Arithmetic sequences and series

Lesson \#24

MAT 1375 Precalculus

New York City College of Technology CUNY

Sequences

Definition

A sequence is an ordered list of numbers.

$$
a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots
$$

Here a_{1} is the first number, a_{2} is the second number, a_{3} is the third number, etc.

Sequences

Definition

A sequence is an ordered list of numbers.

$$
a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots
$$

Here a_{1} is the first number, a_{2} is the second number, a_{3} is the third number, etc.
Examples of sequences:

- $5,8,11,14,17,20,23, \ldots$
- $3,6,12,24,48,96,192, \ldots$
- $1,4,9,16,25,36,49, \ldots$

Sequences

Definition

A sequence is an ordered list of numbers.

$$
a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots
$$

Here a_{1} is the first number, a_{2} is the second number, a_{3} is the third number, etc.
Examples of sequences:

- $5,8,11,14,17,20,23, \ldots$ (arithmetic sequence) $a_{1}=5, a_{2}=8, a_{3}=11$
- $3,6,12,24,48,96,192, \ldots$
- $1,4,9,16,25,36,49, \ldots$

Sequences

Definition

A sequence is an ordered list of numbers.

$$
a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots
$$

Here a_{1} is the first number, a_{2} is the second number, a_{3} is the third number, etc.

Examples of sequences:

- $5,8,11,14,17,20,23, \ldots$
(arithmetic sequence)
$a_{1}=5, a_{2}=8, a_{3}=11$
- $3,6,12,24,48,96,192, \ldots$ (geometric sequence)
- $1,4,9,16,25,36,49, \ldots$

Sequences

Definition

A sequence is an ordered list of numbers.

$$
a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots
$$

Here a_{1} is the first number, a_{2} is the second number, a_{3} is the third number, etc.

Examples of sequences:

- $5,8,11,14,17,20,23, \ldots$ (arithmetic sequence) $a_{1}=5, a_{2}=8, a_{3}=11$
- $3,6,12,24,48,96,192, \ldots$ (geometric sequence)
- $1,4,9,16,25,36,49, \ldots$ (sequence of squares)

Sequences

Definition

A sequence is an ordered list of numbers.

$$
a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots
$$

Here a_{1} is the first number, a_{2} is the second number, a_{3} is the third number, etc.
Examples of sequences:

- $5,8,11,14,17,20,23, \ldots$ (arithmetic sequence) $a_{1}=5, a_{2}=8, a_{3}=11$
- $3,6,12,24,48,96,192, \ldots$ (geometric sequence)
- $1,4,9,16,25,36,49, \ldots$ (sequence of squares)
- $7,-3.6, \sqrt{2}, \frac{2}{3}, \pi,-22, \ldots$

Sequences

Definition

A sequence is an ordered list of numbers.

$$
a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots
$$

Here a_{1} is the first number, a_{2} is the second number, a_{3} is the third number, etc.
Examples of sequences:

- $5,8,11,14,17,20,23, \ldots$ (arithmetic sequence) $a_{1}=5, a_{2}=8, a_{3}=11$
- $3,6,12,24,48,96,192, \ldots$ (geometric sequence)
- $1,4,9,16,25,36,49, \ldots$ (sequence of squares)
- $7,-3.6, \sqrt{2}, \frac{2}{3}, \pi,-22, \ldots$ (no apparent rule)

Sequences

Definition

A sequence is an ordered list of numbers.

$$
a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots
$$

Here a_{1} is the first number, a_{2} is the second number, a_{3} is the third number, etc.
Examples of sequences:

- $5,8,11,14,17,20,23, \ldots$ (arithmetic sequence) $a_{1}=5, a_{2}=8, a_{3}=11$
- $3,6,12,24,48,96,192, \ldots$ (geometric sequence)
- $1,4,9,16,25,36,49, \ldots$ (sequence of squares)
- $7,-3.6, \sqrt{2}, \frac{2}{3}, \pi,-22, \ldots$ (no apparent rule)
- $1,1,2,3,5,8,13,21,34, \ldots$

