) + i sin(−π

3
)
)

=
16

5
·
(1

2
− i

√
3

2

)

=
16

10
− 16

√
3

10
· i = 8

5
− 8

√
3

5
· i
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23.3 Exercises

Exercise 23.1

Plot the complex numbers in the complex plane.

a) 4 + 2i b) −3 − 5i c) 6− 2i d) −5 + i e) −2i

f )
√
2−

√
2i g) 7 h) i i) 0 j) 2i−

√
3

Exercise 23.2

Add, subtract, multiply, and divide as indicated.

a) (5− 2i) + (−2 + 6i) b) (−9 − i)− (5− 3i)
c) (3 + 2i) · (4 + 3i) d) (−2 − i) · (−1 + 4i)
e) 2+3i

2+i
f ) (5 + 5i)÷ (2− 4i)

Exercise 23.3

Find the absolute value |a+bi| of the given complex number, and simplify
your answer as much as possible.

a) |4 + 3i| b) |6− 6i| c) | − 3i| d) | − 2− 6i|
e) |

√
8− i| f ) | − 2

√
3− 2i| g) | − 5| h) | −

√
17 + 4

√
2i|

Exercise 23.4

Convert the complex number into polar form r(cos(θ) + i sin(θ)).

a) 2 + 2i b) 4
√
3− 4i c) −7 + 7

√
3i d) −5 − 5i

e) 8− 8i f ) −8 + 8i g) −
√
5−

√
15i h)

√
7−

√
21i

i) −5− 12i j) 6i k) −10 l) −
√
3 + 3i

Exercise 23.5

Convert the complex number into the standard form a+ bi.

a) 6(cos(150◦) + i sin(150◦)) b) 10(cos(315◦) + i sin(315◦))

c) 2(cos(90◦) + i sin(90◦)) d) cos(π
6
) + i sin(π

6
)

e) 1
2
(cos(7π

6
) + i sin(7π

6
)) f ) 6(cos(−5π

12
) + i sin(−5π

12
))
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Exercise 23.6

Multiply the complex numbers and write the answer in standard form
a+ bi.

a) 4(cos(27◦) + i sin(27◦)) · 10(cos(123◦) + i sin(123◦))

b) 7(cos(182◦) + i sin(182◦)) · 6(cos(43◦) + i sin(43◦))

c) (cos(13π
12

) + i sin(13π
12

)) · (cos(7π
12
) + i sin(7π

12
))

d) 8(cos(3π
7
) + i sin(3π

7
)) · 1.5(cos(4π

7
) + i sin(4π

7
))

e) 0.2(cos(196◦) + i sin(196◦)) · 0.5(cos(88◦) + i sin(88◦))

f ) 4(cos(7π
8
) + i sin(7π

8
)) · 0.25(cos(−5π

24
) + i sin(−5π

24
))

Exercise 23.7

Divide the complex numbers and write the answer in standard form a+bi.

a)
18(cos(320◦) + i sin(320◦))

3(cos(110◦) + i sin(110◦))
b)

10(cos(207◦) + i sin(207◦))

15(cos(72◦) + i sin(72◦))

c)
7(cos(11π

15
) + i sin(11π

15
))

3(cos( π
15
) + i sin( π

15
))

d)
cos(8π

5
) + i sin(8π

5
)

2(cos( π
10
) + i sin( π

10
))

e)
42(cos(7π

4
) + i sin(7π

4
))

7(cos(5π
12
) + i sin(5π

12
))

f )
30(cos(−175◦) + i sin(−175◦))

18(cos(144◦) + i sin(144◦))



Chapter 24

Sequences and series

In the next chapters, we will define and study sequences and series, which are
concepts that are fundamental for calculus. Two specific types of sequences
(arithmetic sequences and geometric sequences) will be studied in more detail.

24.1 Introduction to sequences and series

In this section, we define sequences and series.

Definition 24.1: Sequence

A sequence is an enumerated list of numbers. In other words, a se-
quence is a list of numbers

a1, a2, a3, a4, . . .

where a1 is the first number, a2 is the second number, a3 is the third
number, etc.
We also denote the sequence by a or {an} or {an}n≥1.

Note that a sequence a is just an assignment, which assigns to each
n = 1, 2, 3, . . . a number a(n) = an. In this sense, a sequence is just a
function a : N → R from the natural numbers N to a range R, which is a set
of numbers such as, for example, the set of real or complex numbers.

412



24.1. INTRODUCTION TO SEQUENCES AND SERIES 413

Note 24.2

Here are some examples of sequences.

a) 4, 6, 8, 10, 12, 14, 16, 18, . . .

b) 1, 3, 9, 27, 81, 243, . . .

c) +5,−5,+5,−5,+5,−5, . . .

d) 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

e) 5, 8,−12, 4, 5.3, 7,−3,
√
2, 18, 2

3
, 9, . . .

For many of these sequences we can find explicit rules that describe
how to obtain the individual terms.

a) Note that in the sequence in (a), we always add the fixed number 2
to the previous number to obtain the next, starting from the first term
4. Assuming that the following numbers in this sequence continue
in this pattern, this would be an example of an arithmetic sequence,
and we will study those in more detail in Section 24.2 below. We
note, however, that knowing only a few numbers in a sequence is
not enough to conclude that all of the following terms will, indeed,
follow a similar pattern. To understand the complete sequence, we
must specify all terms of the sequence (as is done, for example, in
Examples 24.3 and 24.4 below).

b) In (b), we start with the first element 1 and multiply by the fixed
number 3 to obtain the next term. Assuming this rule persists for the
whole sequence, this would be an example of a geometric sequence,
and we will study those in more detail in Chapter 25 below.

c) The sequence in (c) alternates between +5 and −5, starting from
+5. Note that we can get from one term to the next by multiplying
(−1) to the term. Assuming this as the rule for the whole sequence,
this is another example of a geometric sequence.

d) In (d) we wrote the first few terms of a sequence called the Fibonacci

sequence. In the Fibonacci sequence, each term is calculated by
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adding the previous two terms, starting with the first two terms 1
and 1:

1 + 1 = 2, 1 + 2 = 3, 2 + 3 = 5, 3 + 5 = 8, 5 + 8 = 13, . . .

e) Finally, the sequence in (e) does not seem to have any obvious rule
by which the terms are generated.

To fully describe a sequence, we must specify every term of the sequence.
This can be done, for example, by giving a formula for the nth term an of the
sequence.

Note 24.3

Consider the sequence {an} with an = 4n + 3. We can calculate the
individual terms of this sequence:

first term: a1 = 4 · 1 + 3 = 7,
second term: a2 = 4 · 2 + 3 = 11,
third term: a3 = 4 · 3 + 3 = 15,
fourth term: a4 = 4 · 4 + 3 = 19,
fifth term: a5 = 4 · 5 + 3 = 23

...

Thus, the sequence is: 7, 11, 15, 19, 23, 27, 31, 35, . . .
Furthermore, from the formula, we can directly calculate any higher
term, for example, the 200th term is given by:

200th term: a200 = 4 · 200 + 3 = 803

Example 24.4

Find the first 6 terms of each sequence.

a) an = n2 b) an = n
n+1

c) an = (−1)n d) an = (−1)n+1 · 2n

Solution.

a) We can easily calculate the first 6 terms of an = n2 directly:

1, 4, 9, 16, 25, 36, . . .
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We can also use the calculator to produce the terms of a sequence.
To this end, we first need to specify a finite list of indices n that we
want to consider. To define the list 1, 2, 3, 4, 5, 6 for our indices n,
we write n = [1, . . . , 6]. With this, we can generate the induced list
for an by writing an = n2. To see the values in this list, we generate

a table using the button (on the top left). We remind the reader
that generating a table was described in Example 4.7 on page 57.
We replace the input and output values (x1 and y1) of the table with
n and an, respectively, which then shows the first six numbers of our
sequence.

Note that we also get a graphical representation of the first six
numbers in the sequence in the graph on the right.

b) We calculate the lowest terms of an = n
n+1

:

a1 =
1

1 + 1
=

1

2
, a2 =

2

2 + 1
=

2

3
, a3 =

3

3 + 1
=

3

4
, . . .
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Identifying the pattern, we can simply write a1, . . . , a6 as follows:

1
2

,
2
3

,
3
4

,
4
5

,
5
6

,
6
7

Note that in the table on the right, we directly specified the output
values n

n+1
without first defining the list an.

c) Since (−1)n is +1 for even n, but is −1 for odd n, the sequence
an = (−1)n is:

−1,+1,−1,+1,−1,+1

d) Similar to part (c), (−1)n+1 is −1 for even n, and is +1 for odd n.
This, together with the calculation 21 = 2, 22 = 4, 23 = 8, 24 = 16,
etc., we get the first six terms of the sequence:

+2,−4,+8,−16,+32,−64

Another way to describe a sequence is by giving a recursive formula for
the nth term an in terms of the lower terms. Here are some examples.

Example 24.5

Find the first 6 terms in the sequence described below.

a) a1 = 4, and an = an−1 + 5 for n > 1
b) a1 = 3, and an = 2 · an−1 for n > 1
c) a1 = 1, a2 = 1, and an = an−1 + an−2 for n > 2

Solution.

a) The first term is explicitly given as a1 = 4. Then we can calculate
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the following terms via an = an−1 + 5:

a2 = a1 + 5 = 4 + 5 = 9

a3 = a2 + 5 = 9 + 5 = 14

a4 = a3 + 5 = 14 + 5 = 19

a5 = a4 + 5 = 19 + 5 = 24
...

b) We start with a1 = 3, and calculate a2 = 2 · a1 = 2 · 3 = 6, a3 =
2 · a2 = 2 · 6 = 12, a4 = 2 · a3 = 2 · 12 = 24, etc. We see that the
effect of the recursive relation an = 2 · an−1 is to double the previous
number. The sequence is:

3, 6, 12, 24, 48, 96, 192, . . .

c) Starting from a1 = 1, and a2 = 1, we can calculate the higher terms:

a3 = a1 + a2 = 1 + 1 = 2

a4 = a2 + a3 = 1 + 2 = 3

a5 = a3 + a4 = 2 + 3 = 5

a6 = a4 + a5 = 3 + 5 = 8
...

Studying the sequence for a short while, we see that this is precisely
the Fibonacci sequence from Example 24.2(d).

Note 24.6

There is no specific reason for using the indexing variable n in the
sequence {an}. Indeed, we may as well use any other variable. For
example, if the sequence {an}n≥1 is given by the formula an = 4n + 3,
then we can also write this as ak = 4k+3 or ai = 4i+3. In particular,
the sequences {an}n≥1 = {ak}k≥1 = {ai}i≥1 = {aj}j≥1 are all identical
as sequences.
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We will be concerned with the task of adding terms in a sequence, such as
a1 + a2 + a3 + · · ·+ ak, for which we will use a standard summation notation.

Definition 24.7: Series

A series is a sum of terms in a sequence. We denote the sum of the
first k terms in a sequence with the following notation:

k∑

n=1

an = a1 + a2 + · · ·+ ak (24.1)

The summation symbol “
∑

” comes from the Greek letter Σ, pronounced
“sigma,” which is the Greek symbol for the /s/ sound.
More generally, we denote the sum from the jth to the kth term (where
j ≤ k) in a sequence with the following notion:

k∑

n=j

an = aj + aj+1 + · · ·+ ak

Furthermore, for typesetting reasons,
k∑

n=j

an is sometimes also written

as
∑k

n=j an, where indices are placed next to the summation symbol
“
∑

” instead of above and below.

Example 24.8

Find the sum.

a)

4∑

n=1

an, for an = 7n+ 3

b)

6∑

j=1

aj , for an = (−2)n c)

5∑

k=1

(
4 + k2

)

Solution.

a) The first four terms a1, a2, a3, a4 of the sequence {an}n≥1 are:

10, 17, 24, 31
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The sum is therefore:

4∑

n=1

an = a1 + a2 + a3 + a4 = 10 + 17 + 24 + 31 = 82

We may also find the answer with the calculator. Typing the letters
“sum” in the calculator will create the summation symbol:

Entering the specified values for the sequence, as well as where to
begin and the end the sum, displays the answer.

Note that we need to place parentheses around the terms to be
summed 7n + 3. (Confirm this by observing that you get a different
result without the parentheses!)

b) The first six terms of {an} with an = (−2)n are:

(−2)1 = −2, (−2)2 = 4, (−2)3 = −8,

(−2)4 = 16, (−2)5 = −32, (−2)6 = 64

We calculate
∑6

j=1 aj by adding these first six terms. (Note that

the sum is independent of the index j appearing in the sum
∑6

j=1 aj ,

which we could also replace by any other index
∑6

j=1 aj =
∑6

n=1 an,
etc.) We get:

6∑

j=1

aj = a1 + a2 + a3 + a4 + a5 + a6

= (−2) + 4 + (−8) + 16 + (−32) + 64 = 42
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c) For the sum
∑5

k=1 (4 + k2) we need to add the first five terms of
the sequence ak = 4 + k2. Calculating and adding the terms of this
sequence, we obtain the sum:

5∑

k=1

(
4 + k2

)
= (4 + 12) + (4 + 22) + (4 + 32) + (4 + 42) + (4 + 52)

= (4 + 1) + (4 + 4) + (4 + 9) + (4 + 16) + (4 + 25)

= 5 + 8 + 13 + 20 + 29

= 75

This answer can, of course, also be confirmed with the calculator.

24.2 The arithmetic sequence

We have already encountered examples of arithmetic sequences in the pre-
vious section. An arithmetic sequence is a sequence for which we add a
constant number to get from one term to the next, for example:

8,
+3

11,
+3

14,
+3

17,
+3

20,
+3

23, . . .

Definition 24.9: Arithmetic sequence

A sequence {an} is called an arithmetic sequence if any two consec-
utive terms have a common difference d. The arithmetic sequence is
determined by d and the first value a1. This can be written recursively
as:

an = an−1 + d for n ≥ 2

Alternatively, we have the general formula for the nth term of the arith-
metic sequence:

an = a1 + (n− 1) · d (24.2)
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Example 24.10

Determine whether the terms below could be the terms of an arithmetic
sequence. If so, then find the general formula for an in the form of
Equation (24.2).

a) 7, 13, 19, 25, 31, . . . b) 18, 13, 8, 3,−2,−7, . . .
c) 10, 13, 16, 20, 23, . . . d) an = 8 · n+ 3

Solution.

a) Calculating the difference between two consecutive terms always
gives the same answer: 13 − 7 = 6, 19 − 13 = 6, 25 − 19 = 6,
etc. Therefore, the common difference d = 6, which shows that these
are the terms in an arithmetic sequence. Furthermore, the first term
is a1 = 7, so that the general formula for the nth term would be
an = 7 + (n− 1) · 6.

b) One checks that the common difference is 13−18 = −5, 8−12 = −5,
etc., so that this could be an arithmetic sequence with d = −5. Since
a1 = 18, the general term would be an = 18 + (n − 1) · (−5) or
an = 18− (n− 1) · 5 .

c) We have 13 − 10 = 3, but 20 − 16 = 4, so that this cannot be an
arithmetic sequence.

d) If we write out the first couple of terms of an = 8n + 3, we get the
sequence:

11, 19, 27, 35, 43, 51, . . .

From this, it seems reasonable to suspect that the above is an arith-
metic sequence with common difference d = 8 and first term a1 = 11.
The general term of such an arithmetic sequence is

a1 + (n− 1) · d = 11 + (n− 1) · 8 = 11 + 8n− 8 = 8n + 3 = an.

This shows that an = 8n + 3 = 11 + (n − 1) · 8 is an arithmetic
sequence.
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Example 24.11

Find the formula of an arithmetic sequence an = a1 + (n − 1) · d with
the properties given below.

a) a1 = −5, and a9 = 27
b) d = 12, and a6 = 68
c) a5 = 38, and a16 = 115

Solution.

a) We are given a1 = −5, but we still need to find the common difference
d. Plugging a9 = 27 into an = a1 + (n− 1) · d, we obtain

27 = a9 = −5 + (9− 1) · d = −5 + 8d
(+5)
=⇒ 32 = 8d

(÷8)
=⇒ 4 = d

The nth term is therefore, an = −5 + (n− 1) · 4.

b) We know that d = 12, so we only need to find a1. Plugging a6 = 68
into an = a1 + (n− 1) · d, we can solve for a1:

68 = a6 = a1+(6−1)·12 = a1+5·12 = a1+60
(−60)
=⇒ a1 = 68−60 = 8

The nth term is therefore, an = 8 + (n− 1) · 12.

c) In this case, neither a1 nor d are given. However, the two conditions
a5 = 38 and a16 = 115 give two equations in the two unknowns a1
and d.

{
38 = a5 = a1 + (5− 1) · d

115 = a16 = a1 + (16− 1) · d =⇒
{

38 = a1 + 4 · d
115 = a1 + 15 · d

To solve this system of equations, we need to recall the methods for
doing so. One convenient method is the addition/subtraction method.
For this, we subtract the top equation from the bottom equation:

115 = a1 +15 · d
−( 38 = a1 +4 · d )

77 = +11 · d (÷11)
=⇒ 7 = d
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Plugging d = 7 into either of the two equations gives a1. We plug it
into the first equation 38 = a1 + 4d:

38 = a1 + 4 · 7 =⇒ 38 = a1 + 28
(−28)
=⇒ 10 = a1

Therefore, the nth term is given by an = 10 + (n− 1) · 7.

We want to find a sum of terms in an arithmetic sequence. Since the
arithmetic sequence is given by an easy and straightforward rule, it turns
out that one can find a nice formula for the sum of the first k terms in the
sequence, as well.

Note 24.12: Summing integers from 1 to 100

Find the sum of the first 100 integers, starting from 1. In other words,
we want to find the sum of 1 + 2 + 3 + · · · + 99 + 100. Note that the
sequence 1, 2, 3, . . . is an arithmetic sequence. Instead of adding all
these 100 numbers, we use a trick that will turn out to work for any
arithmetic sequence:
In order to compute S = 1 + 2 + 3 + · · · + 98 + 99 + 100, we write
the sum for these numbers twice, once in ascending order, and once in
descending order:

2 · S = 1 + 2 + 3 · · · + 98 + 99 + 100
+ 100 + 99 + 98 · · · + 3 + 2 + 1

Note that the second line is just S, but we are adding the terms in
reverse order. Adding the terms vertically, that is, adding the two
terms in each column, each sum is precisely 101:

2 · S = 101 + 101 + 101 + · · ·+ 101 + 101 + 101

Note that there are 100 terms of 101 on the right-hand side. So,

2S = 100 · 101 and therefore S =
100 · 101

2
= 5050.

According to lore, this formula was discovered by the German mathe-
matician Carl Friedrich Gauss as a child in primary school.
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An appropriate generalization of the previous note yields a computation
that applies to any arithmetic sequence.

Observation 24.13: Arithmetic series

Let {an} be an arithmetic sequence whose nth term is given by the
formula an = a1 + (n− 1) · d. Then the sum a1 + a2 + · · ·+ ak−1 + ak
is given by adding (a1 + ak) precisely k

2
times:

k∑

n=1

an =
k

2
· (a1 + ak) (24.3)

Proof. For the proof of Equation (24.3), we write S = a1 +a2 + · · ·+ak−1 +ak . We then add it to itself,
but in reverse order:

2 · S = a1 + a2 + a3 · · · + ak−2 + ak−1 + ak
+ ak + ak−1 + ak−2 · · · + a3 + a2 + a1

.

Now note that in general, aℓ+am = a1+(ℓ−1) ·d+a1+(m−1) ·d = 2a1 +(ℓ+m−2) ·d. Since the
vertical terms are always terms aℓ and am with ℓ+m = k+1, these add to aℓ +am = 2a1 +(k− 1) ·d.
We see that adding vertically gives

2 · S = (2a1 + (k − 1) · d) + · · ·+ (2a1 + (k − 1) · d)
= k · (2a1 + (k − 1) · d) = k · (a1 + (a1 + (k − 1) · d)) = k · (a1 + ak).

Dividing by 2 gives the desired result.

Here are some examples in which we apply formula (24.3).

Example 24.14

Find the value of the arithmetic series.

a) Find the sum a1 + · · ·+ a60 for the arithmetic sequence

an = 2 + (n− 1) · 13.

b) Determine the value of the sum:

1001∑

n=1

(5− 6n)

c) Find the sum of the first 333 terms of the sequence

15, 11, 7, 3,−1,−5,−9, . . .
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Solution.

a) The sum is given by the formula (24.3):
∑k

n=1 an = k
2
· (a1 + ak).

Here, k = 60, and a1 = 2 and a60 = 2+ 13 · (60− 1) = 2 + 13 · 59 =
2 + 767 = 769. We obtain a sum of

a1 + · · ·+ a60 =
60∑

n=1

an =
60

2
· (2 + 769) = 30 · 771 = 23, 130.

We may confirm this with the calculator as described in Example
24.8 (on page 419) of the previous section.

b) Again, we use the above formula
∑k

n=1 an = k
2
· (a1 + ak), in which

the arithmetic sequence is given by an = 5−6n and k = 1001. Using
the values a1 = 5 − 6 · 1 = 5 − 6 = −1 and a1001 = 5 − 6 · 1001 =
5− 6006 = −6001, we obtain:

1001∑

n=1

(5− 6n) =
1001

2
(a1 + a1001) =

1001

2
((−1) + (−6001))

=
1001

2
· (−6002) = 1001 · (−3001) = −3, 004, 001

c) First note that the given numbers 15, 11, 7, 3,−1,−5,−9, . . . are the
beginning of an arithmetic sequence. The sequence is determined
by the first term a1 = 15 and common difference d = 11 − 15 = −4.
The nth term is given by an = 15− (n− 1) · 4, and summing the first
k = 333 terms gives:

333∑

n=1

an =
333

2
· (a1 + a333)



426 CHAPTER 24. SEQUENCES AND SERIES

We still need to find a333 in the above formula:

a333 = 15− (333− 1) · 4 = 15− 332 · 4 = 15− 1328 = −1313

This gives a total sum of

333∑

n=1

an =
333

2
· (15 + (−1313)) =

35

2
· (−1298) = −216, 117.

24.3 Exercises

Exercise 24.1

Find the first seven terms of the sequence.

a) an = 3n b) an = 5n+ 3 c) an = n2 + 2

d) an = n e) an = (−1)n+1 f ) an =
√
n+1
n

g) ak = 10k h) ai = 5 + (−1)i i) an = sin(π
2
· n)

Exercise 24.2

Find the first six terms of the sequence.

a) a1 = 5, an = an−1 + 3 for n ≥ 2
b) a1 = 7, an = 10 · an−1 for n ≥ 2
c) a1 = 1, an = 2 · an−1 + 1 for n ≥ 2
d) a1 = 6, a2 = 4, an = an−1 − an−2 for n ≥ 3

Exercise 24.3

Find the value of the series.

a)
∑4

n=1 an, where an = 5n b)
∑5

k=1 ak, where ak = k

c)
∑4

i=1 ai, where an = n2 d)
∑6

n=1(n− 4)

e)
∑3

k=1(k
2 + 4k − 4) f )

∑4
j=1

1
j+1
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Exercise 24.4

Is the sequence below part of an arithmetic sequence? If it is part of
an arithmetic sequence, find the formula for the nth term an in the form
an = a1 + (n− 1) · d.

a) 5, 8, 11, 14, 17, . . . b) −10,−7,−4,−1, 2, . . .
c) −1, 1,−1, 1,−1, 1, . . . d) 18, 164, 310, 474, . . .
e) 73.4, 51.7, 30, . . . f ) 9, 3,−3,−8,−14, . . .
g) 4, 4, 4, 4, 4, . . . h) −2.72,−2.82,−2.92,−3.02,−3.12, . . .

i)
√
2,
√
5,
√
8,
√
11, . . . j) −3

5
, −1
10
, 2
5
, . . .

k) an = 4 + 5 · n l) aj = 2 · j − 5
m) an = n2 + 8n+ 15 n) ak = 9 · (k + 5) + 7k − 1

Exercise 24.5

Determine the general nth term an of an arithmetic sequence {an} with
the data given below.

a) d = 4, and a8 = 57 b) d = −3, and a99 = −70
c) a1 = 14, and a7 = −16 d) a1 = −80, and a5 = 224
e) a3 = 10, and a14 = −23 f ) a20 = 2, and a60 = 32

Exercise 24.6

Determine the value of the indicated term of the given arithmetic se-
quence.

a) if a1 = 8, and a15 = 92, find a19
b) if d = −2, and a3 = 31, find a81
c) if a1 = 0, and a17 = −102, find a73
d) if a7 = 128, and a37 = 38, find a26

Exercise 24.7

Determine the sum of the arithmetic sequence.

a) Find the sum a1 + · · ·+ a48 for the arithmetic sequence an = 4n+ 7.

b) Find the sum
∑21

n=1 an for the arithmetic sequence an = 2− 5n.
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c) Find the sum:
99∑

n=1

(10 · n + 1)

d) Find the sum:
200∑

n=1

(−9− n)

e) Find the sum of the first 100 terms of the arithmetic sequence:

2, 4, 6, 8, 10, 12, . . .

f ) Find the sum of the first 83 terms of the arithmetic sequence:

25, 21, 17, 13, 9, 5, . . .

g) Find the sum of the first 75 terms of the arithmetic sequence:

2012, 2002, 1992, 1982, . . .

h) Find the sum of the first 16 terms of the arithmetic sequence:

−11,−6,−1, . . .

i) Find the sum of the first 99 terms of the arithmetic sequence:

−8,−8.2,−8.4,−8.6,−8.8,−9,−9.2, . . .

j) Find the sum

7 + 8 + 9 + 10 + · · ·+ 776 + 777

k) Find the sum of the first 40 terms of the arithmetic sequence:

5, 5, 5, 5, 5, . . .



Chapter 25

The geometric series

We now study another sequence—the geometric sequence. Our analysis
follows steps similar to the one of the arithmetic sequence in Section 24.2.

25.1 Finite geometric series

We have already encountered examples of geometric sequences in Example
24.2(b) and (c). A geometric sequence is a sequence for which we multiply a
constant number to get from one term to the next, for example:

5,
×4

20,
×4

80,
×4

320,
×4

1280, . . .

Definition 25.1: Geometric sequence

A sequence {an} is called a geometric sequence if any two consecutive
terms have a common ratio r. The geometric sequence is determined
by r and the first value a1. This can be written recursively as:

an = an−1 · r for n ≥ 2

Alternatively, we have the general formula for the nth term of the geo-
metric sequence:

an = a1 · rn−1 (25.1)

429
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Example 25.2

Determine whether the terms below are the first terms of an arithmetic
sequence, a geometric sequence, neither, or both. If they are the terms
of an arithmetic or geometric sequence, then find the general formula
an of the sequence in the form (24.2) or (25.1).

a) 3, 6, 12, 24, 48, . . . b) 100, 50, 25, 12.5, . . .
c) 2, 4, 16, 256, . . . d) 700,−70, 7,−0.7, 0.07, . . .
e) 3, 10, 17, 24, . . . f ) −3,−3,−3,−3,−3, . . .
g) an = n2 h) an =

(
3
7

)n

Solution.

a) First, the differences of two consecutive terms 6−3 = 3 and 12−6 = 6
are different. So, these are not the terms of an arithmetic sequence.
On the other hand, the quotient of two consecutive terms always
gives the same number 6 ÷ 3 = 2, 12 ÷ 6 = 2, 24 ÷ 12 = 2, etc.
Therefore, the common ratio is r = 2, which shows that these are the
terms in a geometric sequence. Furthermore, the first term is a1 = 3,
so the general formula for the nth term is an = 3 · 2n−1.

b) Since the differences 50−100 = −50 and 25−50 = −25 are not the
same, this is not an arithmetic sequence. We see that the common
ratio between two terms is r = 50

100
= 1

2
, so that this is a geometric

sequence. Since the first term is a1 = 100, we have the general term
an = 100 · (1

2
)n−1.

c) The difference between the first two terms is 4 − 2 = 2, while the
next two terms have a difference 16− 4 = 12. Therefore, this is also
not an arithmetic sequence. Furthermore, the quotient of the first
two terms is 4 ÷ 2 = 2, whereas the quotient of the next two terms
is 16 ÷ 4 = 4. Since these quotients are not equal, this is not a
geometric sequence.

d) This is not an arithmetic sequence, but these are terms of a geometric
sequence. Two consecutive terms have a ratio of r = − 1

10
, and the

first term is a1 = 700. The general term of this geometric sequence
is an = 700 · (− 1

10
)n−1.
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e) The quotient of the first couple of terms is not equal: 10
3
6= 17

10
, so this

is not a geometric sequence. The difference between any two terms
is 7 = 10 − 3 = 17 − 10 = 24 − 17, so this is part of an arithmetic
sequence with common difference d = 7. The general formula is
an = a1 + d · (n− 1) = 3 + (n− 1) · 7.

f ) The common ratio is r = (−3) ÷ (−3) = 1, so this is a geometric
sequence with an = (−3) · 1n−1. On the other hand, the common
difference is (−3)− (−3) = 0, so this is also an arithmetic sequence
with an = (−3) + (n− 1) · 0. Of course, both formulas reduce to the
simpler expression an = −3.

g) We write the first terms in the sequence {n2}n≥1:

1, 4, 9, 16, 25, 36, 49, . . .

Calculating the quotients of consecutive terms, we get 4÷ 1 = 4 and
9÷4 = 2.25, so this is not a geometric sequence. Also the difference
of consecutive terms is 4 − 1 = 3 and 9 − 4 = 5, so this is also not
an arithmetic sequence.

h) Writing the first couple of terms in the sequence {(3
7
)n}, we obtain:

(
3

7

)1

,

(
3

7

)2

,

(
3

7

)3

,

(
3

7

)4

,

(
3

7

)5

, . . .

Thus, we get from one term to the next by multiplying r = 3
7
, so this

is a geometric sequence. The first term is a1 =
3
7
, so an = 3

7
·
(
3
7

)n−1
.

This is clearly the given sequence, since we may simplify this as

an =
3

7
·
(
3

7

)n−1

=

(
3

7

)1+n−1

=

(
3

7

)n

We can also confirm that this is not an arithmetic sequence.
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Example 25.3

Find the general formula an = a1 · rn−1 of a geometric sequence with
the given properties.

a) r = 4, and a5 = 6400
b) a1 =

2
5
, and a4 = −27

20

c) a5 = 216, a7 = 24, and r is positive

Solution.

a) We know that r = 4, and we still need to find a1. Using a5 = 64000,
we obtain:

6400 = a5 = a1 · 45−1 = a1 · 44 = 256 · a1
(÷256)
=⇒ a1 =

6400

256
= 25

The sequence is therefore given by the formula, an = 25 · 4n−1.

b) The geometric sequence an = a1 · rn−1 has a1 = 2
5
. We calculate r

using the second condition.

−27

20
= a4 = a1 · r4−1 =

2

5
· r3 (× 5

2
)

=⇒ r3 = −27

20
· 5
2
= −27

4
· 1
2
=

−27

8
(take 3

√
)

=⇒ r =
3

√

−27

8
=

3
√
−27
3
√
8

=
−3

2

Therefore, an = 2
5
·
(−3

2

)n−1
.

c) The question provides neither a1 nor r for our formula an = a1 · rn−1.
However, we obtain two equations in the two variables a1 and r:

{
216 = a5 = a1 · r5−1

24 = a7 = a1 · r7−1 =⇒
{
216 = a1 · r4
24 = a1 · r6

In order to solve this, we need to eliminate one of the variables.
Looking at the equations on the right, we see that dividing the top
equation by the bottom equation cancels a1.

216

24
=

a1 · r4
a1 · r6

=⇒ 9

1
=

1

r2
(take reciprocal)

=⇒ 1

9
=

r2

1
=⇒ r2 =

1

9
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To obtain r, we have to solve this quadratic equation. In general,
there are, in fact, two solutions:

r = ±
√

1

9
= ±1

3

Since the problem states that r is positive, we see that we need to
take the positive solution r = 1

3
. Plugging r = 1

3
back into either of

the two equations, we may solve for a1. For example, using the first
equation a5 = 216, we obtain:

216 = a5 = a1 ·
(
1

3

)5−1

= a1 ·
(
1

3

)4

= a1 ·
1

34
= a1 ·

1

81
(×81)
=⇒ a1 = 81 · 216 = 17, 496

So, we finally arrive at the general formula for the nth term of the
geometric sequence, an = 17, 496 · (1

3
)n−1.

We can find the sum of the first k terms of a geometric sequence using
another trick, which is very different from the one we used for the arithmetic
sequence.

Note 25.4: Summing over terms in a geometric sequence

Consider the geometric sequence an = 7 · 10n−1, that is the sequence:

7, 70, 700, 7000, 70, 000, 700, 000, . . .

We want to add the first 5 terms of this sequence.

7 + 70 + 700 + 7000 + 70, 000 = 77, 777

The above example can, of course, easily be computed by hand. In
general, however, much more work is necessary to find a sum of a
geometric sequence, especially if the sequence is more complicated and
we want to add a lot more terms. To get to a general formula, we will
add the terms in the above sum in a different way, which may appear
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to be more complicated than necessary. However, the advantage of the
following calculation is that it is an illustration for a general method,
which allows us to find the sum of terms in any geometric sequence. To
this end, we multiply (1−10) to the sum (7+70+700+7000+70, 000),
and simplify this using the distributive law:

(1− 10) · (7 + 70 + 700 + 7000 + 70, 000)

= 7− 70 + 70− 700 + 700− 7000

+7000− 70, 000 + 70, 000− 700, 000

= 7− 700, 000

The sum in the second line above is called a telescopic sum, which is
a sum where consecutive terms cancel each other. In the above sum
the only remaining terms are the very first and last terms. Dividing by
(1− 10), we obtain:

7 + 70 + 700 + 7000 + 70, 000 =
7− 700, 000

1− 10
=

−699, 993

−9
= 77, 777

An appropriate generalization of the previous note yields a computation
that applies to any geometric sequence.

Observation 25.5: Geometric series

Let {an} be a geometric sequence whose nth term is given by the
formula an = a1 · rn−1. We furthermore assume that r 6= 1. Then the
sum a1 + a2 + · · ·+ ak−1 + ak is given by:

k∑

i=1

ai = a1 ·
1− rk

1− r
(25.2)

Proof. We multiply (1 − r) to the sum (a1 + a2 + · · ·+ ak−1 + ak):

(1 − r) · (a1 + a2 + · · ·+ ak)

= (1 − r) · (a1 · r0 + a1 · r1 + · · ·+ a1 · rk−1)

= a1 · r0 − a1 · r1 + a1 · r1 − a1 · r2 + · · ·+ a1 · rk−1 − a1 · rk

= a1 · r0 − a1 · rk = a1 · (1 − rk)
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Dividing by (1− r), we obtain

a1 + a2 + · · ·+ ak =
a1 · (1− rk)

(1− r)
= a1 · 1− rk

1− r

This is the formula we wanted to prove.

Example 25.6

Find the value of the geometric series.

a) Find the sum
6∑

n=1

an for the geometric sequence an = 10 · 3n−1.

b) Determine the value of the geometric series:
5∑

k=1

(
−1

2

)k

c) Find the sum of the first 12 terms of the geometric sequence

−3,−6,−12,−24, . . .

Solution.

a) We need to find the sum a1+ a2+ a3+ a4+ a5+ a6, and we do so by
using the formula provided in Equation (25.2). Since an = 10 · 3n−1,
we have a1 = 10 and r = 3, so

6∑

n=1

an = 10 · 1− 36

1− 3
= 10 · 1− 729

1− 3
= 10 · −728

−2
= 10 · 364 = 3640

b) Again, we use the formula for the geometric series
∑n

k=1 ak = a1 ·
1−rn

1−r
, since ak = (−1

2
)k is a geometric series. We may calculate the

first term a1 = −1
2
, and the common ratio is also r = −1

2
. With this,

we obtain:

5∑

k=1

(

−1

2

)k

=

(

−1

2

)

· 1− (−1
2
)5

1− (−1
2
)
=

(

−1

2

)

· 1− ((−1)5 15

25
)

1− (−1
2
)

=

(

−1

2

)

· 1− (− 1
32
)

1− (−1
2
)
=

(

−1

2

)

· 1 +
1
32

1 + 1
2

=

(

−1

2

)

·
32+1
32
2+1
2

=

(

−1

2

)

·
33
32
3
2

=

(

−1

2

)

· 33
32

· 2
3
= −1

2
· 11
16

= −11

32
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c) Our first task is to find the formula for the provided geometric series
−3,−6,−12,−24, . . . . The first term is a1 = −3 and the common
ratio is r = 2, so that an = (−3) · 2n−1. The sum of the first 12 terms
of this sequence is again given by Equation (25.2):

12∑

i=1

(−3) · 2i−1 = (−3) · 1− 212

1− 2
= (−3) · 1− 4096

1− 2
= (−3) · −4095

−1

= (−3) · 4095 = −12, 285

25.2 Infinite geometric series

In some cases, it makes sense to add not only finitely many terms of a geo-
metric sequence, but all infinitely many terms of the sequence! An informal
and intuitive infinite geometric series is exhibited in the next note.

Note 25.7: Summing over all terms in a geometric sequence

Consider the geometric sequence

1,
1

2
,
1

4
,
1

8
,
1

16
, . . .

Here, the common ratio is r = 1
2
, and the first term is a1 = 1, so that

the formula for an is an =
(
1
2

)n−1
. We are interested in summing all

infinitely many terms of this sequence:

1 +
1

2
+

1

4
+

1

8
+

1

16
+ . . .

We add these terms one by one, and picture these sums on the number
line:

0 1 1.5 1.75 2

1 = 1

1 +
1

2
= 1.5
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1 +
1

2
+

1

4
= 1.75

1 +
1

2
+

1

4
+

1

8
= 1.875

1 +
1

2
+

1

4
+

1

8
+

1

16
= 1.9375

We see that adding each term takes the sum closer and closer to the
number 2. More precisely, adding a term an to the partial sum a1 +
· · · + an−1 decreases the distance between 2 and a1 + · · · + an−1 by
half. For this reason, we can, in fact, get arbitrarily close to 2, so it is
reasonable to expect that

1 +
1

2
+

1

4
+

1

8
+

1

16
+ · · · = 2

In the next definition and observation, this equation will be justified
and made more precise.

First, we give a definition of an infinite series.

Definition 25.8: Infinite series

An infinite series is given by adding infinitely many terms of a sequence.
We write ∞∑

n=1

an = a1 + a2 + a3 + . . . (25.3)

To be more precise, the infinite sum is defined as the limit
∞∑

n=1
an := lim

k→∞

(
k∑

n=1
an

)
. Therefore,

an infinite sum is defined precisely when this limit exists.

Observation 25.9: Infinite geometric series

Let {an} be a geometric sequence with an = a1 · rn−1. Then the infinite
geometric series is defined whenever −1 < r < 1. In this case, we
have:

∞∑

n=1

an = a1 ·
1

1− r
(25.4)
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Proof. Informally, this follows from the formula
∑k

n=1 an = a1 · 1−rk

1−r
and the

fact that, for −1 < r < r, the term rk approaches zero when k increases
without bound.

More formally, the proof uses the notion of limits, and proceeds as follows:

∞∑

n=1

an = lim
k→∞

( k∑

n=1

an

)
= lim

k→∞

(
a1 · 1− rk

1− r

)
= a1 ·

1− lim
k→∞

(rk)

1− r
= a1 · 1

1− r

Example 25.10

Find the value of the infinite geometric series.

a)
∑∞

j=1 aj , for aj = 5 ·
(
1
3

)j−1
b)

∑∞
n=1 3 · (0.71)

n

c) 500− 100 + 20− 4 + . . . d) 3 + 6 + 12 + 24 + 48 + . . .

Solution.

a) We use formula (25.4) for the geometric series an = 5 · (1
3
)n−1, that

is a1 = 5 · (1
3
)1−1 = 5 · (1

3
)0 = 5 · 1 = 5 and r = 1

3
. Therefore,

∞∑

j=1

aj = a1 ·
1

1− r
= 5 · 1

1− 1
3

= 5 · 1
3−1
3

= 5 · 12
3

= 5 · 3
2
=

15

2

b) In this case, an = 3 · (0.71)n, so that a1 = 3 · 0.711 = 3 · 0.71 = 2.13
and r = 0.71. Again using formula (25.4), we can find the infinite
geometric series as

∞∑

n=1

3·(0.71)n = a1·
1

1− r
= 2.13· 1

1− 0.71
= 2.13· 1

0.29
=

2.13

0.29
=

213

29

In the last step, we simplified the fraction by multiplying 100 to both
numerator and denominator, which had the effect of eliminating the
decimals.

c) Our first task is to identify the given sequence as an infinite geo-
metric sequence:

{an} is given by 500,−100, 20,−4, . . .
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Notice that the first term is 500, and each consecutive term is given
by dividing by −5, or in other words, by multiplying by the common
ratio r = −1

5
. Therefore, this is an infinite geometric series, which

can be evaluated as

500− 100 + 20− 4 + · · · =
∞∑

n=1

an = a1 ·
1

1− r
= 500 · 1

1− (−1
5
)

= 500 · 1

1 + 1
5

=
500
5+1
5

=
500
6
5

= 500 · 5
6
=

2500

6
=

1250

3

d) We want to evaluate the infinite series 3+6+12+24+48+ . . . . The
sequence 3, 6, 12, 24, 48, . . . is a geometric sequence with a1 = 3 and
common ratio r = 2. Since r ≥ 1, we see that formula (25.4) cannot

be applied, as (25.4) only applies to −1 < r < 1. However, since we
add larger and larger terms, the series gets larger than any possible
bound, so that the whole sum becomes infinite.