Sequences

Definition

A sequence is an ordered list of numbers.

$$
a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots
$$

Here a_{1} is the first number, a_{2} is the second number, a_{3} is the third number, etc.
Examples of sequences:

- $5,8,11,14,17,20,23, \ldots$ (arithmetic sequence) $a_{1}=5, a_{2}=8, a_{3}=11$
- $3,6,12,24,48,96,192, \ldots$ (geometric sequence)
- $1,4,9,16,25,36,49, \ldots$ (sequence of squares)
- $7,-3.6, \sqrt{2}, \frac{2}{3}, \pi,-22, \ldots$ (no apparent rule)
- $1,1,2,3,5,8,13,21,34, \ldots$ (Fibonacci sequence)

Sequences

Definition

A sequence is an ordered list of numbers.

$$
a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots
$$

Here a_{1} is the first number, a_{2} is the second number, a_{3} is the third number, etc.
Examples of sequences: Find the first 5 terms of the

- $5,8,11,14,17,20,23, \ldots$ (arithmetic sequence)
(1) $a_{n}=4 n+5$
$a_{1}=5, a_{2}=8, a_{3}=11$
- $3,6,12,24,48,96,192, \ldots$
(2) $a_{n}=\sqrt{2 n+3}$ (geometric sequence)
- $1,4,9,16,25,36,49, \ldots$
(3) $a_{n}=n^{2}$ (sequence of squares)
- $7,-3.6, \sqrt{2}, \frac{2}{3}, \pi,-22, \ldots$
(c) $a_{n}=\frac{n+2}{n+3}$ (no apparent rule)
- $1,1,2,3,5,8,13,21,34, \ldots$ (Fibonacci sequence)

Sequences

Definition

A sequence is an ordered list of numbers.

$$
a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots
$$

Here a_{1} is the first number, a_{2} is the second number, a_{3} is the third number, etc.
Examples of sequences: Find the first 5 terms of the

- $5,8,11,14,17,20,23, \ldots$ (arithmetic sequence) $a_{1}=5, a_{2}=8, a_{3}=11$
- $3,6,12,24,48,96,192, \ldots$ (geometric sequence)
- $1,4,9,16,25,36,49, \ldots$ (sequence of squares)
- $7,-3.6, \sqrt{2}, \frac{2}{3}, \pi,-22, \ldots$
(c) $a_{n}=\frac{n+2}{n+3}$ (no apparent rule)
- $1,1,2,3,5,8,13,21,34, \ldots$ (Fibonacci sequence)

Sequences

Definition

A sequence is an ordered list of numbers.

$$
a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots
$$

Here a_{1} is the first number, a_{2} is the second number, a_{3} is the third number, etc.
Examples of sequences: Find the first 5 terms of the

- $5,8,11,14,17,20,23, \ldots$ (arithmetic sequence) $a_{1}=5, a_{2}=8, a_{3}=11$
- $3,6,12,24,48,96,192, \ldots$ (geometric sequence)
- $1,4,9,16,25,36,49, \ldots$ (sequence of squares)
- $7,-3.6, \sqrt{2}, \frac{2}{3}, \pi,-22, \ldots$ (no apparent rule)
- $1,1,2,3,5,8,13,21,34, \ldots$ (Fibonacci sequence)
sequence:
(1) $a_{n}=4 n+5$
$9,13,17,21,25, \ldots$
(2) $a_{n}=\sqrt{2 n+3}$
$\sqrt{5}, \sqrt{7}, 3, \sqrt{11}, \sqrt{13}, \ldots$
(3) $a_{n}=n^{2}$
(c) $a_{n}=\frac{n+2}{n+3}$

Sequences

Definition

A sequence is an ordered list of numbers.

$$
a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots
$$

Here a_{1} is the first number, a_{2} is the second number, a_{3} is the third number, etc.
Examples of sequences: Find the first 5 terms of the