3 + 6 + 12 + 24 + 48 + · · · = ∞

Example 25.11

The fraction 0.55555 . . . may be written as:

0.55555 · · · = 0.5 + 0.05 + 0.005 + 0.0005 + 0.00005 + . . .

Noting that the sequence

0.5,
×0.1

0.05,
×0.1

0.005,
×0.1

0.0005,
×0.1

0.00005, . . .

is a geometric sequence with a1 = 0.5 and r = 0.1, we can calculate
the infinite sum as:

0.55555 · · · =
∞∑

n=1

0.5 · (0.1)n−1 = 0.5 · 1

1− 0.1
= 0.5 · 1

0.9
=

0.5

0.9
=

5

9
,

Here we multiplied numerator and denominator by 10 in the last step
in order to eliminate the decimals.
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25.3 Exercises

Exercise 25.1

Which of these sequences is geometric, arithmetic, neither, or both.
Write the sequence in the usual form an = a1 + (n − 1) · d if it is
an arithmetic sequence, and an = a1 · rn−1 if it is a geometric sequence.

a) 7, 14, 28, 56, . . . b) 3,−30, 300,−3000, . . .

c) 81, 27, 9, 3, 1, 1
3
, . . . d) −7,−5,−3,−1, 1, 3, 5, 7, . . .

e) −6, 2,−2
3
, 2
9
,− 2

27
, . . . f ) −2,−2 · 2

3
,−2 ·

(
2
3

)2
,−2 ·

(
2
3

)3
, . . .

g) 1
2
, 1
4
, 1
8
, 1
16
, . . . h) 2, 2, 2, 2, 2, . . .

i) 5, 1, 5, 1, 5, 1, 5, 1, . . . j) −2, 2,−2, 2,−2, 2, . . .

k) 0, 5, 10, 15, 20, . . . l) 5, 5
3
, 5
32
, 5
33
, 5
34
, . . .

m) 1
2
, 1
4
, 1
8
, 1
16
, . . . n) log(2), log(4), log(8), log(16), . . .

o) an = −4n p) an = −4n

q) an = 2 · (−9)n r) an =
(
1
3

)n

s) an = −
(
5
7

)n
t) an =

(
−5

7

)n

u) an = 2
n

v) an = 3n+ 1

Exercise 25.2

A geometric sequence, an = a1 · rn−1, has the given properties. Find the
term an of the sequence.

a) a1 = 3, and r = 5, find a4
b) a1 = 200, and r = −1

2
, find a6

c) a1 = −7, and r = 2, find an (for all n)
d) r = 2, and a4 = 48, find a1
e) r = 100, and a4 = 900, 000, find an (for all n)
f ) a1 = 20, a4 = 2500, find an (for all n)

g) a1 =
1
8
, and a6 =

35

86
, find an (for all n)

h) a3 = 36, and a6 = 972, find an (for all n)
i) a8 = 4000, a10 = 40,

and r is negative, find an (for all n)
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Exercise 25.3

Find the value of the finite geometric series using formula (25.2). Con-
firm the formula either by adding the the summands directly, or alter-
natively by using the calculator.

a) Find the sum
4∑

j=1

aj for the geometric sequence aj = 5 · 4j−1.

b) Find the sum
7∑

i=1

ai for the geometric sequence an =
(
1
2

)n
.

c) Find:
5∑

m=1

(
−1

5

)m

d) Find:
6∑

k=1

2.7 · 10k

e) Find the sum of the first 5 terms of the geometric sequence:

2, 6, 18, 54, . . .

f ) Find the sum of the first 6 terms of the geometric sequence:

−5, 15,−45, 135, . . .

g) Find the sum of the first 8 terms of the geometric sequence:

−1,−7,−49,−343, . . .

h) Find the sum of the first 10 terms of the geometric sequence:

600,−300, 150,−75, 37.5, . . .

i) Find the sum of the first 40 terms of the geometric sequence:

5, 5, 5, 5, 5, . . .
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Exercise 25.4

Find the value of the infinite geometric series.

a)
∑∞

j=1 aj , for aj = 3 ·
(
2
3

)j−1
b)

∑∞
j=1 7 ·

(
−1

5

)j

c)
∑∞

j=1 6 · 1
3j

d)
∑∞

n=1−2 · (0.8)n

e)
∑∞

n=1 (0.99)
n f ) 27 + 9 + 3 + 1 + 1

3
+ . . .

g) −2 + 1− 1
2
+ 1

4
− . . . h) −6 − 2− 2

3
− 2

9
− . . .

i) 100 + 40 + 16 + 6.4 + . . . j) −54 + 18− 6 + 2− . . .

Exercise 25.5

Rewrite the decimal using an infinite geometric sequence, and then use
the formula for the infinite geometric series to rewrite the decimal as a
fraction (see Example 25.11).

a) 0.44444 . . . b) 0.77777 . . . c) 5.55555 . . .
d) 0.2323232323 . . . e) 39.393939 . . . f ) 0.248248248 . . .
g) 20.02002 . . . h) 0.5040504 . . .



Review of complex numbers,

sequences, and the binomial

theorem

Exercise V.1

Find the magnitude and direction angle of the vector

~v = 〈7,−7
√
3〉.

Exercise V.2

For the vectors ~v = 〈3,−2〉 and ~w = 〈−5, 6〉, evaluate the following
expression:

7 · ~v − 3 · ~w

Exercise V.3

Convert the complex number to polar form:

a) − 3− 3i b) − 5
√
3 + 5i

Exercise V.4

Multiply and write the answer in standard form:

4(cos(207◦) + i sin(207◦)) · 2(cos(108◦) + i sin(108◦))
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Exercise V.5

Divide and write the answer in standard form:

9(cos(190◦) + i sin(190◦))

15(cos(70◦) + i sin(70◦))

Exercise V.6

Evaluate the sum:
7∑

n=1

(3n2 + 4n)

Exercise V.7

Determine whether the sequence is an arithmetic sequence, geometric
sequence, or neither. If it is one of these, then find the general formula
for the nth term an of the sequence.

a) 54,−18, 6,−2, 2
3
, . . .

b) 2, 4, 8, 10, . . .
c) 9, 5, 1,−3,−7, . . .

Exercise V.8

Find the sum of the first 75 terms of the arithmetic sequence:

−30,−22,−14,−6, 2, . . .

Exercise V.9

Find the sum of the first 8 terms of the geometric series:

−7,−14,−28,−56,−112, . . .

Exercise V.10

Find the value of the infinite geometric series:

80− 20 + 5− 1.25 + . . .
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Appendix A

The binomial theorem

In this appendix, we discuss the generalized binomial theorem.

A.1 The binomial theorem

Recall the well-known binomial formula:

(a+ b)2 = a2 + 2ab+ b2 (A.1)

which follows from a direct computation: (a + b)2 = (a + b) · (a + b) =
a2 + ab+ ab+ b2 = a2 + 2ab+ b2.

In this section, we generalize (A.1) to find similar expressions for (a+ b)n

for any natural number n. This is the content of the (generalized) binomial
theorem below. Before we can state the theorem, we need to define the notion
of a factorial and combinations.

Definition A.1: Factorial

For a natural number n = 1, 2, 3, . . . , we define n! to be the number

n! = 1 · 2 · 3 · · · · · n

The number n! is called n factorial.
To make the formulas below work nicely, we also define 0! to be 0! = 1.
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Example A.2

4! = 1 · 2 · 3 · 4 = 24

7! = 1 · 2 · 3 · 4 · 5 · 6 · 7 = 5040

2! = 1 · 2 = 2

Factorials also can be easily computed with the calculator.

Note that the factorial becomes very large even for relatively small
integers. For example 18! ≈ 6.402 · 1015 as shown above.

The next concept that we introduce is that of the binomial coefficient.

Definition A.3: Binomial coefficient

Let n = 0, 1, 2, . . . and r = 0, 1, 2, . . . , n be natural numbers or zero, so
that 0 ≤ r ≤ n. Then we define the binomial coefficient as

(
n

r

)

=
n!

r! · (n− r)!

The binomial coefficient is also written as nCr =
(
n
r

)
, and we read them

as “n-choose-r.”
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Note A.4

• The binomial coefficient
(
n
r

)
should not be confused with the frac-

tion
(
n
r

)
.

• A subset of the set {1, 2, . . . , n} with r elements is called an
r-combination. The binomial coefficient can be interpreted as
counting the number of distinct r-combinations. More precisely,
there are exactly

(
n
r

)
distinct r-combinations of the set {1, . . . , n}.

Example A.5

Calculate the binomial coefficients.

a)
(
6
4

)
b)
(
8
5

)
c)
(
25
23

)
d)
(
7
1

)
e)
(
11
11

)
f )
(
11
0

)

Solution.

a) Many binomial coefficients may be calculated by hand, such as:
(
6

4

)

=
6!

4!(6− 4)!
=

6!

4!2!
=

1 · 2 · 3 · 4 · 5 · 6
1 · 2 · 3 · 4 · 1 · 2 =

5 · 6
2

= 15

b) Again, we can calculate this by hand
(
8

5

)

=
8!

5!3!
=

1 · 2 · 3 · 4 · 5 · 6 · 7 · 8
1 · 2 · 3 · 4 · 5 · 1 · 2 · 3 =

6 · 7 · 8
1 · 2 · 3 = 7 · 8 = 56

We can also use the calculator to find the answer. The binomial
coefficients are computed with the command “nCr”. (Note that this is
case sensitive, that is: the letter “C” has to be capitalized, and “n”
and “r” are lower case.)
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We calculate the remaining binomial coefficients (c)-(f ), which can
also be confirmed with the calculator.

c)
(
25
23

)
= 25!

23!·2! =
23!·24·25
23!·1·2 = 24·25

2
= 300

d)
(
7
1

)
= 7!

1!·6! =
6!·7
1·6! =

7
1
= 7

e)
(
11
11

)
= 11!

11!·0! =
1
1·1 = 1

f )
(
11
0

)
= 11!

0!·11! =
1
1·1 = 1

Note that in the last two equations we needed to use the fact that
0! = 1.

We state some useful facts about the binomial coefficient that can already
be seen in the previous example.

Observation A.6: Basic properties of the binomial coefficient

For all n = 0, 1, 2, . . . and r = 0, 1, 2, . . . , n, we have:

(
n

n− r

)

=

(
n

r

) (
n

0

)

=

(
n

n

)

= 1

(
n

1

)

=

(
n

n− 1

)

= n

Proof. We have:
(

n

n− r

)

=
n!

(n− r)! · (n− (n− r))!
=

n!

(n− r)! · r! =
(
n

r

)

(
n

0

)

=

(
n

n

)

=
n!

0! · n! =
1

1
= 1

(
n

1

)

=

(
n

n− 1

)

=
n!

1! · (n− 1)!
=

n

1
= n
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Note A.7: Binomial coefficients and Pascal’s triangle

The binomial coefficients are found in what is known as Pascal’s trian-
gle. For this, calculate the lowest binomial coefficients and write them
in a triangular arrangement:

(
0
0

)

(
1
0

) (
1
1

)

(
2
0

) (
2
1

) (
2
2

)

(
3
0

) (
3
1

) (
3
2

) (
3
3

)

(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)

(
5
0

) (
5
1

) (
5
2

) (
5
3

) (
5
4

) (
5
5

)

...

=

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

...

The triangle on the right is known as Pascal’s triangle. Each entry in
the triangle is obtained by adding the two entries right above it.

The binomial coefficients appear in the expressions for (a+ b)n, as we will
see in the next example.

Example A.8

We now calculate some simple examples.

(a+ b)3 = (a+ b) · (a + b) · (a+ b)

= (a2 + 2ab+ b2) · (a+ b)

= a3 + 2a2b+ ab2 + a2b+ 2ab2 + b3

= a3 + 3a2b+ 3ab2 + b3

Note that the numbers 1, 3, 3, and 1 that appear as coefficients of
a3, a2b, ab2, and b3, respectively, are precisely the binomial coefficients
(
3
0

)
,
(
3
1

)
,
(
3
2

)
, and

(
3
3

)
.

We also calculate the fourth power.

(a + b)4 = (a + b) · (a+ b) · (a+ b) · (a + b)

= (a3 + 3a2b+ 3ab2 + b3) · (a+ b)

= a4 + 3a3b+ 3a2b2 + ab3 + a3b+ 3a2b2 + 3ab3 + b4

= a4 + 4a3b+ 6a2b2 + 4ab3 + b4
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Again, the numbers 1, 4, 6, 4, and 1 are precisely the binomial coefficients
(
4
0

)
,
(
4
1

)
,
(
4
2

)
,
(
4
3

)
, and

(
4
4

)
.

We are now ready to state the general binomial theorem:

Proposition A.9: Binomial theorem

The nth power (a + b)n can be expanded as:

(a+b)n =

(
n

0

)

an+

(
n

1

)

an−1b1+

(
n

2

)

an−2b2+· · ·+
(

n

n− 1

)

a1bn−1+

(
n

n

)

bn

Using the summation symbol, we may write this in short:

(a+ b)n =

n∑

r=0

(
n

r

)

· an−r · br (A.2)

Example A.10

Expand (a+ b)5.

Solution.

(a + b)5

=

(
5

0

)

a5 +

(
5

1

)

a4b1 +

(
5

2

)

a3b2 +

(
5

3

)

a2b3 +

(
5

4

)

a1b4 +

(
5

5

)

b5

=a5 + 5a4b+ 10a3b2 + 10a2b3 + 5ab4 + b5

A.2 Binomial expansion

Using the binomial theorem, we can also expand more general powers of sums
or differences.
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Example A.11

Expand the expression.

a) (x2 + 2y3)5 b) (2xy2 − 4
y2
)3

c) (
√
2 + 1)6 d) (i− 3)4

Solution.

a) We use the binomial theorem with a = x2 and b = 2y3:

(x2 + 2y3)5 = (x2)5 +

(
5

1

)

(x2)4(2y3) +

(
5

2

)

(x2)3(2y3)2

+

(
5

3

)

(x2)2(2y3)3 +

(
5

4

)

(x2)(2y3)4 + (2y3)5

= x10 + 5x8 · 2y3 + 10x6 · 4y6

+10x4 · 23y9 + 5x2 · 24y12 + 25y15

= x10 + 10x8y3 + 40x6y6 + 80x4y9 + 80x2y12 + 32y15

b) For part (b), we use a = 2xy2 and b = − 4
y2

.

(2xy2 − 4

y2
)3

= (2xy2)3 +

(
3

1

)

(2xy2)2(− 4

y2
) +

(
3

2

)

(2xy2)(− 4

y2
)2 + (− 4

y2
)3

= 23x3y6 + 3 · 22x2y4(− 4

y2
) + 3(2xy2)(−1)2

42

y4
+ (−1)3

43

y6

= 8x3y6 − 48x2y2 + 96x · 1

y2
− 64 · 1

y6

c) Similarly, for part (c), we now have a =
√
2 and b = 1:

(
√
2 + 1)6 = (

√
2)6 +

(
6

1

)

(
√
2)5 · 1 +

(
6

2

)

(
√
2)4 · 12

+

(
6

3

)

(
√
2)3 · 13 +

(
6

4

)

(
√
2)2 · 14 +

(
6

5

)

(
√
2) · 15 + 16

=
√
64 + 6 ·

√
32 + 15 ·

√
16
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+20 ·
√
8 + 15 ·

√
4 + 6 ·

√
2 + 1

= 8 + 6 ·
√
16 · 2 + 15 · 4

+20 ·
√
4 · 2 + 15 · 2 + 6 ·

√
2 + 1

= 8 + 24
√
2 + 60 + 40

√
2 + 30 + 6

√
2 + 1

= 99 + 70
√
2

Note that the last expression cannot be simplified any further (due
to the order of operations).

d) Finally, we have a = i and b = −3, and we use the fact that i2 = −1,
and therefore, i3 = −i and i4 = +1:

(i− 3)4 = i4 +

(
4

1

)

· i3 · (−3) +

(
4

2

)

· i2 · (−3)2

+

(
4

3

)

· i · (−3)3 + (−3)4

= 1 + 4 · (−i) · (−3) + 6 · (−1) · 9 + 4 · i · (−27) + 81

= 1 + 12i− 54− 108i+ 81

= 28− 96i

In some instances it is not necessary to write the full binomial expansion,
but it may be enough to find a particular term, say the kth term of the
expansion.

Observation A.12: Expanding (a+ b)n

Recall, for example, the binomial expansion of (a+ b)6:
(
6
0

)
a6b0 +

(
6
1

)
a5b1 +

(
6
2

)
a4b2 +

(
6
3

)
a3b3 +

(
6
4

)
a2b4 +

(
6
5

)
a1b5 +

(
6
6

)
a0b6

first second third fourth fifth sixth seventh
term term term term term term term

Note that the exponents of the a’s and b’s for each term always add
up to 6, and that the exponents of a decrease from 6 to 0, and the
exponents of b increase from 0 to 6. Furthermore, observe that in the
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above expansion the fifth term is
(
6
4

)
a2b4.

In general, we define the kth term of the expansion (a+ b)n to be given
by:

(
n

k − 1

)

an−k+1bk−1 (A.3)

Note in particular, that the kth term has a power of b given by bk−1

(and not bk), it has a binomial coefficient
(

n
k−1

)
, and the exponents of a

and b add up to n.

Example A.13

Determine:

a) the 4th term in the binomial expansion of (p+ 3q)5

b) the 8th term in the binomial expansion of (x3y − 2x2)10

c) the 12th term in the binomial expansion of (−5a
b7

− b)15

Solution.

a) We have a = p and b = 3q, and n = 5 and k = 4. Thus, the binomial
coefficient of the 4th term is

(
5
3

)
, the b-term is (3q)3, and the a-term

is p2. The 4th term is therefore given by
(
5

3

)

· p2 · (3q)3 = 10 · p2 · 33q3 = 270p2q3

b) In this case, a = x3y and b = −2x2, and furthermore, n = 10 and
k = 8. The binomial coefficient of the 8th term is

(
10
7

)
, the b-term is

(−2x2)7, and the a-term is (x3y)3. Therefore, the 8th term is
(
10

7

)

· (x3y)3 · (−2x2)7 = 120 · x9y3 · (−128)x14 = −15, 360 · x23y3

c) Similarly, we obtain the 12th term of (−5a
b7

− b)15 as
(
15

11

)

·
(

− 5a

b7

)4

· (−b)11 = 1365 · 5
4a4

b28
· (−b11)

= 1365 · 625 · a
4 · (−b11)

b28
= −853, 125 · a

4

b17
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The following is a variation of the above problem, in which we want to
find the term for a specified power of some of the given variables.

Example A.14

Determine:

a) the x4y12-term in the binomial expansion of (5x2 + 2y3)6

b) the x15-term in the binomial expansion of (x3 − x)7

c) the real part of the complex number (3 + 2i)4

Solution.

a) In this case, we have a = 5x2 and b = 2y3. The term x4y12 can be
rewritten as x4y12 = (x2)2·(y3)4, so that the full term

(
n

k−1

)
an−k+1bk−1

(including the coefficients) is

(
6

4

)

· (5x2)2 · (2y3)4 = 15 · 25x4 · 16y12 = 6000 · x4y12

b) The various powers of x in (x3 − x)7 (in the order in which they
appear in the binomial expansion) are:

(x3)7 = x21, (x3)6 · x1 = x19, (x3)5 · x2 = x17, (x3)4 · x3 = x15, . . .

The last term is precisely the x15-term, that is, we take the fourth
term, k = 4. We obtain a total term (including the coefficients) of

(
7

3

)

· (x3)4 · (−x)3 = 35 · x12 · (−x)3 = −35 · x15

c) Recall that in is real when n is even, and imaginary when n is odd:

i1 = i
i2 = −1
i3 = −i
i4 = 1
i5 = i
i6 = −1

...
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The real part of (3 + 2i)4 is therefore given by the first, third, and
fifth term of the binomial expansion:

real part =

(
4

0

)

· 34 · (2i)0 +
(
4

2

)

· 32 · (2i)2 +
(
4

4

)

· 30 · (2i)4

= 1 · 81 · 1 + 6 · 9 · 4i2 + 1 · 1 · 16i4
= 81 + 216 · (−1) + 16 · 1
= 81− 216 + 16

= −119

The real part of (3 + 2i)4 is −119.

A.3 Exercises

Exercise A.1

Find the value of the factorial or binomial coefficient.

a) 5! b) 3! c) 9! d) 2! e) 0! f ) 1! g) 19! h) 64!
i)
(
5
2

)
j)
(
9
6

)
k)
(
12
1

)
l)
(
12
0

)
m)
(
23
22

)
n)
(
19
12

)
o)
(
13
11

)
p)
(
16
5

)

Exercise A.2

Expand the expression via the binomial theorem.

a) (m+ n)4 b) (x+ 2)5 c) (x− y)6 d) (−p− q)5

Exercise A.3

Expand the expression.

a) (x− 2y)3 b) (x− 10)4 c) (x2y + y2)5 d) (2y2 − 5x4)4

e) (x+
√
x )3 f ) (−2x2

y
− y3

x
)5 g) (

√
2− 2

√
3)3 h) (1− i)3
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Exercise A.4

Determine:

a) the first 3 terms in the binomial expansion of (xy − 4x)5

b) the first 2 terms in the binomial expansion of (2a2 + b3)9

c) the last 3 terms in the binomial expansion of (3y2 − x2)7

d) the first 3 terms in the binomial expansion of (x
y
− y

x
)10

e) the last 4 terms in the binomial expansion of (m3n+ 1
2
n2)6

Exercise A.5

Determine:

a) the 5th term in the binomial expansion of (x+ y)7

b) the 3rd term in the binomial expansion of (x2 − y)9

c) the 10th term in the binomial expansion of (2− w)11

d) the 5th term in the binomial expansion of (2x+ xy)7

e) the 7th term in the binomial expansion of (2a+ 5b)6

f ) the 6th term in the binomial expansion of (3p2 − q3p)7

g) the 10th term in the binomial expansion of (4 + b
2
)13

Exercise A.6

Determine:

a) the x3y6-term in the binomial expansion of (x+ y)9

b) the r4s4-term in the binomial expansion of (r2 − s)6

c) the x4-term in the binomial expansion of (x− 1)11

d) the x3y6-term in the binomial expansion of (x3 + 5y2)4

e) the x7-term in the binomial expansion of (2x− x2)5

f ) the imaginary part of the number (1 + i)3



Answers to exercises

Here are the answers to the exercises given in each sections and in the
reviews for each part.

Chapter 1 (exercises starting on page 14):

Exercise 1.1 Examples: a) 2, 3, 5, b) −3, 0, 6, c) −3,−4, 0, d) 2
3 ,

−4
7 , 8, e)

√
5, π, 3

√
31,

f) 1
2 ,

2
5 , 0.75

Exercise 1.2 natural: 17000, 124 ,
√
25, integer: −5, 0, 17000, 124 ,

√
25, rational:

7
3 ,−5, 0, 17000, 124 ,

√
25, real: all of the given numbers are real num-

bers, irrational:
√
7

Exercise 1.3 Inequality Number line Interval

2 ≤ x < 5 2 5 [2, 5)

x ≤ 3 3 (−∞, 3]

12 < x ≤ 17 12 17 (12, 17]

x < −2 −2 (−∞,−2)

−2 ≤ x ≤ 6 −2 6 [−2, 6]

x < 0 0 (−∞, 0)

4.5 ≤ x 4.5 [4.5,∞)

5 < x ≤
√
30 5

√
30 (5,

√
30]

13
7 < x < π

13
7

π
(137 , π)

Exercise 1.4 a) this is a function with domain D = {−5,−1, 0, 3, 6} and range

R = {2, 3, 5, 7, 8}, for example: the input x = −5 gives output y = 5,

etc., b) not a function, since for x = 4 we have both y = 0 and y = −1,

c) this is a function with D = {−11,−2, 3, 6, 7, 19}, R = {3}, d) this

is a function with D = {1, 2, 3, 4, 5}, R = {
√
19, 5.33, 9, 13, 17}, e) this

is not a function

457
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Exercise 1.5 a) yes, b) no (assuming that there are two items in the store with the

same price), c) the domain for the function in (a) is the set of all items

in the store that are for sale, d) the range for the function in (a) is the

set of all prices

Exercise 1.6 a) a given cash amount x determines the interest amount y, b) i) $0,

ii) $100, 000, iii) $0, iv) $300, 000, v) $200, 000, vi) $40, 000

Exercise 1.7 a) C(r) = 2πr, b) P (a) = 3a, c) P (a) = 2a+ 6, d) V (a) = a3

Chapter 2 (exercises starting on page 26):

Exercise 2.1 a): i) 10, ii) 16, iii) −5, iv) 1, v) 3
√
13 + 1, vi) 3

√
2 + 10, vii) −3x+ 1,

viii) 3x+ 7, ix) 3x+ 1 + h, x) 3x+ 3h+ 1

b): i) 6, ii) 20, iii) 6, iv) 0, v) 13 −
√
13, vi) 8 + 5

√
2, vii) x2 + x, viii)

x2 + 3x+ 2, ix) x2 − x+ h, x) x2 + 2xh+ h2 − x− h

c): i) 0, ii) 4, iii) undefined, iv) undefined, v) 2, vi)
√

2 + 6
√
2, vii)√

x2 − 9, viii)
√
x2 + 4x− 5, ix)

√
x2 − 9 + h, x)

√
x2 + 2xh+ h2 − 9

d): i) 1
3 , ii) 1

5 , iii) − 1
2 , iv) undefined, v)

√
13
13 , vi) 3−

√
2

7 , vii) − 1
x

, viii)
1

x+2 , ix) 1+xh
x

, x) 1
x+h

e): i) −2
5 , ii) 0, iii) undefined, iv) −5

2 , v)
√
13−5√
13+2

= 23−7
√
13

9 , vi)
√
2−2√
2+5

=

−12+7
√
2

23 , vii) −x−5
−x+2 , viii) x−3

x+4 , ix) x−5+hx+2h
x+2 , x) x+h−5

x+h+2

f): i) −27, ii) −125, iii) 8, iv) 0, v) −
√
2197, vi) −45 − 29

√
2, vii)

x3, viii) f(x + 2) = −(x + 2)3 or in descending order f(x + 2) =
−x3−6x2−12x−8, ix) −x3+h, x) −(x+h)3 or −x3−3x2h−3xh2−h3

Exercise 2.2 a) D = (−4, 6], b) −3, c) 25, d) −8, e) 9

Exercise 2.3 a) D = (−∞, 5) ∪ (5,∞) or, alternatively, D = R − {5}, b) 0, c) −2,

d) 7, e) 7, f) undefined, g) 22

Exercise 2.4 a) 5, b) 2, c) 2x+h, d) 2x+5+h, e) 2x+h, f) 2x+3+h, g) 2x+4+h,

h) 6x − 2 + 3h, i) 8x + 6 + 4h, j) 4x − 8 + 2h, k) −10x + 3 − 5h, l)

3x2 + 3xh+ h2

Exercise 2.5 a) 3, b) 4, c) x+ a− 3, d) x+ a+ 4, e) 7x+ 7a+ 2, f) −1
ax

Exercise 2.6 a) D = R all real numbers, b) D = R, c) D = [2,∞), d) D = (−∞, 4],

e) D = R, f) D = R − {−6}, g) D = R − {7}, h) D = R − {2, 5},

i) D = R − {2}, j) D = (1, 2) ∪ [3,∞), k) D = [0, 9) ∪ (9,∞), l)

D = (−4,∞)

Chapter 3 (exercises starting on page 43):

Exercise 3.1 a) y = 2x − 4, b) y = −x + 3, c) y = −2x − 2, d) y = 2
5x + 3, e)

y = −x+ 0 or y = −x, f) y = 2
3x+ 4
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Exercise 3.2 a) y− 3 = 1
3 · (x− 5), b) y− 1 = − 3

2 · (x− 4), c) y+2 = − 1
2 · (x− 3),

d) y − 1 = 1 · (x+ 1), e) y − 3 = −3 · (x+ 4), f) y + 6 = − 1
2 · (x+ 5)

Exercise 3.3 a) domain Df = [1, 3) ∪ [4, 6] and range Rf = [1, 3], b) Dg = R and

Rg = [2, 3], c) Dh = (−2, 0)∪ (0, 2)∪ (2, 3) and Rh = {−1}∪ (0, 1], d)

1, e) 3, f) undefined, g) 2, h) 2, i) 3, j) undefined, k) 2, l) 2, m) 3, n) 2.5,

o) 2, p) 2, q) 2, r) undefined, s) 1, t) undefined, u) −1, v) undefined, w)

undefined, x) −1

Exercise 3.4 a) not a function, b) this is a function, c) not a function, d) not a function

Exercise 3.5 a) D = (−3, 4) ∪ (4, 7], b) R = (−2, 2], c) x = −2 or x = 0 or x = 7,

d) x ∈ (4, 5], e) x ∈ (−3,−1]∪ [0, 4) ∪ [6, 7], f) x ∈ (−2, 0) ∪ (4, 7), g)

f(2) = −1, f(5) = 2, h) f(2)+f(5) = 1, i) f(2)+5 = 4, j) f(2+5) = 0

Exercise 3.6 a) Approximately 3900 students were admitted in the year 2000, b)

The most students were admitted in 2007. c) In 2000, the number

of admitted students rose fastest. d) In 2003 the number of admitted

students declined.

Exercise 3.7 domain D = (−2, 5], graph:

-4 -3 -2 -1 0 1 2 3 4 5 6

-1

0

1

2

3

4

5

x

y

Chapter 4 (exercises starting on page 75):

Exercise 4.1 a) b)
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c) d)

e) f)

Exercise 4.2 a) roots: (x, y) ≈ (−3.925, 0), (x, y) ≈ (−1.552, 0), (x, y) ≈ (1.477, 0),

local max: (x, y) ≈ (−2.897, 6.051), local min: (x, y) ≈ (0.23,−9.236),
y-intercept: (x, y) = (0,−9),

b) roots: (x, y) ≈ (−0.414, 0), (x, y) ≈ (2.414, 0), (x, y) = (4, 0),

local max: (x, y) ≈ (0.709, 6.303), local min: (x, y) ≈ (3.291,−2.303),
y-intercept: (x, y) = (0, 4),

c) roots: (x, y) ≈ (−0.894, 0), (x, y) ≈ (−0.155, 0), (x, y) ≈
(1.8, 0), local max: (x, y) ≈ (1.054, 7.027), local min: (x, y) ≈
(−0.554,−1.277), y-intercept: (x, y) = (0, 1),

d) roots: (x, y) ≈ (−0.4, 0), (x, y) = (0, 0), local max: (x, y) ≈
(−0.267, 0.047), local min: (x, y) ≈ (0, 0), y-intercept: (x, y) = (0, 0),

e) roots: (x, y) ≈ (−1.441, 0), (x, y) ≈ (−0.567, 0), (x, y) ≈ (0.485, 0),

(x, y) ≈ (2.523, 0), local max: (x, y) ≈ (0, 1), local min: (x, y) ≈
(−1.088,−1.046), (x, y) ≈ (1.838,−7.31), y-intercept: (x, y) = (0, 1),

f) roots: (x, y) ≈ (−1.061, 0), (x, y) ≈ (4.857, 0), local max:

(x, y) ≈ (−0.486, 4.314), (x, y) ≈ (3.676, 54.064), local min: (x, y) ≈
(0.56, 1.54), y-intercept: (x, y) = (0, 3),

g) roots: (x, y) ≈ (−1.802, 0), (x, y) = (−1, 0), (x, y) ≈ (−0.445, 0),

(x, y) = (0, 0), (x, y) ≈ (1.247, 0), local max: (x, y) ≈ (−1.538, 0.665),
(x, y) ≈ (−0.194, 0.091), local min: (x, y) ≈ (−0.755,−0.12), (x, y) ≈
(0.887,−2.158), y-intercept: (x, y) = (0, 0),

h) roots: (x, y) ≈ (1.574, 0), (x, y) ≈ (1.607, 0), (x, y) = (2, 0),

(x, y) ≈ (6.905, 0), local max: (x, y) ≈ (1.737, 0.103), local min:
(x, y) ≈ (1.585,−0.17), (x, y) ≈ (4.905,−1.618), y-intercept: (x, y) ≈
(0, 4.414),
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Exercise 4.3 a) D = R, R = [5,∞), b) D = R, R = R, c) D = R, R = [−5,∞), d)

D = R, R = (−∞, 19], e) D = [−5,∞), R = [3,∞), f) D = (−∞, 4],

R = [2,∞), g) D = R, R = [−7,∞), h) D = R− {3}, R = R− {1}
Exercise 4.4 a) function, b) not a function, c) not a function, d) function, e) function,

f) not a function

Exercise 4.5 a)

y = ±
√
4− x2

b)

y = ±
√

15− (x+ 5)2

c)

y = 2±
√

9− (x− 1)2

d)

y = ±
√
x2 + 3

Exercise 4.6 (x− 4)2 + (y + 2)2 = 9

Exercise 4.7 a) x ≈ −1.488, b) x ≈ −1.764, x ≈ −0.416, x ≈ −0.681, c) x ≈ 5.22,

d) x ≈ −1.431, x ≈ 0.038, e) x ≈ −1.247, x = 0, x ≈ 0.445, x ≈ 1.802,

f) x = 0, x = 1, x = 3

Exercise 4.8 a) y = |x| + 1, b) y = −√
x, c) y = (x − 2)2 + 1, d) y = 1

x+2 + 2, e)

y = −(x+ 2)3, f) y = −|x− 3|+ 2

Exercise 4.9 a)
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d)

-2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

3

x

y

e)
-6 -5 -4 -3 -2 -1 0 1 2

-1

0

1

2

3

4

5

x

y

f)
-2 -1 0 1 2 3 4 5 6

-1

0

1

2

3

4

5

x

y

g)

-1 0 1 2 3 4 5 6 7

-3

-2

-1

0

1

2

3

x

y

h)
-5 -4 -3 -2 -1 0 1 2 3 4 5

0

1

2

3

4

5

6

7

x

y

Exercise 4.10 a) y = x2 − 7x− 3, b) y = (x + 3)2 − 7 · (x + 3) + 1 = x2 − x − 11,

c) y = −x2 + 7x − 1, d) y = x2 + 7x + 1, e) y = 1
9x

2 − 7
3x + 1, f)

y = 4x2 − 14x+ 1

Exercise 4.11 a) shift to the right by 5, b) stretched away from the x-axis by a factor

2, c) shift to the right by 4, d) compressed toward the y-axis by a factor

2, e) shifted to the right by 3 (to get the graph of y = 1
x

) and then

reflected about the x-axis, f) compressed toward the x-axis by a factor

2 (you get y = |x|) then shifted to the left by 1 and up by 1

Exercise 4.12 a) odd, b) even, c) even, d) neither, e) even, f) odd, g) even, h) neither,

i) odd

Exercise 4.13 a)
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Chapter 5 (exercises starting on page 89):

Exercise 5.1 a) (f + g)(x) = x2 + 9x − 5 with domain Df+g = R, (f − g)(x) =

x2 + 3x + 5 with domain Df−g = R, (f · g)(x) = 3x3 + 13x2 − 30x
with domain Df ·g = R

b) (f + g)(x) = x3 + 5x2 + 12, Df+g = R, (f − g)(x) = x3 − 5x2 − 2,

Df−g = R, (f · g)(x) = 5x5 + 7x3 + 25x2 + 35, Df ·g = R
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c) (f+g)(x) = 2x2+3x+12
√
x, Df+g = [0,∞), (f−g)(x) = −2x2+

3x+2
√
x, Df−g = [0,∞), (f · g)(x) = 6x3+14x2√x+15x

√
x+35x,

Df ·g = [0,∞)

d) (f + g)(x) = 5x+1
x+2 , Df+g = R−{−2}, (f − g)(x) = 1−5x

x+2 , Df−g =

R− {−2}, (f · g)(x) = 5x
(x+2)2 , Df ·g = R− {−2}

e) (f + g)(x) = 3
√
x− 3, Df+g = [3,∞), (f − g)(x) = −

√
x− 3,

Df−g = [3,∞), (f · g)(x) = 2 · (
√
x− 3)2 = 2 · (x− 3), Df ·g = [3,∞)

f) (f + g)(x) = x2 + 5x − 1, Df+g = R, (f − g)(x) = x2 − x + 11,

Df−g = R, (f · g)(x) = 3x3 + 3x− 30, Df ·g = R

g) (f + g)(x) = 3x2 + 6x + 4, Df+g = R, (f − g)(x) = −x2 − 4,

Df−g = R, (f · g)(x) = 2x4 + 9x3 + 13x2 + 12x, Df ·g = R

Exercise 5.2 a)
(
f
g

)
(x) = 3x+6

2x−8 with domain D f
g

= R − {4},
(
g
f

)
(x) = 2x−8

3x+6

with domain D g
f
= R − {−2}, b)

(
f

g

)
(x) = x+2

x2−5x+4 = x+2
(x−4)(x−1) ,

D f
g

= R − {1, 4},
(
g

f

)
(x) = x2−5x+4

x+2 , D g
f

= R − {−2}, c)
(
f
g

)
(x) = x+3

(x−5)(x−2) , D f
g

= R − {−3, 2, 5},
(
g
f

)
(x) = (x−5)(x−2)

x+3 ,

D g
f
= R − {−3, 5}, d)

(
f
g

)
(x) =

√
x+6

2x+5 , D f
g
= [−6,− 5

2 ) ∪ (− 5
2 ,∞),

(
g
f

)
(x) = 2x+5√

x+6
, D g

f
= (−6,∞), e)

(
f
g

)
(x) = x2+8x−33√

x
, D f

g
= (0,∞),

(
g
f

)
(x) =

√
x

x2+8x−33 , D g
f
= [0, 3) ∪ (3,∞)

Exercise 5.3 a) 37, b) 7, c) 11, d) 147, e) −1, f) 81, g) 12x2 + 20x+ 7, h) −4x− 9,

i) −141, j) −5, k) 2x+ 2h− 3, l) 3x2 + 6xh+ 3h2 + 4x+ 4h

Exercise 5.4 a) (f ◦ g)(x) = 6x+ 4, b) (f ◦ g)(x) = x2 + 6x+ 11, c) (f ◦ g)(x) =
4x2−2x, d) (f ◦g)(x) = x4+4x3+4x2+

√
x2 + 2x+ 3, e) (f ◦g)(x) =

2
x+h+4 , f) (f ◦ g)(x) = x2 + 2xh+ h2 + 4x+ 4h+ 3

Exercise 5.5 a) (f ◦ g)(x) = 2x − 6, (g ◦ f)(x) = 2x − 1, (f ◦ f)(x) = 4x + 12,

(g ◦ g)(x) = x− 10

b) (f ◦g)(x) = x2−2x+3, (g ◦f)(x) = x2+4x+3, (f ◦f)(x) = x+6,

(g ◦ g)(x) = x4 − 4x3 + 2x2 + 4x

c) (f ◦ g)(x) = 6x − 2 −
√
3x+ 2, (g ◦ f)(x) =

√
6x2 − 3x− 16,

(f ◦f)(x) = 8x4−8x3−48x2+25x+72, (g ◦g)(x) =
√

3
√
3x+ 2 + 2

d) (f ◦g)(x) = x, (g◦f)(x) = x, (f ◦f)(x) = x+3
3x+10 , (g◦g)(x) = 10x−3

1−3x

e) (f ◦ g)(x) = x, (g ◦ f)(x) = x, (f ◦ f)(x) = (2(2x − 7)2 − 7)2 or

expanded in descending degrees: (f ◦f)(x) = 64x4−896x3+4592x2−

10192x+ 8281, (g ◦ g)(x) =
√

√

x+7
2 +7

2 =
14+

√
14+2

√
x

4
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Exercise 5.6

x 1 2 3 4 5 6 7

f(x) 4 5 7 0 −2 6 4
g(x) 6 −8 5 2 9 11 2

f(x) + 3 7 8 10 3 1 9 7
4g(x) + 5 29 −28 25 13 41 49 13

g(x)− 2f(x) −2 −18 −9 2 13 −1 −6
f(x+ 3) 0 −2 6 4 undef. undef. undef.