- $5,8,11,14,17,20,23, \ldots$ (arithmetic sequence) $a_{1}=5, a_{2}=8, a_{3}=11$
- $3,6,12,24,48,96,192, \ldots$ (geometric sequence)
- $1,4,9,16,25,36,49, \ldots$ (sequence of squares)
- $7,-3.6, \sqrt{2}, \frac{2}{3}, \pi,-22, \ldots$ (no apparent rule)
- $1,1,2,3,5,8,13,21,34, \ldots$ (Fibonacci sequence)
sequence:
(1) $a_{n}=4 n+5$
$9,13,17,21,25, \ldots$
(2) $a_{n}=\sqrt{2 n+3}$
$\sqrt{5}, \sqrt{7}, 3, \sqrt{11}, \sqrt{13}, \ldots$
(3) $a_{n}=n^{2}$ $1,4,9,16,25, \ldots$
(c) $a_{n}=\frac{n+2}{n+3}$

Sequences

Definition

A sequence is an ordered list of numbers.

$$
a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots
$$

Here a_{1} is the first number, a_{2} is the second number, a_{3} is the third number, etc.
Examples of sequences: Find the first 5 terms of the

- $5,8,11,14,17,20,23, \ldots$ (arithmetic sequence) $a_{1}=5, a_{2}=8, a_{3}=11$
- $3,6,12,24,48,96,192, \ldots$ (geometric sequence)
- $1,4,9,16,25,36,49, \ldots$ (sequence of squares)
- 7, $-3.6, \sqrt{2}, \frac{2}{3}, \pi,-22, \ldots$ (no apparent rule)
- $1,1,2,3,5,8,13,21,34, \ldots$ (Fibonacci sequence)
sequence:
(1) $a_{n}=4 n+5$
$9,13,17,21,25, \ldots$
(2) $a_{n}=\sqrt{2 n+3}$
$\sqrt{5}, \sqrt{7}, 3, \sqrt{11}, \sqrt{13}, \ldots$
(3) $a_{n}=n^{2}$ $1,4,9,16,25, \ldots$
(9) $a_{n}=\frac{n+2}{n+3}$
$\frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}, \frac{7}{8}, \ldots$

Sequences

Definition

A sequence is an ordered list of numbers.

$$
a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots
$$

Here a_{1} is the first number, a_{2} is the second number, a_{3} is the third number, etc.

Examples of sequences:

- $5,8,11,14,17,20,23, \ldots$ (arithmetic sequence) $a_{1}=5, a_{2}=8, a_{3}=11$
- $3,6,12,24,48,96,192, \ldots$ (geometric sequence)
- $1,4,9,16,25,36,49, \ldots$ (sequence of squares)
- 7, $-3.6, \sqrt{2}, \frac{2}{3}, \pi,-22, \ldots$ (no apparent rule)
- $1,1,2,3,5,8,13,21,34, \ldots$ (Fibonacci sequence)

Find the first 5 terms of the sequence:
(1) $a_{n}=4 n+5$
$9,13,17,21,25, \ldots$
(2) $a_{n}=\sqrt{2 n+3}$
$\sqrt{5}, \sqrt{7}, 3, \sqrt{11}, \sqrt{13}, \ldots$
(3) $a_{n}=n^{2}$ $1,4,9,16,25, \ldots$
(c) $a_{n}=\frac{n+2}{n+3}$ $\frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}, \frac{7}{8}, \ldots$

Find the first 6 terms of the sequence given by the recursive rule.
(1) $a_{1}=5, \quad a_{n}=2 \cdot a_{n-1}$
(2) $a_{1}=2, \quad a_{n}=a_{n-1}+6$
(3) $a_{1}=1, a_{2}=1$ $a_{n}=a_{n-1}+a_{n-2}$

Sequences

Definition

A sequence is an ordered list of numbers.

$$
a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots
$$

Here a_{1} is the first number, a_{2} is the second number, a_{3} is the third number, etc.