Note, however, that the complete table for y = f(x+ 3) is given by:

x −2 −1 0 1 2 3 4

f(x+ 3) 4 5 7 0 −2 6 4

Exercise 5.7
x 1 2 3 4 5 6

f(x) 3 1 2 5 6 3
g(x) 5 2 6 1 2 4

(g ◦ f)(x) 6 5 2 2 4 6
(f ◦ g)(x) 6 1 3 3 1 5
(f ◦ f)(x) 2 3 1 6 3 2
(g ◦ g)(x) 2 2 4 5 2 1

Exercise 5.8

x 0 2 4 6 8 10 12

f(x) 4 8 5 6 12 −1 10
g(x) 10 2 0 −6 7 2 8

(g ◦ f)(x) 0 7 undef. −6 8 undef. 2
(f ◦ g)(x) −1 8 4 undef. undef. 8 12
(f ◦ f)(x) 5 12 undef. 6 10 undef. −1
(g ◦ g)(x) 2 2 10 undef. undef. 2 7

Chapter 6 (exercises starting on page 103):

Exercise 6.1 a) no (that is: the function is not one-to-one), b) yes, c) no, d) no, e)

no, f) no, g) yes, h) no

Exercise 6.2 a) f−1(x) = x−9
4 , b) f−1(x) = −x+3

8 , c) f−1(x) = x2−8, d) f−1(x) =

x2−7
3 , e) f−1(x) = −

(
x
6

)2−2 = −x2−72
36 , f) f−1(x) = 3

√
x, g) f−1(x) =

3
√
x−5
2 , h) f−1(x) = 3

√
x−5
2 , i) f−1(x) = 1

x
, j) f−1(x) = 1

x
+ 1 = 1+x

x
,



465

k) f−1(x) =
(
1
x

)2
+2 = 1+2x2

x2 , l) f−1(x) = 5
y
+4 = 5+4y

y
, m) f−1(x) =

2x
1−x

, n) f−1(x) = 6x
x−3 , o) f−1(x) = 2−3x

x−1 , p) f−1(x) = 5x+7
x+1

q)

x 3 7 1 8 5 2

f−1(x) 2 4 6 8 10 12

Exercise 6.3 a) restricting to the domain D = [0,∞) gives the inverse f−1(x) =
√
x,

b) restricting to the domain D = [−5,∞) gives the inverse f−1(x) =
√
x− 1− 5, c) restricting to the domain D = [0,∞) gives the inverse

f−1(x) = x, d) restricting to the domain D = [4,∞) gives the inverse

f−1(x) = x + 6, e) restricting to the domain D = (0,∞) gives the

inverse f−1(x) =
√

1
x

, f) restricting to the domain D = (−7,∞) gives

the inverse f−1(x) =
√

− 3
x
−7, g) restricting to the domain D = [0,∞)

gives the inverse f−1(x) = 4
√
x, h) restricting to the domain D = [3,∞)

gives the inverse f−1(x) = 3 + 4
√
10x

Exercise 6.4 a) yes (that is: the functions f and g are inverses of each other), b)

no, c) no, d) yes, e) no, f) yes

Exercise 7.5 a)
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e)

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

x

y

f)

-5 -4 -3 -2 -1 0 1 2 3 4 5 6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

x

y

g)

-3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

5

x

y

h)
-1 0 1 2 3 4 5 6

-1

0

1

2

3

4

5

6

x

y

i)

-4 -3 -2 -1 0 1 2 3

-4

-3

-2

-1

0

1

2

3

x

y

Review of Part I (exercises starting on page 106):

Exercises I 1. f(6) = 66, f(2) is undefined, f(−6) = −9, domain D = (−8, 4] ∪
(−3, 2) ∪ [4,∞), 2. y = − 1

2x+ 1, 3. x ≈ −0.481, x ≈ 1.311, x ≈ 3.170,

4. 2x − 2 + 2h, 5. domain D = [2, 7], range R = (1, 4], f(3) = 2,

f(5) = 2, f(7) = 4, f(9) is undefined, 6. f(x) = −x2 + 2, 7. ( f
g
)(x) =

5x+4
x2+8x+7 = 5x+4

(x+7)(x+1) has domain D = R − {−7,−1}, 8. (f ◦ g)(x) =
4x2 − 12x+ 9 +

√
2x− 6 has domain D = [3,∞), 9. f and g are both

functions, and the composition is given by the table:

x 2 3 4 5 6

f(x) 5 0 2 4 2
g(x) 6 2 3 4 1

(f ◦ g)(x) 2 5 0 2 undef.

10. f−1(x) = 1
2x − 5

2

Chapter 7 (exercises starting on page 123):

Exercise 7.1 a) x2 − 2x − 2 − 3
x−2 , b) x2 + 3x − 2 + 4

x+3 , c) x + 6 − 10
x+1 , d)

x2 + x+ 5
x+2 , e) 2x2 + 3x+ 6+ 11

x−1 , f) 2x3 − 3x2 + 15x− 74 + 373
x+5 ,

g) 2x3 +8x2+x+4+ 3
x−4 , h) x2 − 3x+9, i) x3 +2x2 +x+2+ 2

3x+1 ,

j) 4x2 + 3x+ 6, k) x+ 1− 7x+6
x2+2x+1 , l) x3 + 3x2 − 3x− 9 + 9x+7

x2+3

Exercise 7.2 a) remainder r = 15, b) r = 20, c) r = −2, d) r = 12
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Exercise 7.3 a) yes, g(x) is a factor of f(x), the root of f(x) is x = −3, b) g(x)

is not a factor of f(x), c) g(x) is a factor of f(x), the root of f(x) is

x = −7, d) g(x) is a factor of f(x), the root of f(x) is x = −1

Exercise 7.4 a) f(x) = (x−2)(x−1)(x+1), b) f(x) = (x−1)(x−2)(x−3), c) f(x) =

(x−3)(x−i)(x+i), d) f(x) = (x+2)3, e) f(x) = (x+2)(x+4)(x+7), f)

f(x) = (x−4)(x+3)(x+4), g) f(x) = (x−2)(x−1)(x+1)(x+2)(x+5)

Exercise 7.5 a) 2x2+7x+9+ 25
x−2 , b) 4x2−9x+12− 18

x+3 , c) x2+2x−7+ 15
x+2 , d)

x3 +2x2+2x+2+ 3
x−1 , e) x4 − 2x3+4x2− 8x+16, f) x2 − 3+ 5

x+5 .

Chapter 8 (exercises starting on page 144):

Exercise 8.1 a) yes, b) no (due to the discontinuity), c) no (due to horizontal asymp-

tote), d) no (due to corner), e) yes (polynomial of degree 1), f) yes

Exercise 8.2 f has graph (e), g has graph (c), h has graph (a), k has graph (f)

Exercise 8.3 f has graph (c), g has graph (f), h has graph (d), k has graph (b)

Exercise 8.4 f has graph (d), g has graph (e), h has graph (c), k has graph (b)

Exercise 8.5 a)

-4 -3 -2 -1 0 1 2 3 4

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

x

y

b)

-2 -1 0 1 2 3 4 5 6

-4

-3

-2

-1

0

1

2

3

x

y

3
2

c)

x

y

3 3+
√
37

2
3+

√
37

2

d)

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

x

y

−1−3+
√
17

4
−3+

√
17

4
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e)

-4 -3 -2 -1 0 1 2 3 4

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

x

y

2 3

1−
√
2 1 +

√
2

f)

-5 -4 -3 -2 -1 0 1 2 3

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

x

y

−2−3 11
3

Exercise 8.6 a) x = 2, x = 3, or x = 5, b) x = −1, c) x = 11, d) x = −8, x = −3,

x = −2, or x = 4, e) x = −3 ±
√
6 (use the quadratic formula), f)

x = 0

Exercise 8.7 a) roots: −1, 2, 4, f(x) = (x − 2)(x + 1)(x − 4), b) roots: 1, −3,

−5, f(x) = (x + 3)(x − 1)(x + 5), c) roots: −2, −3, −4, f(x) =

(x + 3)(x + 2)(x + 4), d) roots: 1 (of multiplicity 2), −6, f(x) =

(x + 6)(x − 1)2, e) roots: 2
3 , 2, −7, f(x) = 3(x − 2

3 )(x − 2)(x + 7),

f) roots: − 1
6 , −1, 2, f(x) = 6(x + 1

6 )(x + 1)(x − 2), g) roots: 5
2 , − 1

3 ,

−2, f(x) = 6(x − 5
2 )(x + 1

3 )(x + 2), h) roots: 3, 2 +
√
3, 2 −

√
3,

f(x) = (x − 3)(x − (2 +
√
3))(x − (2 −

√
3)), i) roots: 1, −3+

√
41

2 ,

−3−
√
41

2 , f(x) = (x − 1)(x − −3+
√
41

2 )(x − −3−
√
41

2 ), j) roots: −2,

−3+
√
17

4 , −3−
√
17

4 , f(x) = 2(x+2)(x− −3+
√
17

4 )(x− −3−
√
17

4 ), k) roots:

3, 1+
√
85

6 , 1−
√
85

6 , f(x) = 3(x− 3)(x− 1+
√
85

6 )(x − 1−
√
85

6 ),

Exercise 8.8 a)

x

y

5−4

b)

x

y

−2 0 4

c)

x

y

3 5 7

d)

x

y

−4 −3 −2 −1 2
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Chapter 9 (exercises starting on page 166):

Exercise 9.1 a) x = −1, x = 2, x = 1
2 , b) x = 1

3 , c) x = −3
2 , x = −1, x = 4

3 , d)

x = 1
2 , x = −2

3 , x = −2 +
√
3, x = −2−

√
3, e) x = − 1

4

Exercise 9.2 a) x = 1, b) x = 1 or x = −1, c) x = 3, d) x = −10, e) x = 3 or

x = −3, f) x = 5, g) x = −2, h) x = 1, i) x = 8i or x = −8i

Exercise 9.3 a) f(x) = (x−2)(x−1)(x+3), b) f(x) = (x−5)(x+2)2, c) f(x) = (x−
4)(x− 3+i

√
11

2 ))(x− 3−i
√
11

2 ), d) f(x) = (x−2)(x−−3+
√
5

2 )(x−−3−
√
5

2 ),

e) f(x) = 2(x+ 3
2 )(x+ 1)(x− 2), f) f(x) = 12(x− 2

3 )(x+ 3
4 )(x+ 4),

g) f(x) = (x + 1)(x − (2 + 3i))(x − (2 − 3i)), h) f(x) = (x − 1)(x +

1)(x − 2)(x + 2), i) f(x) = (x − 1)(x + 1)(x − i)(x + i), j) f(x) =

x(x−1)(x+1)(x−3)2 , k) f(x) = (x−3)(x− −3+3
√
3·i

2 )(x− −3−3
√
3·i

2 ),

l) f(x) = (x−
√
3)(x +

√
3)(x−

√
5 · i)(x+

√
5 · i)

Exercise 9.4 a)

x

y

3−2 1

b)

x

y

−4 −1−
√
5

2
−1+

√
5

2

c)

x

y

5−
√
7

√
7

d)

x

y

−1

−3−
√
2 −3 +

√
2

e)

x

y

6

f)

x

y

−1 1
√
3−

√
3

g)

x

y

5−2 2−4

h)

x

y

2−1 4
7
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i)

x

y

1
3

3− 3
5

j)

x

y

0 2 2 +
√
62−

√
6

Exercise 9.5 a) C = −12, roots: x = 1, x = −3, x = −4, b) C = 20, roots: x = −2,

x = 3+i, x = 3−i, c) C = 9, roots: x = 3, x = 1, x = −3, d) C = −2,

roots: x = −1, x = −7+
√
57

2 , x = −7−
√
57

2 , e) C = −18, roots: x = 2,

x = 3+3i
√
3

2 , x = 3−3i
√
3

2

Exercise 9.6 a) f(x) = 2(x−2)(x−3)(x−4), b) f(x) = (−1)·x(x−2)(x+1)(x+3), c)

f(x) = (− 5
2 )·(x−2)(x+2)(x+1), d) f(x) = −2·x(x−2)(x+1)(x+4),

e) f(x) = 3(x − 7)(x − (2 + 5i))(x− (2 − 5i)), f) f(x) = (−2) · (x −
i)(x + i)(x − 3), g) f(x) = 7

4 · (x − (5 + i))(x − (5 − i))(x − 3)2,

h) f(x) = (x − i)(x + i)(x − (3 + 2i))(x − (3 − 2i)) (other correct

answers are possible, depending on the choice of the first coefficient),

i) f(x) = (x− (1+ i))(x− (2+ i))(x− (4− 3i))(x+2)3 (other correct

answers are possible, depending on the choice of the first coefficient),

j) f(x) = (x − i)(x − 3)(x + 7)2 (other correct answers are possible,

depending on the choice of the first coefficient and the fourth root),

k) f(x) = (x − 2)(x − 3)(x − 4) (other correct answers are possible,

depending on the choice of the first coefficient), l) f(x) = (x− 1)2(x−
3)2, m) f(x) = −x(x − 2)(x − 3)(x − 4) (other correct answers are

possible, depending on the choice of the first coefficient)

Chapter 10 (exercises starting on page 192):

Exercise 10.1 a) domain D = R − {2}, vertical asymptote at x = 2, no removable

discontinuities, b) D = R−{2, 4}, vertical asympt. at x = 2 and x = 4,

no removable discont., c) D = R−{−2, 0, 2}, vertical asympt. at x = 0

and x = 2, removable discont. at x = −2, d) D = R − {−3, 2, 5},

vertical asympt. at x = 2 and x = 5, removable discont. at x = −3,

e) D = R − {1}, no vertical asympt., removable discont. at x = 1, f)

D = R− {−1, 1, 2}, vertical asympt. at x = −1 and x = 1 and x = 2,
no removable discont.

Exercise 10.2 a) y = 4, b) y = 0, c) no horizontal asymptote (asymptotic behavior

y = x+ 4), d) y = −4
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Exercise 10.3 a) x-intercept at x = 3, y-intercept at y = 3, b) x-intercepts at x = 0

and x = −2 and x = 2, y-intercept at y = 0, c) x-intercepts at x = −4

and x = 1 and x = 3, y-intercept at y = 6
5 , d) x-intercept at x = −3

(but not at x = −2 since f(−2) is undefined), no y-intercept since
f(0) is undefined

Exercise 10.4 a) D = R − { 5
3}, horizontal asympt. y = 7

3 , vertical asympt. x = 5
3 ,

no removable discont., x-intercept at x = − 2
7 , y-intercept at y = − 2

5 ,
graph:

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

x

y

− 2
5

− 2
7

5
3

7
3

b) f(x) = (x−2)(x+1)
(x+3)(x−1) has domain D = R−{−3, 1}, horizontal asympt.

y = 1, vertical asympt. x = −3 and x = 1, no removable discont.,
x-intercept at x = 2 and x = −1, y-intercept at y = −2

−3 = 2
3 , graph:
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-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
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c) f(x) = (3x−1)(x−2)
(x+2)(x−5) =

3(x− 1
3 )(x−2)

(x+2)(x−5) has domain D = R − {−2, 5},

horizontal asympt. y = 3, vertical asympt. x = −2 and x = 5, no
removable discont., x-intercept at x = 2 and x = 1

3 , y-intercept at
y = −1

5 = −0.2, graph:

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9
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x

y
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d) f(x) = (x+3)(x+4)
(x+2)(x+4) has domain D = R − {−2,−4}, horizontal

asympt. y = 1, vertical asympt. x = −2, removable discont. at
x = −4, x-intercepts at x = 3, y-intercept at y = 3

2 = 1.5, graph:

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

x

y

e) f(x) = x−3
(x−4)(x−1)(x+2) has domain D = R− {−2, 1, 4}, horizontal

asympt. y = 0, vertical asympt. x = −2 and x = 1 and x = 4, no
removable discont., x-intercept at x = 3, y-intercept at y = −3

8 =
−0.375, graph:
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-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

-4
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-1
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4

x

y

f) f(x) = (x−3)(x−1)(x+1)
x2(x−2) has domain D = R − {0, 2}, horizontal

asympt. y = 1, vertical asympt. x = 0 and x = 2, no removable
discont., x-intercepts at x = −1 and x = 1 and x = 3, no y-intercept
since f(0) is undefined, graph:

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-4

-3

-2

-1

0

1

2

3

4

x

y

Note that the graph intersects the horizontal asymptote y = 1 at
approximately x ≈ −2.3 and approaches the asymptote from above.

Exercise 10.5 a) for example f(x) = 1
x−4 , b) for example f(x) = 5x2

x2−5x+6 , c) for

example f(x) = x2−x
x−1
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Chapter 11 (exercises starting on page 206):

Exercise 11.1 a) x-intercepts: (−3, 0), (2, 0), y-intercept: (0, 2), vertical asympt.:

x = −2, x = 3, horizontal asympt.: y = 2, f(x) = 2 · (x−2)(x+3)
(x+2)(x−3) ,

b) x-intercepts: (−1, 0), (1, 0), y-intercept: (0,−1), vertical asympt.:

x = −2, x = 2, horizontal asympt.: y = −4, f(x) = −4 · (x−1)(x+1)
(x+2)(x−2) ,

c) x-intercepts: (−2, 0), (1, 0), y-intercept: (0,−2), vertical asympt.:

x = −3, x = −1, horizontal asympt.: y = 3, f(x) = 3 · (x−1)(x+2)
(x+1)(x+3)

Exercise 11.2 a) x-intercept: (−2, 0), y-intercept: (0, 2), vertical asympt.: x = −3,

x = −1, x = 2, horizontal asympt.: y = 0, f(x) = −6 · (x+2)
(x+3)(x+1)(x−2) ,

b) x-intercept: (4, 0), y-intercept: (0, 1), vertical asympt.: x = −2,

x = 1, x = 6, horizontal asympt.: y = 0, f(x) = −3 · (x−4)
(x+2)(x−1)(x−6) ,

c) x-intercept: (2, 0), y-intercept: (0,−4), vertical asympt.: x = −1,

x = 1, x = 4, horizontal asympt.: y = 0, f(x) = 8 · (x−2)
(x−1)(x+1)(x−4)

Exercise 11.3 a) D = R − {4,−5}, hole (x, y) = (4, 1
9 ), b) D = R − {−3, 5}, hole

(x, y) = (5, 21
8 ), c) D = R − {−3, 2, 6}, hole (x, y) = (2,− 7

20 ), d)

D = R − {3,−4}, hole (x, y) = (−4, 27 ), e) D = R − {3,−2}, hole

(x, y) = (3, 65 ), f) D = R− {0, 1,−2}, hole (x, y) = (1,− 2
3 )

Exercise 11.4 a) y = x+ 6, b) y = 2x− 5, c) y = 4x+ 2, d) y = −3x+ 2

Exercise 11.5 a) f(x) → 1, b) f(x) → 3, c) the limit does not exist, since limits from

the right and from the left do not coincide, d) f(x) → 2, e) f(x) → 2,

f) f(x) → 2, g) f(x) → 4, h) f(x) → 4, i) f(x) → 4, j) f(x) → 4, k)

f(x) → −2, l) the limit does not exist

Exercise 11.6 a)

lim
x→3−

x−3
|x−3| = −1

, b)

lim
x→1+

x3−1√
x−1

= 6

, c)

lim
x→2−

1
x
− 1

2

x−2 = −0.25

,

d)

lim
x→−5+

x3+5x2

|x+5| = 25

, e)

lim
x→−5−

x3+5x2

|x+5| = −25

, f)

lim
x→4−

x−1
x−4 = −∞
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Chapter 12 (exercises starting on page 227):

Exercise 12.1 a) x ≤ 3, b) 1
2 > x, c) −4 ≥ x, d) x > 22

5 , e) −5 ≤ x ≤ 7, f)

−4 < x ≤ 3, g) x ≥ 2 (this then also implies x ≥ − 7
2 ), h) no solution

Exercise 12.2 a) (−∞,−2) ∪ (7,∞), b) (−∞,−5] ∪ [7,∞), c) [−2, 2], d)
(−3−

√
21

2 , −3+
√
21

2

)
, e) [−3, 2], f)

(
− 1

3 , 1
)
, g) R−{2}, h) [−2, 1]∪[3,∞),

i) (−∞,−4), j) (0, 2) ∪ (2,∞), k) [−3,−1] ∪ [1, 3], l) (−1, 1) ∪ (2, 3),

m) (−∞, 0) ∪ (0, 2) ∪ (3,∞), n) (−∞,−2] ∪ [0, 1] ∪ [2, 5], o) [1, 2] ∪
[3, 4] ∪ [5,∞), p) (−∞, 1]

Exercise 12.3 a) D = (−∞, 3] ∪ [5,∞), b) D = (−∞,−3] ∪ [0, 3], c) D = [1, 4], d)

D = [2, 5] ∪ [6,∞), e) D = (−∞, 3), f) D = (−∞,−1) ∪ (7,∞)

Exercise 12.4 a) (−∞,−8) ∪ (1,∞) , b) (−5
6 , 1

6 ), c) (−∞, 1
3 ] ∪ [3,∞), d) [−12,−2],

e) (−∞,− 1
4 ] ∪ [ 12 ,∞), f) (−15,−5)

Exercise 12.5 a) (−∞,−4)∪ [−2,∞), b) (2, 5), c) (− 15
7 ,

11
9 ], d) (−∞,− 4

13 ]∪ (16 ,∞),

e) (− 8
3 ,

2
7 ), f) (−2, 1] ∪ (2,∞), g) (−∞,−1) ∪ (2, 5), h) (−∞,−3] ∪

(−2, 2) ∪ [3,∞), i) (−∞,−5] ∪ (−3,∞), j) (−10,−9.8), k) (−1, 2) ∪
[4,∞), l) (−∞,−4) ∪ [0,∞)

Review of Part II (exercises starting on page 229):

Exercises II 1. x2 − x − 3 + 1
2x+3 , 2. 21, 3. x − 1 is a factor, x + 1 is not a factor,

x− 0 is not a factor, 4. a) ↔ iii), b) ↔ iv), c) ↔ i), d) ↔ ii),

5. x-intercepts: x = 3, x = 5+
√
17

4 , x = 5−
√
17

4 , y-intercept: y = 3,
local max (x, y) ≈ (2.667, 0.630), local min (x, y) ≈ (1,−4), graph:
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√
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4
3

3

max

min



477

6. f(x) = (x − 1)(x + 3)(x + 4), 7. f(x) = (−5) · x(x − 1)(x − 3),

8. f(x) = (x + 2)(x − 5)(x − (3 − 2i))(x − (3 + 2i)) (other correct
answers are possible, depending on the choice of the first coefficient),

9. f(x) = 3(x−2)(x+2)
(x−3)(x+1) has domain D = R−{−1, 3}, horizontal asympt.

y = 3, vertical asympt. x = −1 and x = 3, no removable discont., x-
intercepts at x = −2 and x = 2 and x = 3, y-intercept at y = 4,
graph:
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10. a) (−∞,−5) ∪ (1,∞), b)
(
−∞,− 3

2

]
∪
[
− 5

6 ,∞
)
, c)

(
− 8

3 ,
2
5

]

Chapter 13 (exercises starting on page 250):

Exercise 13.1 a) , b) ,

c) , d) ,

e) same as c), since y = (13 )
x = 3−x, f) ,
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g) , h) ,

i) , j) ,

k) , l)

Exercise 13.2 a) y = 4x is compressed toward the x-axis by the factor 0.1 (graph

below), b) y = 2x stretched away from x-axis, c) y = 2x reflected

about the x-axis, d) y = 2x compressed toward the x-axis, e) y = ex

reflected about the y-axis, f) y = ex reflected about the y-axis and

shifted up by 1, g) y = (12 )
x shifted up by 3, h) y = 2x shifted to the

right by 4, i) y = 2x shifted to the left by 1 and down by 6

a)
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y
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g)
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i)
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-6

-5

-4

-3
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-1

0

x
y

Exercise 13.3 a) log4(16) = 2, b) log2(256) = 8, c) ln(7) = x, d) log(0.1) = −1, e)

log3(12) = x, f) log5(12) = 7x, g) log3(44) = 2a+ 1, h) log 1
2
(30) = x

h

Exercise 13.4 a) 2, b) 4, c) 6, d) 2, e) −2, f) 3, g) 4, h) 1, i) −1, j) −2, k) 0, l) −3

Exercise 13.5 a) 3.561, b) 2.262, c) −0.290, d) −4.911

Exercise 13.6 a)

D = (0,∞)
vertical aympt.: x = 0
x-intercept: (1, 0)

-2 -1 0 1 2 3 4 5 6
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b)

D = (−7,∞)
vertical aympt.: x = −7
x-intercept: (−6, 0)
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c)

D = (−5,∞)
vertical aympt.: x = −5
x-intercept: (e − 5, 0)
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d)

D = (2,∞)
vertical aympt.: x = 2
x-intercept: (73 , 0)
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e)

D = (−4,∞)
vertical aympt.: x = −4
x-intercept: (−3, 0)
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f)

D = (−2,∞)
vertical aympt.: x = −2
x-intercept: (−1, 0)
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y
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g)

D = (− 5
7 ,∞)

vertical aympt.: x = − 5
7

x-intercept: (− 4
7 , 0)
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-2

-1

0

1

2

3

4

x

y

h)

D = (−∞, 7
3 )

vertical aympt.: x = 7
3

x-intercept: (136 , 0)

-5 -4 -3 -2 -1 0 1 2 3 4

-2

-1

0

1

2

3

4

x

y

i)

D = (0,∞)
vertical aympt.: x = 0
x-intercept: (1, 0)

-2 -1 0 1 2 3 4 5 6 7

-3

-2

-1

0

1

2

3

x

y

j)

D = (−∞, 0)
vertical aympt.: x = 0
x-intercept: (− 9

5 , 0)

-7 -6 -5 -4 -3 -2 -1 0 1 2

-4

-3

-2

-1

0

1

2

x

y

k)

R− {0}
vertical aympt.: x = 0

x-intercepts: (−1, 0), (1, 0)

-5 -4 -3 -2 -1 0 1 2 3 4 5

-4

-3

-2

-1

0

1

2

x

y

l)

R− {−2}
vertical aympt.: x = −2

x-intercepts: (−3, 0), (−1, 0)

-7 -6 -5 -4 -3 -2 -1 0 1 2 3

-4

-3

-2

-1

0

1

2

x

y

)

Chapter 14 (exercises starting on page 260):

Exercise 14.1 a) ln(x3 · y), b) log
(

x

y
2
3

)

= log
(

x
3
√

y2

)

, c) log
(

3
√
xz4

y

)

, d) log
(

z
x3y

)

,

e) ln
(

4
√
x

3√
z2

√
y

)

, f) ln
(

1
x+1

)

, g) ln(x10), h) log5
(
25 · (a+ 1)

)

Exercise 14.2 a) 3u + v, b) 2
3u + 7

4v, c) 1
2u + 1

6v, d) 3u − 4v, e) 2u − 1
2v − 2w, f)

1
2u+ 3

2v − 1
4w, g) 3

4u− 3v + 1
4w, h) 2− 2v + 1

5w, i) 1
6v +

4
3w − 2

3

Exercise 14.3 a) x = 3, b) x = 6, c) x = 5
31 , d) x = 76, e) x = 1, f) x = 8, g) x = 18,

h) x = 25, i) x = 2, j) x = −1

Chapter 15 (exercises starting on page 273):

Exercise 15.1 a) x = 4, b) x = 4, c) x = 9, d) x = −2, e) x = − 6
5 , f) x = 2, g)

x = −2, h) x = 11
2 , i) x = 10

17 , j) x = 7
6
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Exercise 15.2 a) x = log 57
log 4 ≈ 2.92, b) x = log 7

log 9 + 2 ≈ 2.89, c) x = log 31
log 2 − 1 ≈ 3.94,

d) x = log(63)−7 log(3.8)
2 log(3.8) ≈ −1.95, e) x = 5·log(5)

log(8)−log(5) ≈ 17.12, f)

x = 2·log(3)
log(0.4)−log(3) ≈ −1.09, g) x = 9 log(1.02)

2 log(1.02)−log(4.35) ≈ −0.12, h)

x = log(4)−2 log(5)
log(5)−log(4) ≈ −8.21, i) x = 3 log(9)+6 log(4)

log(9)+log(4) ≈ 4.16, j) x =
7 log(2.4)−4 log(3.8)
2 log(2.4)+3 log(3.8) ≈ 0.14, k) x = 4 log(9)−2 log(4)

2 log(9)−9 log(4) ≈ −0.74, l) x =
4 log(1.2)+4 log(1.95)
7 log(1.2)−3 log(1.95) ≈ −4.68

Exercise 15.3 a) f(x) = 4·3x, b) f(x) = 5·2x, c) f(x) = 3200·0.1x, d) f(x) = 1.5·2x,

e) f(x) = 20 · 5x, f) f(x) = 3
5 ·

√
5
x

Exercise 15.4 a) y = 8.4·1.101t with t = 0 corresponding to the year 2017, b) approx.

20.0 million, c) It will reach 25 million in the year 2028.

Exercise 15.5 a) y = 79, 000 · 1.0369t with t = 0 corresponding to the year 1998, b)

approx. 252, 000, c) approx. 302, 000, d) The city will reach maximum

capacity in the year 2068.

Exercise 15.6 The city will be at 90% of its current size after approximately 4.6 years.

Exercise 15.7 It will take the company 4.76 years.

Exercise 15.8 The ant colony has doubled its population after approximately 23.1
weeks.

Exercise 15.9 It will take 4.62 months for the beehive to have decreased to half its
current size.

Exercise 15.10 It will take 138.6 years until the world population has doubled.

Chapter 16 (exercises starting on page 287):

Exercise 16.1 a) $7346.64, b) It takes approximately 18 years.

Exercise 16.2 a) $862.90, b) $1564.75, c) $1566.70, d) $541.46, e) $6242.86, f)

$1654.22, g) $910.24

Exercise 16.3 a) P = $1484.39, b) P = $2938.67, c) P = $709.64, d) r = 4.23%, e)

r = 4.31%, f) t ≈ 1.69 years, g) t ≈ 3.81 years, h) t ≈ 10.27 years, i)
t ≈ 13.73 years

Exercise 16.4 It takes 49.262 minutes until 2 mg are left of the element.

Exercise 16.5 2.29 grams are left after 1 year.

Exercise 16.6 The half-life of fermium-252 is 25.38 minutes.

Exercise 16.7 You have to wait approximately 101.3 days.

Exercise 16.8 67.8% of the carbon-14 is left in the year 2000.

Exercise 16.9 The wood is approximately 3323 years old.

Exercise 16.10 The bone is approximately 3952 years old.
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Review of Part III (exercises starting on page 290):

Exercises III 1. D = (− 7
3 ,∞), vertical asymptote: x = − 7

3 , no horizontal asymptote,

x-intercept: x = − 6
3 = −2, graph:

-4 -3 -2 -1 0 1 2 3 4

-2

-1

0

1

2

3

x

y

2. a) ln
(

3
√
x2y4

)
, b) log2

(√
xz3

4
√

y3

)

, 3. a) 4
3u−2v, b) u+ 5

2v, c) 1
5u+

4
5v, 4.

x = 9, 5. a) x = 2 log 6
log 7−log 6 , b) x ≈ 23.25, 6. 42.8 million, 7. 49.5 months,

8. $1828.48, 9. 1.82 hours, 10. 3561 years

Chapter 17 (exercises starting on page 310):

Exercise 17.1 a) 45◦, b) 120◦, c) 150◦, d) 315◦, e) 270◦, f) 225◦, g) 390◦, h) −300◦

Exercise 17.2 a) 2π
3 , b) π

6 , c) 5π
3 , d) 3π

4 , e) π
2 , f) 5π

4 , g) 8π
3 , h) − 5π

6 ,

Exercise 17.3 a) sin(150◦) = 1
2 , cos(150◦) = −

√
3
2 , tan(150◦) = −

√
3
3 , b)

sin(45◦) =
√
2
2 , cos(45◦) =

√
2
2 , tan(45◦) = 1, c) sin(210◦) = − 1

2 ,

cos(210◦) = −
√
3
2 , tan(210◦) =

√
3
3 , d) sin(60◦) =

√
3
2 , cos(60◦) = 1

2 ,

tan(60◦) =
√
3, e) sin(30◦) = 1

2 , cos(30◦) =
√
3
2 , tan(30◦) =

√
3
3 , f)

sin(300◦) = −
√
3
2 , cos(300◦) = 1

2 , tan(300◦) = −
√
3, g) sin(90◦) = 1,

cos(90◦) = 0, tan(90◦) is undefined, h) sin(315◦) = −
√
2
2 , cos(315◦) =

√
2
2 , tan(315◦) = −1, i) sin(225◦) = −

√
2
2 , cos(225◦) = −

√
2
2 ,

tan(225◦) = 1, j) sin(180◦) = 0, cos(180◦) = −1, tan(180◦) = 0,

k) sin(120◦) =
√
3
2 , cos(120◦) = − 1

2 , tan(120◦) = −
√
3, l) sin(270◦) =

−1, cos(270◦) = 0, tan(270◦) is undefined, m) sin(405◦) =
√
2
2 ,

cos(405◦) =
√
2
2 , tan(405◦) = 1, n) sin(−135◦) = −

√
2
2 , cos(−135◦) =

−
√
2
2 , tan(−135◦) = 1, o) sin(−240◦) =

√
3
2 , cos(−240◦) = − 1

2 ,

tan(−240◦) = −
√
3, p) sin(690◦) = − 1

2 , cos(690◦) =
√
3
2 , tan(690◦) =

−
√
3
3 , q) sin(5π3 ) = −

√
3
2 , cos(5π3 ) = 1

2 , tan(5π3 ) = −
√
3, r) sin(π6 ) =

1
2 ,

cos(π6 ) =
√
3
2 , tan(π6 ) =

√
3
3 , s) sin(4π3 ) = −

√
3
2 , cos(4π3 ) = − 1

2 ,

tan(4π3 ) =
√
3, t) sin(5π6 ) = 1

2 , cos(5π6 ) = −
√
3
2 , tan(5π6 ) = −

√
3
3 ,

u) sin(7π3 ) =
√
3
2 , cos(7π3 ) = 1

2 , tan(7π3 ) =
√
3, v) sin(7π4 ) = −

√
2
2 ,

cos(7π4 ) =
√
2
2 , tan(7π4 ) = −1, w) sin(−π

2 ) = −1, cos(−π
2 ) = 0,

tan(−π
2 ) is undefined, x) sin(13π3 ) =

√
3
2 , cos(13π3 ) = 1

2 , tan(13π3 ) =√
3,
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Exercise 17.4 a)
√
2+

√
6

4 , b)
√
2+

√
6

4 , c)
√
3+1

1−
√
3
= −2 −

√
3, d)

√
2−

√
6

4 , e)
√
2+

√
6

4 , f)
√
6−

√
2

4 , g)
√
6−

√
2

4 , h)
√
3 − 2, i) −

√
2−

√
6

4 , j)
√
6−

√
2

4 , k) 2 −
√
3, l)

√
2−

√
6

4 ,

Exercise 17.5 a)

√
2+

√
2

2 , b)

√
2−

√
3

2 , c)

√
2+

√
3

2 , d) 2−
√
3, e)

√

2−
√

2+
√
3

2 , f) −2−
√
3,

g)

√
2+

√
2

2 , h) −
√

2+
√
3

2

Exercise 17.6 a) sin(x + π
2 ) = cos(x), b) cos

(
x− π

4

)
=

√
2
2 (sin(x) + cos(x)),

c) tan (π − x) = − tan(x), d) sin
(
π
6 − x

)
= 1

2 cos(x) −
√
3
2 sin(x),

e) cos
(
2π
3 − x

)
= −1

2 · cos(x) +
√
3
2 · sin(x), f) cos

(
x+ 11π

12

)
=

(−(
√
2+

√
6)

4

)
· cos(x)−

(√
6−

√
2

4

)
· sin(x)

Chapter 18 (exercises starting on page 329):

Exercise 18.1 a) shift y = sin(x) up by 2 (see graph below), b) y = cos(x) shifted to

the right by π, c) y = tan(x) shifted down by 4, d) y = sin(x) stretched

away from the x-axis by a factor 5, e) y = cos(x) compressed toward

the y-axis by a factor 2, f) y = sin(x) shifted to the right by 2 and

down by 5

a)
-5 -4 -3 -2 -1 0 1 2 3 4 5

0

1

2

3

4

x

y

b)

-5 -4 -3 -2 -1 0 1 2 3 4 5
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2
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d)
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0
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2
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x
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f)

-5 -4 -3 -2 -1 0 1 2 3 4 5

-6

-5

-4

-3

-2

-1

0

x
y

Exercise 18.2 a) g(x), b) h(x), c) j(x), d) k(x), e) i(x), f) f(x)
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Exercise 18.3 a) y = 5 cos(x), b) y = −5 cos(x), c) y = −5 sin(x), d) y = cos(x) + 5,

e) y = sin(x) + 5, f) y = 2 sin(x) + 3

Exercise 18.4 a) amplitude A = 5, period P = π, phase shift S = −π
2 , b) amplitude

A = 3, period v π
2 , phase shift S = π

8 , c) amplitude A = 4, period

P = π
3 , phase shift S = 0, d) amplitude A = 2, period P = 2π

7 , phase

shift S = −π
28 , e) amplitude A = 8, period P = π, phase shift S = 3π

2 ,

f) amplitude A = 3, period P = 8π, phase shift S = 0, g) amplitude

A = 4, period P = 2π
5 , phase shift S = −π

15 , h) amplitude A = 7, period

P = 4π, phase shift S = 12π
5 , i) amplitude A = 1, period P = π, phase

shift S = 0, j) amplitude A = 6, period P = 2, phase shift S = 1

Exercise 18.5 a)







amplitude A = 5
period P = π

phase shift S = 0

x

y

5

−5
π
4

3π
4

π

π
2

b)







amplitude A = 4
period P = 2

phase shift S = 0

x

y

4

−4
1 2

0.5

1.5

c)







amplitude A = 4
period P = 2π

5
phase shift S = π

5

x

y

4

−4
π
5

3π
10

2π
5

π
2

3π
5

d)







amplitude A = 6
period P = π

phase shift S = π
2

x

y

6

−6
π
2

3π
4

π

5π
4

3π
2

e)







amplitude A = 5
period P = π

phase shift S = π
4

x

y

5

−5
π
4

π
2

3π
4

π

5π
4

f)







amplitude A = 7
period P = 2π

3
phase shift S = π

6

x

y

7

−7
π
6

π
3

π
2

2π
3

5π
6



485

g)







amplitude A = 5
period P = 2π

3
phase shift S = π

12

x

y

5

−5
π
12

π
4

5π
12

7π
12

3π
4

h)







amplitude A = 3
period P = π

2
phase shift S = −π

4

x

y

3

−3
−π

4 −π
8

π
8

π
4

i)







amplitude A = 2
period P = 2π

5
phase shift S = −π

5

x

y

2

−2
−π

5 − π
10

π
10

π
5

j)







amplitude A = 4
period P = π

phase shift S = −π
4

x

y

4

−4
−π

4

π
4

π
2

3π
4

k)







amplitude A = 3
period P = π

3
phase shift S = − π

12

x

y

3

−3
− π

12

π
12

π
6

π
4

l)







amplitude A = 3
period P = π

phase shift S = −π
8

x

y

3

−3
−π

8
π
8

3π
8

5π
8

7π
8

m)







amplitude A = 7
period P = 8π

phase shift S = −π

x

y

7

−7
−π π 3π

5π

7π

n)







amplitude A = 2
period P = 10π

phase shift S = π
2

x

y

−2

2 π
2 3π11π

2

8π 21π
2



486 ANSWERS TO EXERCISES

o)







amplitude A = 1
3

period P = 5π
7

phase shift S = 3π
7

x

y

1
3

− 1
3

3π
7

17π
28

11π
14

27π
28

8π
7

Chapter 19 (exercises starting on page 341):

Exercise 19.1 a)

radian

,

degree

,

b)

radian

,

degree

,

c)

radian

,

degree

Exercise 19.2 a) π
3 , b) π

6 , c) π
3 , d) 0, e) π

4 , f) 3π
4 , g) −π

2 , h) −π
3 , i) 5π

6 , j) −π
4 , k) −π

3 ,

l) −π
6

Exercise 19.3 a) 1.37, b) −0.85, c) 1.23, d) 1.57, e) −1.11, f) undefined, g) 47.16◦, h)

−45◦, i) 75◦, j) 90.00◦, k) 67.5◦, l) −7.5◦

Chapter 20 (exercises starting on page 358):

Exercise 20.1 a) x = π
6 +nπ, where n = 0,±1, . . . , b) x = π

3 +2nπ or x = 2π
3 +2nπ,

where n = 0,±1, . . . , c) x = −π
4 + 2nπ or x = 5π

4 + 2nπ, where n =

0,±1, . . . , d) x = ±π
6 + 2nπ, where n = 0,±1, . . . , e) x = ±π

2 + 2nπ,

where n = 0,±1, . . . , f) x = ± 2π
3 + 2nπ, where n = 0,±1, . . . , g)

x = 2nπ, where n = 0,±1, . . . , h) there is no solution (since −1 ≤
sin(x) ≤ 1), i) x = 2nπ or x = π + 2nπ, where n = 0,±1, . . . , j) x =

−π
2 +2nπ, where n = 0,±1, . . . , (the solutions x = 3π

2 +2nπ coincide

with these and do not need to be stated separately), k) x = −π
3 + nπ,

where n = 0,±1, . . . , l) x = ± cos−1(0.2)+2nπ, where n = 0,±1, . . .
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Exercise 20.2 a) x ≈ 1.411+ nπ, where n = 0,±1, . . . , b) x ≈ ±1.104+ 2nπ, where

n = 0,±1, . . . , c) x ≈ 1.143 + 2nπ or x ≈ 1.998 + 2nπ, where n =

0,±1, . . . , d) x ≈ ±2.453+2nπ, where n = 0,±1, . . . , e) x ≈ −0.197+

nπ, where n = 0,±1, . . . f) x ≈ −0.06 + 2nπ or x ≈ 3.082 + 2nπ,

where n = 0,±1, . . . ,

Exercise 20.3 a) −π
4 , 3π

4 , 7π
4 , −5π

4 , −9π
4 , b) π

4 , −π
4 , 9π

4 , −9π
4 , 17π

4 , −17π
4 , c) −π

3 ,
4π
3 , 5π

3 , −2π
3 , −7π

3 , d) 0, π, 2π, −π, −2π, e) π
2 , −π

2 , 3π
2 , −3π

2 , 5π
2 ,

−5π
2 , f) cos−1(0.3), − cos−1(0.3), cos−1(0.3) + 2π, − cos−1(0.3) + 2π,

cos−1(0.3) − 2π, − cos−1(0.3) − 2π, g) sin−1(0.4), − sin−1(0.4) + π,

− sin−1(0.4)−π, sin−1(0.4)+2π, sin−1(0.4)− 2π, h) 3π
2 , 7π

2 , 11π
2 , −π

2 ,
−5π
2

Exercise 20.4 a) x = π
4 +nπ, where n = 0,±1, . . . , b) x = π

6 +2nπ or x = 5π
6 +2nπ,

where n = 0,±1, . . . , c) x = ± 5π
6 + 2nπ, where n = 0,±1, . . . , d)

x = ±π
4 + 2nπ, where n = 0,±1, . . . , e) x = ± 2π

3 + 2nπ, where

n = 0,±1, . . . , f) x = π
6 + nπ, where n = 0,±1, . . .