Examples of sequences:

- $5,8,11,14,17,20,23, \ldots$ (arithmetic sequence) $a_{1}=5, a_{2}=8, a_{3}=11$
- $3,6,12,24,48,96,192, \ldots$ (geometric sequence)
- $1,4,9,16,25,36,49, \ldots$ (sequence of squares)
- $7,-3.6, \sqrt{2}, \frac{2}{3}, \pi,-22, \ldots$ (no apparent rule)
- $1,1,2,3,5,8,13,21,34, \ldots$ (Fibonacci sequence)

Find the first 5 terms of the sequence:
(1) $a_{n}=4 n+5$
$9,13,17,21,25, \ldots$
(2) $a_{n}=\sqrt{2 n+3}$
$\sqrt{5}, \sqrt{7}, 3, \sqrt{11}, \sqrt{13}, \ldots$
(3) $a_{n}=n^{2}$ $1,4,9,16,25, \ldots$
(c) $a_{n}=\frac{n+2}{n+3}$
$\frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}, \frac{7}{8}, \ldots$

Find the first 6 terms of the sequence given by the recursive rule.
(1) $a_{1}=5, \quad a_{n}=2 \cdot a_{n-1}$ $5,10,20,40,80,160 \ldots$ (geometric sequence)
(2) $a_{1}=2, \quad a_{n}=a_{n-1}+6$
(3) $a_{1}=1, a_{2}=1$ $a_{n}=a_{n-1}+a_{n-2}$

Sequences

Definition

A sequence is an ordered list of numbers.

$$
a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots
$$

Here a_{1} is the first number, a_{2} is the second number, a_{3} is the third number, etc.

Examples of sequences:

- $5,8,11,14,17,20,23, \ldots$ (arithmetic sequence) $a_{1}=5, a_{2}=8, a_{3}=11$
- $3,6,12,24,48,96,192, \ldots$ (geometric sequence)
- $1,4,9,16,25,36,49, \ldots$ (sequence of squares)
- $7,-3.6, \sqrt{2}, \frac{2}{3}, \pi,-22, \ldots$ (no apparent rule)
- $1,1,2,3,5,8,13,21,34, \ldots$ (Fibonacci sequence)

Find the first 5 terms of the sequence:
(1) $a_{n}=4 n+5$
$9,13,17,21,25, \ldots$
(2) $a_{n}=\sqrt{2 n+3}$
$\sqrt{5}, \sqrt{7}, 3, \sqrt{11}, \sqrt{13}, \ldots$
(3) $a_{n}=n^{2}$
$1,4,9,16,25, \ldots$
(c) $a_{n}=\frac{n+2}{n+3}$
$\frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}, \frac{7}{8}, \ldots$

Find the first 6 terms of the sequence given by the recursive rule.
(1) $a_{1}=5, \quad a_{n}=2 \cdot a_{n-1}$ $5,10,20,40,80,160 \ldots$ (geometric sequence)
(2) $a_{1}=2, \quad a_{n}=a_{n-1}+6$ $2,8,14,20,26,32 \ldots$ (arithmetic sequence)
(3) $a_{1}=1, a_{2}=1$ $a_{n}=a_{n-1}+a_{n-2}$

Sequences

Definition

A sequence is an ordered list of numbers.

$$
a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots
$$

Here a_{1} is the first number, a_{2} is the second number, a_{3} is the third number, etc.