Exercise 20.5 a) x = 2nπ, x = π + 2nπ, x = π
4 + 2nπ, or x = 3π

4 + 2nπ, where

n = 0,±1, . . . , b) x = nπ or x = −π
4 + nπ, where n = 0,±1, . . . , c)

x = ±π
2 + 2nπ or x = ± 5π

6 + 2nπ, where n = 0,±1, . . . , d) x = 2nπ,

x = π+2nπ, or x = 3π
2 +2nπ, where n = 0,±1, . . . , e) x = ±π

3 +nπ,

where n = 0,±1, . . . , f) x = ±π
3 + 2nπ or x = ± 2π

3 + 2nπ, where

n = 0,±1, . . . , g) x = π
3 + 2nπ, x = 2π

3 + 2nπ, x = −π
3 + 2nπ, or

x = 4π
3 + 2nπ, where n = 0,±1, . . . , h) x = 2nπ or x = π + 2nπ,

where n = 0,±1, . . . (Note: the solutions of cos(x) + 1 = 0 given by
the formula on page 351 are ±π + 2nπ with n = 0,±1, . . . . Since
every solution appears twice in this expression, we can reduce this to

x = π+2nπ.), i) x = ±π
2 +2nπ or x = −π

3 +nπ, where n = 0,±1, . . . ,

j) x = π + 2nπ, where n = 0,±1, . . . , k) x = ±π
3 + 2nπ, where

n = 0,±1, . . . , l) x = −π
6 +2nπ or x = 7π

6 +2nπ, where n = 0,±1, . . . ,

m) x = − 3π
2 +2nπ, x = π

6+2nπ, or x = 5π
6 +2nπ, where n = 0,±1, . . . ,

n) x = 2nπ, or x = ±π
3 +2nπ, where n = 0,±1, . . . , o) x = ±π

3 +2nπ,

where n = 0,±1, . . . , p) x = ±π
4+nπ, or x = nπ, where n = 0,±1, . . . ,

Exercise 20.6 a) x ≈ −1.995 + 2nπ, or x ≈ 0.424 + 2nπ, where n = 0,±1, . . . , b)

x ≈ −0.848 + nπ, or x ≈ 0.148 + nπ, or x ≈ 0.700 + nπ, where n =
0,±1, . . . , c) x ≈ 0.262+n 2π

3 , or x ≈ 0.906+n 2π
3 , or x ≈ 1.309+n 2π

3 ,

or x ≈ 1.712 + n 2π
3 , where n = 0,±1, . . . , d) x ≈ 0.443 + 2nπ, or

x ≈ 2.193 + 2nπ, where n = 0,±1, . . .
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Chapter 21 (exercises starting on page 374):

Exercise 21.1 a) sin(x), b) csc(x), c) cot(x), d) csc(x), e) cos(x), f) sec(x)

Exercise 21.2 a) False, b) True: sin(x)
cot(x) = sin(x)

1
tan(x)

= sin(x) · tan(x)
1 = sin(x) · tan(x)

and tan(x)
csc(x) = tan(x)

1
sin(x)

= tan(x) sin(x)1 = sin(x) · tan(x), c) False, d) True:

sin(x) · cos(x) · csc2(x) = sin(x) · cos(x) · 1
sin2(x) =

cos(x)
sin(x) = cot(x) and

csc(x)
sec(x) =

1
sin(x)

1
cos(x)

= 1
sin(x) ·

cos(x)
1 = cos(x)

sin(x) = cot(x)

Exercise 21.3 a) − sin(x), b) sin(x) cos(x), c) csc2(x), d) − cos2(x), e) sec(x),

f) cos(x), g) cos2(x), h) − tan2(x), i) cot2(x), j) cos(x) cot(x), k)

cos2(x)−sin2(x) = 1−2 sin2(x), l) − tan2(x)−sec2(x) = 1−2 sec2(x)

Exercise 21.4 a) True: sin(x) − sin(x) cos2(x) = sin(x) · (1 − cos2(x)) = sin(x) ·
sin2(x) = sin3(x) b) True: cot2(x)−csc2(x) = −1 = tan2(x)−sec2(x)

c) False, d) True: sin3(x) − sin(x) = sin(x) · (sin2(x) − 1) = sin(x) ·
(− cos2(x)) = − sin(x)·cos2(x), e) False, f) True: (sin(x)−cos(x))2 =

sin2(x)− 2 sin(x) cos(x) + cos2(x) = 1− 2 sin(x) cos(x)

Exercise 21.5 a) − sin(x), b) − tan(x), c) − tan(x), d) sin(x),

Exercise 21.6 a) sin(α2 ) =
√
5
5 , cos(α2 ) = 2

√
5

5 , tan(α2 ) = 1
2 , sin(2α) = 24

25 ,

cos(2α) = −7
25 , tan(2α) = −24

7 , b) sin(α2 ) =
√
39
13 , cos(α2 ) = −

√
130

13 ,

tan(α2 ) =
−
√
30

10 , sin(2α) = −28
√
30

169 , cos(2α) = −71
169 , tan(2α) = 28

√
30

71 ,

c) sin(α2 ) = 3
√
10

10 , cos(α2 ) = −
√
10

10 , tan(α2 ) = −3, sin(2α) = 24
25 ,

cos(2α) = 7
25 , tan(2α) = 24

7 , d) sin(α2 ) = 2
√
5

5 , cos(α2 ) = −
√
5

5 ,

tan(α2 ) = −2, sin(2α) = 24
25 , cos(2α) = −7

25 , tan(2α) = −24
7 , e)

sin(α2 ) = 5
√
26

26 , cos(α2 ) =
√
26
26 , tan(α2 ) = 5, sin(2α) = −120

169 ,

cos(2α) = 119
169 , tan(2α) = −120

119 , f) sin(α2 ) =
√
30
6 , cos(α2 ) =

√
6
6 ,

tan(α2 ) =
√
5, sin(2α) = −4

√
5

9 , cos(2α) = −1
9 , tan(2α) = 4

√
5

Review of Part IV (exercises starting on page 376):

Exercises IV 1. a) 240◦, b) 7π
4 ,

2.
x 0 = 0◦ π

6 = 30◦ π
4 = 45◦ π

3 = 60◦ π
2 = 90◦

sin(x) 0 1
2

√
2
2

√
3
2 1

cos(x) 1
√
3
2

√
2
2

1
2 0

tan(x) 0
√
3
3 1

√
3 undef.
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3. a) −
√
2
2 , b)

√
3
2 , c) 1

2 , d)
√
3
3 , e) −

√
3, f) undefined, 4. a)

√
2+

√
6

4 , b)√
2−

√
2

2 , 5. a) amplitude A = 3, period P = π
2 , phase shift S = π

4 , b)
amplitude A = 5, period P = 2π, phase shift S = −π

2 , graphs below:

a)

x

y

3

−3

π
4

3π
8

π
2

5π
8

3π
4

b)

x

y

5

−5

−π
2

π
2

π

3π
2

6. a) π
6 , b) 5π

6 , c) −π
6 , 7. a) −π

3 +2nπ or 4π
3 +2nπ where n = 0,±1, . . .

b) π
6 + nπ where n = 0,±1, . . . , 8. a) π

3 + nπ or −π
3 + nπ where

n = 0,±1, . . . , b) ±π
3 + 2nπ or ± 2π

3 + 2nπ where n = 0,±1, . . . ,

9. a) 0 + 2nπ or π + 2nπ or −π
6 + 2nπ or 7π

6 + 2nπ where n =

0,±1, . . . , b) ±π
2 + 2nπ or ± 3π

4 + 2nπ where n = 0,±1, . . . , 10.

tan2(x) cos(x) − sec(x) = sin2(x)
cos2(x) cos(x) − 1

cos(x) = sin2(x)
cos(x) − 1

cos(x) =
sin2(x)−1
cos(x) = − cos2(x)

cos(x) = − cos(x)

Chapter 22 (exercises starting on page 395):

Exercise 22.1

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

x

y

a)

b)

c)

d)

e)

f)

Exercise 22.2 a) 10, 53◦, b)
√
29, 112◦, c) 4

√
2, 225◦, d) 3

√
2,−45◦, e) 2

√
2,−45◦, f)

8, 30◦, g) 2, 210◦, h) 8, 120◦, i) 4, 210◦, j) 5, 37◦, k) 9
√
2, 135◦
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Exercise 22.3 a) 〈15, 10〉, b)〈−2, 8〉, c) 〈15, 14〉, d) 〈8, 4〉, e) 〈13, 5〉, f) 〈23, 41〉, g)

〈16, 20〉, h) 〈−16, 25〉, i) 〈− 2
3 ,− 25

6 〉, j) 〈6,−4〉, k) 〈−2, 1〉, l) 〈0,−2〉,
m) 〈43, 12 + 7

√
3〉, n) 〈−5,−10〉, o) 〈−18, 20〉, p) 〈8

√
5,−10〉

Exercise 22.4 a) 〈45 ,− 3
5 〉, b) 〈− 3

4 ,−
√
7
4 〉, c) 〈9

√
85

85 , 2
√
85

85 〉, d) 〈−
√
5
6 ,

√
31
6 〉, e)

〈5
√
70

70 , 3
√
14

14 〉, f) 〈0,−1〉
Exercise 22.5 a) ~v = 〈1, 3

√
3〉, ‖~v‖ = 2

√
7, θ ≈ 79◦ b) ~v ≈ 〈−.772, 1.594〉, ‖~v‖ ≈

7.63, θ ≈ 116◦ c) ~v = 〈−4
√
2,−4

√
2〉, ‖v‖ = 8, θ = 225◦ = 5π

4

Chapter 23 (exercises starting on page 410):

Exercise 23.1

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

-6

-5

-4

-3

-2

-1

0

1

2

3

Re

Im

a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

Exercise 23.2 a) 3 + 4i, b) −14 + 2i, c) 6 + 17i, d) 6− 7i, e) 7
5 + 4

5 i, f) − 1
2 + 3

2 i

Exercise 23.3 a) 5, b) 6
√
2, c) 3, d) 2

√
10, e) 3, f) 4, g) 5, h) 7

Exercise 23.4 a) 2
√
2(cos(45◦) + i sin(45◦), b) 8(cos(330◦) + i sin(330◦)), c)

14(cos(120◦) + i sin(120◦)), d) 5
√
2(cos(225◦) + i sin(225◦)), e)

8
√
2(cos(315◦) + i sin(315◦)), f) 8

√
2(cos(135◦) + i sin(135◦)), g)

2
√
5(cos(240◦) + i sin(240◦)), h) 2

√
7(cos(300◦) + i sin(300◦)) i)

approximately 13(cos(247.38◦) + i sin(247.38◦)), j) 6(cos(90◦) +

i sin(90◦)), k) 10(cos(180◦) + i sin(180◦)), l) 2
√
3(cos(120◦) +

i sin(120◦))

Exercise 23.5 a) −3
√
3 + 3i, b) 5

√
2 − 5

√
2i, c) 2i, d)

√
3
2 + 1

2 i, e)−
√
3
4 − 1

4 i, f)

approximately 1.553− 5.796i

Exercise 23.6 a) 40(cos(150◦) + i sin(150◦)) = −20
√
3 + 20i, b) 42(cos(225◦) +

i sin(225◦)) = −21
√
2 − 21

√
2i, c) cos(5π3 ) + i sin(5π3 ) = 1

2 −
√
3
2 i,

d) 12(cos(π) + i sin(π)) = −12, e) .1(cos(284◦) + i sin(284◦)) ≈
.0242− .0970i, f) cos(2π3 ) + i sin(2π3 ) = − 1

2 +
√
3
2 i
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Exercise 23.7 a) 6(cos(210◦) + i sin(210◦)) = −3
√
3 − 3i, b) 2

3 (cos(135
◦) +

i sin(135◦)) = −
√
2
3 +

√
2
3 i, c) 7

3 (cos(
2π
3 ) + i sin(2π3 )) = − 7

6 + 7
√
3

6 i, d)
1
2 (cos(

3π
2 ) + i sin(3π2 )) = − 1

2 i, e) 6(cos(4π3 )+ i sin(4π3 )) = −3− 3
√
3i,

f) 5
3 (cos(−319◦) + i sin(−319◦)) ≈ 1.258 + 1.093i

Chapter 24 (exercises starting on page 426):

Exercise 24.1 a) 3, 6, 9, 12, 15, 18, 21, b) 8, 13, 18, 23, 28, 33, 38, c) 3, 6, 11, 18,

27, 38, 51, d) 1, 2, 3, 4, 5,, 6, 7, e) 1, −1, 1, −1, 1, −1, 1, f)
√
2,

√
3
2 , 2

3 ,
√
5
4 ,

√
6
5 ,

√
7
6 ,

√
8
7 , g) 10, 100, 1000, 10, 000, 100, 000, 1, 000, 000,

10, 000, 000, h) 4, 6, 4, 6, 4, 6, 4, i) 0, 1, 0, −1, 0, 1, 0

Exercise 24.2 a) 5, 8, 11, 14, 17, b) 7, 70, 700, 7000, 70, 000, c) 1, 3, 7, 15, 31, d) 6,
4, −2, −6, −4,

Exercise 24.3 a) 50, b) 15, c) 30, d) −3, e) 26, f) 77
60

Exercise 24.4 a) 5+(n−1) ·3, b) −10+(n−1) ·3 c) no, d) no, e) 73.4− (n−1) ·21.7,

f) no, g) 4+(n−1) ·0, h) −2.72− (n−1) ·0.1, i) no, j) − 3
5 +(n−1) · 12 ,

k) 9 + (n− 1) · 5, l) −3 + (j − 1) · 2, m) no, n) 29 + (k − 1) · 16
Exercise 24.5 a) 57+(n−8)·4 = 29+4(n−1)·4, b) −70−(n−99)·3 = 224−(n−1)·3,

c) 14−(n−1)·5, d) −80+76(n−1), e) 10−(n−3)·3 = 16−(n−1)·3,

f) 2 + (n− 2) · 3
4 = −49/4 + (n− 1) · 3

4

Exercise 24.6 a) 116, b) 187, c) − 3621
8 , d) 71

Exercise 24.7 a) 5040, b) −1113, c) 49, 599, d) −21, 900, e) 10, 100, f) −11, 537, g)

123, 150, h) 424, i) −1762.2, j) 302, 232, k) 200

Chapter 25 (exercises starting on page 440):

Exercise 25.1 a) geometric, 7 · 2n−1, b) geometric, 3 · (−10)n−1, c) geometric,

81(13 )
n−1, d) arithmetic, −7+(n−1)·2, e) geometric, −6(− 1

3 )
n−1, f) ge-

ometric, −2(23 )
n−1, g) geometric, 1

2 (
1
2 )

n−1, h) both, 2 = 2+(n−1)·0 =

2(1)n−1, i) neither, j) geometric, −2(−1)n−1, k) arithmetic, 0+(n−1)·5,

l) geometric, 5(13 )
n−1, m) geometric, 1

2 (
1
2 )

n−1, n) neither, o) geo-

metric, −4(4)n−1, p) arithmetic, −4 + (n − 1) · (−4), q) geometric,

−18(−9)n−1, r) geometric, 1
3 (

1
3 )

n−1, s) geometric, − 5
7 (

5
7 )

n−1, t) geo-

metric, − 5
7 (− 5

7 )
n−1, u) neither, v) arithmetic, 4 + (n− 1) · 3

Exercise 25.2 a) 375, b) −6.25, c) −7 · 2n−1, d) 6, e) 9
10 (100)

n−1, f) 20 · (5)n−1, g)
1
8 (

3
8 )

n−1, h) 4 · 3n−1, i) −40, 000, 000, 000(− 1
10 )

n−1

Exercise 25.3 a) 425, b) 127
128 , c) − 521

3125 , d) 2, 999, 997, e) 242, f) 910, g) −960, 800, h)
25,575

64 , i) 200
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Exercise 25.4 a) 9, b) − 7
6 , c) 3, d) −8, e) 99, f) 81

2 , g) − 4
3 , h) −9, i) 500

3 , j) − 81
2

Exercise 25.5 a) 4
9 , b) 7

9 , c) 50
9 , d) 23

99 , e) 1300
33 , f) 248

999 , g) 20,000
999 , h) 560

1111

Review of Part V (exercises starting on page 443):

Exercises V 1. magnitude ||〈7,−7
√
3〉|| = 14, direction angle θ = 300◦, 2. 〈36,−32〉,

3. a) 3
√
2 · (cos(225◦) + i sin(225◦)), b) 10 · (cos(150◦) + i sin(150◦)), 4.

4
√
2−4

√
2 · i, 5. − 3

10 +
3
√
3

10 · i, 6. 532, 7. a) geometric an = 54 ·(− 1
3 )

n−1,

b) neither, c) arithmetic an = 9− 2 · (n− 1), 8. 19, 950, 9. −1785, 10. 64

Appendix A (exercises starting on page 455):

Exercise A.1 a) 120, b) 6, c) 3, 628, 80, d) 2, e) 1, f) 1, g) ≈ 1.216 · 1017, h) ≈
1.269 · 1089, i) 10, j) 84, k) 12, l) 1, m) 23, n) 50, 388, o) 78, p) 4368

Exercise A.2 a) m4 + 4m3n+ 6m2n2 + 4mn3 + n4, b) x5 + 10x4 + 40x3 + 80x2 +

80x+ 32, c) x6 − 6x5y + 15x4y2 − 20x3y3 + 15x2y4 − 6xy5 + y6, d)

−p5 − 5p4q − 10p3q2 − 10p2q3 − 5pq4 − q5

Exercise A.3 a) x3−6x2y+12xy2−8y3, b) x4−40x3+600x2−4000x+10, 000, c)

x10y5 +5x8y6 +10x6y7 +10x4y8 +5x2y9 + y10, d) 16y8− 160x4y6 +

600x8y4 − 1000x12y2 + 625x16, e) x3 + 3x
5
2 + 3x2 + x

3
2 , f) −32x10

y5 −
80x7

y
− 80x4y3 − 40xy7 − 10 y11

x2 − y15

x5 , g) 38
√
2− 36

√
3, h) −2− 2i

Exercise A.4 a) x5y5 − 20x5y4 + 160x5y3, b) 512a18 + 2304a16b3, d) −189x10y4 +

21x12y2−x14, d) x10

y10 −10x8

y8 +45x6

y6 , e) 5
2m

9n9+ 15
16m

6n10+ 3
16m

3n11+
1
64n

12

Exercise A.5 a) 35x3y4, b) 36x14y2, c) −220w9, d) 280x7y4, e) 15, 625b6, f)

−189p9q15, g) 715
2 b9

Exercise A.6 a) 84x3y6, b) 15r4s4, c) −330x4, c) 500x3y6, e) 80x7, f) 2i
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Important formulas used in

precalculus

Algebraic theorems and formulas

Quadratic formula: The solutions of ax2 + bx+ c = 0 are:

x1/2 =
−b±

√
b2 − 4ac

2a

Remainder theorem and factor theorem:

Dividing a polynomial f(x) by (x− c) has a remainder of r = f(c).