Examples of sequences:

- $5,8,11,14,17,20,23, \ldots$ (arithmetic sequence) $a_{1}=5, a_{2}=8, a_{3}=11$
- $3,6,12,24,48,96,192, \ldots$ (geometric sequence)
- $1,4,9,16,25,36,49, \ldots$ (sequence of squares)
- $7,-3.6, \sqrt{2}, \frac{2}{3}, \pi,-22, \ldots$ (no apparent rule)
- $1,1,2,3,5,8,13,21,34, \ldots$ (Fibonacci sequence)

Find the first 5 terms of the sequence:
(1) $a_{n}=4 n+5$
$9,13,17,21,25, \ldots$
(2) $a_{n}=\sqrt{2 n+3}$
$\sqrt{5}, \sqrt{7}, 3, \sqrt{11}, \sqrt{13}, \ldots$
(3) $a_{n}=n^{2}$
$1,4,9,16,25, \ldots$
(c) $a_{n}=\frac{n+2}{n+3}$ $\frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}, \frac{7}{8}, \ldots$

Find the first 6 terms of the sequence given by the recursive rule.
(1) $a_{1}=5, \quad a_{n}=2 \cdot a_{n-1}$ $5,10,20,40,80,160 \ldots$ (geometric sequence)
(2) $a_{1}=2, \quad a_{n}=a_{n-1}+6$ $2,8,14,20,26,32 \ldots$ (arithmetic sequence)
(3) $a_{1}=1, a_{2}=1$ $a_{n}=a_{n-1}+a_{n-2}$ 1, 1, 2, 3, 5, $8 \ldots$
(Fibonacci sequence)

Arithmetic sequences

Arithmetic sequence

An arithmetic sequence is a sequence where each term follows from its previous term by adding a fixed number d :

d is called the common difference.

Arithmetic sequences

Arithmetic sequence

An arithmetic sequence is a sequence where each term follows from its previous term by adding a fixed number d :

d is called the common difference.

Example

(1) Find the first 5 terms of the sequence $a_{n}=7+(n-1) \cdot 3$.

Arithmetic sequences

Arithmetic sequence

An arithmetic sequence is a sequence where each term follows from its previous term by adding a fixed number d :

d is called the common difference.

Example

(1) Find the first 5 terms of the sequence $a_{n}=7+(n-1) \cdot 3$.

Answer:
$7,10,13,16,19, \ldots$
This is an arithmetic sequence with first term $a_{1}=7$ and common difference $d=3$.

Arithmetic sequences

Arithmetic sequence

An arithmetic sequence is a sequence where each term follows from its previous term by adding a fixed number d :

d is called the common difference.

Example

(1) Find the first 5 terms of the sequence $a_{n}=7+(n-1) \cdot 3$.

Answer:
$7,10,13,16,19, \ldots$
This is an arithmetic sequence with first term $a_{1}=7$ and common difference $d=3$.
(2) Find the rule of the arithmetic sequence: $6,11,16,21,26,31, \ldots$

Arithmetic sequences

Arithmetic sequence

An arithmetic sequence is a sequence where each term follows from its previous term by adding a fixed number d :

d is called the common difference.

Example

(1) Find the first 5 terms of the sequence $a_{n}=7+(n-1) \cdot 3$.

Answer:

$$
7,10,13,16,19, \ldots
$$

This is an arithmetic sequence with first term $a_{1}=7$ and common difference $d=3$.
(2) Find the rule of the arithmetic sequence: $6,11,16,21,26,31, \ldots$

Answer:

$$
a_{n}=6+(n-1) \cdot 5
$$

Arithmetic sequences

Arithmetic sequence

An arithmetic sequence is a sequence where each term follows from its previous term by adding a fixed number d :

d is called the common difference. An arithmetic sequence has the closed form formula:

$$
a_{n}=a_{1}+(n-1) \cdot d
$$

Example

(1) Find the first 5 terms of the sequence $a_{n}=7+(n-1) \cdot 3$.