In particular: g(x) = x− c is a factor of f(x) ⇐⇒ f(c) = 0

Rational root theorem:

The rational solutions of anx
n + an−1x

n−1 + · · ·+ a1x + a0 = 0 with integer
coefficients a0, . . . , an (where a0 6= 0 and an 6= 0) are of the form x = p

q
where

p is a factor of a0, and q is a factor of an.

Fundamental theorem of algebra:

Every non-constant polynomial has a root.

Exponential and logarithmic formulas:

bx · by = bx+y

bx

by
= bx−y

(bx)n = bn·x

logb(x · y) = logb(x) + logb(y)
logb(

x
y
) = logb(x)− logb(y)

logb(x
n) = n · logb(x)

logb(x) =
log(x)
log(b)

494
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Applications of exponential and logarithmic functions:

Rate of growth: y = c · bx where b = er

Half-life: y = c ·
(
1
2

)x
h where h is the half-life

Compound interest: A = P ·
(
1 + r

n

)n·t
(compounded n times per year)

Compound interest: A = P · er·t (continuous compounding)

Vectors ~v = 〈a, b〉:
Magnitude: ||〈a, b〉|| =

√
a2 + b2

Direction angle: tan(θ) = b
a

Scalar multiplication: r · 〈a, b〉 = 〈r · a, r · b〉
Vector addition: 〈a, b〉+ 〈c, d〉 = 〈a+ c, b+ d〉

Complex numbers z = a + bi: i2 = −1

Absolute value: |a+ bi| =
√
a2 + b2

Polar form: a + bi = r · (cos(θ) + i · sin(θ))

where r =
√
a2 + b2 and tan(θ) =

b

a
Multiplication: r1(cos(θ1) + i sin(θ1)) · r2(cos(θ2) + i sin(θ2))

= r1r2 · (cos(θ1 + θ2) + i sin(θ1 + θ2))

Division: r1(cos(θ1)+i sin(θ1))
r2(cos(θ2)+i sin(θ2))

= r1
r2
· (cos(θ1 − θ2) + i sin(θ1 − θ2))

Arithmetic and geometric series:

arithmetic sequence geometric sequence
nth term an = a1 + (n− 1) · d an = a1 · rn−1

series a1 + · · ·+ ak
k∑

i=1

ai =
k
2
· (a1 + ak)

k∑

i=1

ai = a1 · 1−rk

1−r

infinite series –
∞∑

i=1

ai = a1 · 1
1−r

Binomial formula:

(a+ b)n =
n∑

r=0

(
n

r

)

· an−r · br where
(
n
r

)
= n!

r!·(n−r)!
,

and k! = 1 · 2 · · · · · k
The kth term is

(
n

k−1

)
an−k+1bk−1.
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Graphs of functions

Lines:

Slope: Slope-intercept Point-slope
form of the line: form of the line:

m =
y2 − y1
x2 − x1

y = m · x+ b y − y1 = m · (x− x1)

x

y

P2

P1

x1 x2

y1

y2

x

y

b = y-intercept

m = slope

x

y

P (x1, y1)m = slope

Line y = mx+ b:
x

y

x

y

x

y

m > 0 m = 0 m < 0

Absolute value and square root:

y = |x|
x

y

y =
√
x

x

y

Polynomials and rational functions:

y = x2 y = x3 y = 1
x

y = 1
x2

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y
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Exponential and logarithmic functions:

y = ex y = log(x)

-5 -4 -3 -2 -1 0 1 2 3 4 5

-3

-2

-1

0

1

2

3

4

x

y

-5 -4 -3 -2 -1 0 1 2 3 4 5

-3

-2

-1

0

1

2

3

4

x

y

Trigonometric and inverse trigonometric functions:

y = sin(x) y = sin−1(x)

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

-2

-1

0

1

2

x

y
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0

1
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x
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y = cos(x) y = cos−1(x)

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
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x

y
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x

y

y = tan(x) y = tan−1(x)

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
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y
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f(x) = a · sin(b · x+ c) or f(x) = a · cos(b · x+ c)

x

y = a · sin(b · x+ c)

−c
b

−c
b
+
∣
∣ 2π

b

∣
∣

︸ ︷︷ ︸

period | 2πb |

|a|

−|a|

amplitude A = |a|

period P =
∣
∣ 2π

b

∣
∣

phase shift S = −c
b

Trigonometric formulas

Basic facts:

π = 180◦ 0 = 0◦π = 180◦

π
2
= 90◦

3π
2
= 270◦

π
4
= 45◦

5π
4
= 225◦

π
3
= 60◦

4π
3
= 240◦

π
6
= 30◦

7π
6
= 210◦

3π
4
= 135◦

7π
4
= 315◦

11π
6

= 330◦

5π
6
= 150◦

5π
3
= 300◦

2π
3
= 120◦

P (a, b)

x

a

b

c

terminal side of x
a2 + b2 = c2

=⇒ c =
√
a2 + b2

sin(x) = b
c

csc(x) = c
b

cos(x) = a
c

sec(x) = c
a

tan(x) = b
a

cot(x) = a
b
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Quadrant I

sin(x) is positive

cos(x) is positive

tan(x) is positive

Quadrant II

sin(x) is positive

cos(x) is negative

tan(x) is negative

Quadrant III

sin(x) is negative

cos(x) is negative

tan(x) is positive

Quadrant IV

sin(x) is negative

cos(x) is positive

tan(x) is negative

45◦ − 45◦ − 90◦ 30◦ − 60◦ − 90◦

45◦

√
2
2

45◦

√
2
2

90◦

1

30◦

1
2

60◦

√
3
2

90◦

1

x 0 = 0◦ π
6
= 30◦ π

4
= 45◦ π

3
= 60◦ π

2
= 90◦

sin(x) 0 1
2

√
2
2

√
3
2

1

cos(x) 1
√
3
2

√
2
2

1
2

0

tan(x) 0
√
3
3

1
√
3 undef.

Solving trigonometric equations:

Solve: sin(x) = c Solve: cos(x) = c Solve: tan(x) = c

The general solution is: The general solution is: The general solution is:

x = sin−1(c) + 2nπ
x = (π − sin−1(c)) + 2nπ

x = cos−1(c) + 2nπ
x = − cos−1(c) + 2nπ

x = tan−1(c) + nπ

where n = 0,±1,±2, . . . where n = 0,±1,±2, . . . where n = 0,±1,±2, . . .
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Trigonometric identities:

csc(x) =
1

sin(x)
, sec(x) =

1

cos(x)
, tan(x) =

sin(x)

cos(x)
, cot(x) =

cos(x)

sin(x)

sin2(x) + cos2(x) = 1 sec2(x) = 1 + tan2(x) csc2(x) = 1 + cot2(x)

sin(−x) = − sin(x), cos(x+ 2π) = cos(x), tan(−x) = − tan(x)

sin(x+ 2π) = sin(x), sin(π − x) = sin(x), sin(x± π
2
) = ± cos(x)

cos(x+ 2π) = cos(x), cos(π − x) = − cos(x), cos(x± π
2
) = ∓ sin(x)

Addition and subtraction of angles:

sin(α + β) = sinα cos β + cosα sin β

sin(α− β) = sinα cos β − cosα sin β

cos(α + β) = cosα cos β − sinα sin β

cos(α− β) = cosα cos β + sinα sin β

tan(α + β) =
tanα + tan β

1− tanα tanβ

tan(α− β) =
tanα− tan β

1 + tanα tan β

Half-angles and multiple angles:

sin
α

2
= ±

√

1− cosα

2

cos
α

2
= ±

√

1 + cosα

2

tan
α

2
=

1− cosα

sinα
=

sinα

1 + cosα
= ±

√

1− cosα

1 + cosα
sin(2α) = 2 sinα cosα

cos(2α) = cos2 α− sin2 α = 1− 2 sin2 α = 2 cos2 α− 1

tan(2α) =
2 tanα

1− tan2 α

The signs “±” in the half-angle formulas above are determined by the quad-
rant in which the angle α

2
lies.



501

Geometric formulas

Pythagorean Theorem:

b

a c
hypotenuse

a2 + b2 = c2

2-dimensional (planar) geometric shapes:

Circle Square Rectangle

r a

a

b

a

Area A = πr2 Area A = a2 Area A = a · b
Circumference C = 2πr Perimeter P = 4a Perimeter P = 2a + 2b

Triangle Parallelogram

h

b

a c a

b

h

Area A = 1
2
bh Area A = bh

Perimeter P = a+ b+ c Perimeter P = 2a+ 2b

3-dimensional geometric shapes:

Cube Cylinder Sphere

a

a
a

h

r r

Volume V = a3 Volume V = πr2h Volume V = 4
3
πr3

Surface area A = 6a2 Surface area Surface area A = 4πr2

A = 2πr2 + 2πrh
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10n, 262
30◦ − 60◦ − 90◦ triangle, 298
45◦ − 45◦ − 90◦ triangle, 298

nCr, 446
C, 398
N, 2
Q, 2
R, 2
Z, 2
arccos(x), 339
arcsin(x), 336
arctan(x), 333
(
n
r

)
, 446

cos(x), 297
cos−1(x), 339
cosh, 238
cot(x), 298, 334
csc(x), 298
⌊x⌋, 12
sec(x), 298
sin(x), 297
sin−1(x), 336
sinh, 238, 250
∑

, 418
tan(x), 297
tan−1(x), 333
tanh, 238, 250
θ, 383, 401
~v, 379
{an}, 412

{an}n≥1, 412
e, 236
f ◦ g, 83
i =

√
−1, 397

n!, 445
n factorial, 445
n-choose-r, 446
nth root, 266
y = xn, 126

absolute value, 64, 400
addition of angles formula, 306,

368
amplitude, 321
angle, 293

standard position, 293
approaches a, 201
approaches a from the left, 201
approaches a from the right, 201
arccosine, 339
arcsine, 336
arctangent, 333
argument, 401
arithmetic sequence, 420
arithmetic series, 424
asymptote, 130, 169, 170, 194

horizontal, 174
slant asymptote, 199
vertical, 174

base, 233, 241

502
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basic function, 64
binomial coefficient, 446
binomial theorem, 450

carbon dating method, 286
carbon-14, 286
circle, 62
codomain, 6
coefficients, 111
combination, 447
combinations, 447
common difference, 420
common ratio, 429
complete graph, 134
complex conjugate, 162
complex number, 398

θ, 401
absolute value, 400
angle, 401
argument, 401
imaginary part, 398
modulus, 400
polar form, 402
real part, 398
rectangular form, 402
standard form, 402

complex numbers, 155
complex plane, 399
complex unit, 397
composition of functions, 83
compound interest, 276
compounded quarterly, 276
compounding, 278

n times per year, 278
continuously, 278

conjugate, 162
continuous, 203
continuous compounding, 278

cosecant csc(x), 298
cosine cos(x), 297
cotangent cot(x), 298, 334
cubic polynomial, 127

degree, 111
degree measure, 294
dependent variable, 13
Desmos, 48

nth root, 266
x-intercept, 49
Add Item, 57
circle, 61
color, 55
combinations, 447
Degrees, 303
display scale, 53
domain, 59
Edit List, 55
function values, 56
graph piecewise function, 53
graph relation, 61
Graph Settings, 53
graphing, 48
home, 53
intersection of graphs, 63
keyboard, 59
maximum, 49
minimum, 49
nCr, 447
open and closed circles, 54
Radians, 305
range, 59
relation, 61
root, 49
slider, 58
solve equation, 63
square root symbol, 59
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table, 57
zero, 49
zoom, 52, 53
zoom axis, 53

difference quotient, 20
direction, 379
direction angle, 383
dividend, 114
divisor, 114
DNE (does not exist), 202
does not exist, 202
domain, 6, 24

adding functions, 81
dividing functions, 81
multiplying functions, 81

double-angle formula for trigono-
metric functions, 308, 369

equation of a circle, 62
Euler’s number, 236
even function, 73, 316

graph, 74
exponential function, 233
exponential properties, 252
extrema, 126
extremum, 49, 126

factor theorem, 117
factorial, 445
Fibonacci sequence, 413
floor function, 12
frequency, 321
function, 6

arccosine, 339
arcsine, 336
arctangent, 333
basic function, 64
composition, 83

domain, 6, 24
exponential, 233
floor, 12
graph, 34
injective, 92
inverse cosine, 339
inverse function, 95
inverse sine, 336
inverse tangent, 333
linear function, 28
logarithm, 241
one-to-one, 92
piecewise defined, 18
range, 6, 7, 24

fundamental theorem of algebra,
156

Gauss trick, 423
geometric sequence, 429
geometric series, 434

infinite, 437
geometric vector, 379
graph

odd function, 74
graphs

y = arccos(x), 339
y = arcsin(x), 337
y = arctan(x), 333
y = cos(x), 315
y = cos−1(x), 339
y = 1

x
, 65

y = 1
xn , 170

y = ln(x), 244, 249
y = log(x), 244, 249
y = logb(x), 249
y = sin(x), 314
y = sin−1(x), 337
y =

√
x, 65
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y = tan(x), 318
y = tan−1(x), 333
y = bx, 236
y = c · 2x, 239
y = ex, 237
y = x2, 64
y = x3, 64
y = xn, 126
absolute value, 64
arccosine, 339
arcsine, 337
arctangent, 333
complete, 134
even function, 74
exponential function, 236
hole, 174
inverse cosine, 339
inverse function, 102
inverse sine, 337
inverse tangent, 333
logarithm, 249
maximum, 49
minimum, 49
polynomial degree 2, 126
polynomial degree 3, 127
polynomial degree 4, 128
polynomial degree 5, 129
polynomials, 129
rational function, 174
reflect, 69
removable discontinuity, 174
shift, 66, 67
stretch, compress, 67, 68

greater than, 3

half-angle formula for trigonomet-
ric functions, 308, 369

half-life, 276, 283

carbon-14, 286
horizontal asymptote, 169, 174
horizontal line test, 93
hyperbolic cosine, 238
hyperbolic sine, 238, 250
hyperbolic tangent, 238, 250
hypotenuse, 501

imaginary, 155
imaginary part, 155, 398
imaginary unit, 397
independent variable, 13
inequality, 210
infinite geometric series, 437
infinite series, 437
injective function, 92
input, 6

add or subtract constant, 67
multiply −1, 69
multiply constant, 68

integer, 2
interest rate, 278
interval, 3, 4
interval as inequality, 4
interval notation, 3
interval on the number line, 3
inverse function, 95

graph, 102
irrational number, 3

leading coefficient, 111
less than, 3
limit, 201
limit from the left, 201
limit from the right, 201
line

graphing the line, 30
point-slope form of the line,

32
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slope, 29
slope-intercept form of the line,

28
linear function, 28
logarithm, 241

basic evaluations, 243
change of base, 253
graph, 249
properties, 253

long division, 112

magnitude, 379, 382
maximum, 49
minimum, 49
modulus, 400
monomial, 110
monthly, 279
multiplicity, 134, 138, 162

natural logarithm, 241
natural number, 2
nCr, 447
newton, 392
number system, 2

odd function, 73, 316, 318
graph, 74

one-to-one function, 92
output, 6

add or subtract constant, 66
multiply −1, 69
multiply constant, 67

parabola, 126
Pascal’s triangle, 449
period, 314, 321
periodic function, 313
phase shift, 321
piecewise defined function, 18

point-slope form of the line, 32
polar form of a complex number,

402
polynomial, 110

cubic, 127
degree, 111
degree 1, 125
degree 2, 126
degree 3, 127
degree 4, 128
degree 5, 129
quadratic, 126

polynomial division, 112
polynomial in one variable, 111
powers of 10, 262
present value, 280
principal, 276, 278
Pythagorean identities, 364
Pythagorean theorem, 501

quadrant, 309
quadratic formula, 139
quotient, 114
quotient identities, 362

radian measure, 294
range, 6, 7, 24
rate, 278
rate of growth, 270
rational function, 111, 169, 174

asymptotic behavior, 199
slant asymptote, 199

rational number, 2
rational root theorem, 150
real number, 2
real part, 155, 398
reciprocal identities, 362
rectangular form of a complex num-

ber, 402
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recursive, 416
remainder, 114
remainder theorem, 117
removable discontinuity, 174
root, 49, 111

scalar multiplication, 388
secant sec(x), 298
sequence, 412

formula, 414
recursive, 416

series, 418
arithmetic, 424
geometric, 434
infinite, 437
infinite geometric, 437

sigma Σ, 418
sine sin(x), 297
slant asymptote, 173, 199
slope

sign, 29
slope-intercept form of the line,

28
solving trigonometric equations,

351
standard convention of domain, 24
standard form of a complex num-

ber, 402
standard position of an angle, 293
subtraction of angles formula, 306,

368
summation symbol, 418
synthetic division, 120

tangent tan(x), 297
telescopic sum, 434
theorem

binomial theorem, 450

factor theorem, 117
fundamental theorem of alge-

bra, 156
Pythagorean theorem, 501
rational root theorem, 150
remainder theorem, 117

theta, 383, 401
trigonometric equations, 351
trigonometric functions, 297

addition of angles formula, 306,
368

double-angle formula, 308, 369
exact values, 303
half-angle formula, 308, 369
positive/negative, 310
subtraction of angles formula,

306, 368

unit vector, 390

vector, 379
θ, 383
angle, 383
direction, 379
direction angle, 383
magnitude, 379, 382
unit vector, 390
vector addition, 391

vector space, 394
vertical asymptote, 169, 174
vertical line test, 37

zero, 49, 111


	Preface
	Table of contents
	I Functions and Graphs
	Numbers and functions
	Review of number sets
	Introduction to functions
	Exercises

	Functions via formulas
	Functions given by formulas
	Exercises

	Functions via graphs
	Review of graphs of linear functions
	Functions given by graphs
	Exercises

	Basic functions and transformations
	Basics of the Desmos graphing calculator
	Optional section: Exploring Desmos further
	Graphs of basic functions and transformations
	Exercises

	Operations on functions
	Operations on functions given by formulas
	Operations on functions given by tables
	Exercises

	The inverse of a function
	One-to-one functions
	Inverse function
	Exercises

	Review of functions and graphs

	II Polynomials and Rational Functions
	Dividing polynomials
	Long division
	Dividing by (x-c)
	Optional section: Synthetic division
	Exercises

	Graphing polynomials
	Graphs of polynomials
	Roots and factors of a polynomial
	Optional section: Graphing polynomials by hand
	Exercises

	Roots of polynomials
	Optional section: The rational root theorem
	The fundamental theorem of algebra
	Exercises

	Rational functions
	Graphs of rational functions
	Optional section: Rational functions by hand
	Exercises

	Exploring discontinuities and asymptotes
	More on rational functions
	Optional section: Limits
	Exercises

	Solving inequalities
	Polynomial and absolute value inequalities
	Rational inequalities
	Exercises

	Review of polynomials and rational functions

	III Exponential and Logarithmic Functions
	Exponential and logarithmic functions
	Exponential functions and their graphs
	Logarithmic functions and their graphs
	Exercises

	Properties of  and  equations
	Algebraic properties of  and 
	Solving logarithmic equations
	Exercises

	Equations and applications of 
	Exponential equations
	Applications of exponential functions
	Exercises

	Compound interest and half-life
	Compound interest
	Half-life
	Exercises

	Review of exponential and logarithmic functions

	IV Trigonometric Functions
	Trigonometric functions reviewed
	Review of unit circle trigonometry
	Computing trigonometric function values
	Exercises

	Graphing trigonometric functions
	Graphs of y=(x), y=(x), and y=(x)
	Amplitude, period, and phase shift
	Exercises

	Inverse trigonometric functions
	The functions -1, -1, and -1
	Exercises

	Solving trigonometric equations
	Basic trigonometric equations
	Equations involving trigonometric functions
	Exercises

	Trigonometric identities
	Reciprocal, Pythagorean, and sign identities
	Optional section: Further identities revisited
	Exercises

	Review of trigonometric functions

	V Vectors, Complex Numbers, and Sequences
	Vectors in the plane
	Introduction to vectors
	Operations on vectors
	Exercises

	Complex numbers
	Polar form of complex numbers
	Multiplication and division of complex numbers
	Exercises

	Sequences and series
	Introduction to sequences and series
	The arithmetic sequence
	Exercises

	The geometric series
	Finite geometric series
	Infinite geometric series
	Exercises

	Review of vectors, complex numbers, and sequences

	Appendix
	The binomial theorem
	The binomial theorem
	Binomial expansion
	Exercises


	Answers to exercises
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Review Part I
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Review Part II
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Review Part III
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20
	Chapter 21
	Review Part IV
	Chapter 22
	Chapter 23
	Chapter 24
	Chapter 25
	Review Part V
	Appendix A

	References
	Important formulas used in precalculus
	Index