Answer:

$$
7,10,13,16,19, \ldots
$$

This is an arithmetic sequence with first term $a_{1}=7$ and common difference $d=3$.
(2) Find the rule of the arithmetic sequence: $6,11,16,21,26,31, \ldots$

Answer:

$$
a_{n}=6+(n-1) \cdot 5
$$

Arithmetic sequences - exercises

Arithmetic sequence

$$
a_{n}=a_{1}+(n-1) \cdot d
$$

Find the closed form formula for the given arithmetic sequence.
(1) $8,14,20,26, \ldots$
(2) $15,22,29,36, \ldots$
(3) $13,10,7,4,1,-2,-5, \ldots$
(9) $-19,-11,-3,5,13,21, \ldots$

Arithmetic sequences - exercises

Arithmetic sequence

$$
a_{n}=a_{1}+(n-1) \cdot d
$$

Find the closed form formula for the given arithmetic sequence.
(1) $8,14,20,26, \ldots$ $a_{n}=8+(n-1) \cdot 6$
(2) $15,22,29,36, \ldots$
(3) $13,10,7,4,1,-2,-5, \ldots$
(9) $-19,-11,-3,5,13,21, \ldots$

Arithmetic sequences - exercises

Arithmetic sequence

$$
a_{n}=a_{1}+(n-1) \cdot d
$$

Find the closed form formula for the given arithmetic sequence.
(1) $8,14,20,26, \ldots$

$$
a_{n}=8+(n-1) \cdot 6
$$

(2) $15,22,29,36, \ldots$
$a_{n}=15+(n-1) \cdot 7$
(3) $13,10,7,4,1,-2,-5, \ldots$
(9) $-19,-11,-3,5,13,21, \ldots$

Arithmetic sequences - exercises

Arithmetic sequence

$$
a_{n}=a_{1}+(n-1) \cdot d
$$

Find the closed form formula for the given arithmetic sequence.
(1) $8,14,20,26, \ldots$

$$
a_{n}=8+(n-1) \cdot 6
$$

(2) $15,22,29,36, \ldots$
$a_{n}=15+(n-1) \cdot 7$
(3) $13,10,7,4,1,-2,-5, \ldots$
$a_{n}=13+(n-1) \cdot(-3)$
(9) $-19,-11,-3,5,13,21, \ldots$

Arithmetic sequences - exercises

Arithmetic sequence

$$
a_{n}=a_{1}+(n-1) \cdot d
$$

Find the closed form formula for the given arithmetic sequence.
(1) $8,14,20,26, \ldots$

$$
a_{n}=8+(n-1) \cdot 6
$$

(2) $15,22,29,36, \ldots$
$a_{n}=15+(n-1) \cdot 7$
(3) $13,10,7,4,1,-2,-5, \ldots$
$a_{n}=13+(n-1) \cdot(-3)$
(9) $-19,-11,-3,5,13,21, \ldots$ $a_{n}=-19+(n-1) \cdot 8$

Arithmetic sequences - exercises

Arithmetic sequence

$$
a_{n}=a_{1}+(n-1) \cdot d
$$

Find the stated term of the given arithmetic sequence.
(1) 500th term of $8,12,16,20,24, \ldots$
(2) 444 th term of $4,7,10,13,16, \ldots$
(3) 57 th term of $5,-1,-7,-13,-20, \ldots$
(3) $13,10,7,4,1,-2,-5, \ldots$
$a_{n}=13+(n-1) \cdot(-3)$
(9) $-19,-11,-3,5,13,21, \ldots$ $a_{n}=-19+(n-1) \cdot 8$
Find the closed form formula for the given arithmetic sequence.
(1) $8,14,20,26, \ldots$

$$
a_{n}=8+(n-1) \cdot 6
$$

(2) $15,22,29,36, \ldots$

$$
a_{n}=15+(n-1) \cdot 7
$$

(9) 1234th term of $-5,-7,-9,-11,-13, \ldots$

Arithmetic sequences - exercises

Arithmetic sequence

$$
a_{n}=a_{1}+(n-1) \cdot d
$$

Find the closed form formula for the given arithmetic sequence.
(1) $8,14,20,26, \ldots$

$$
a_{n}=8+(n-1) \cdot 6
$$

(2) $15,22,29,36, \ldots$

$$
a_{n}=15+(n-1) \cdot 7
$$

(3) $13,10,7,4,1,-2,-5, \ldots$
$a_{n}=13+(n-1) \cdot(-3)$
(9) $-19,-11,-3,5,13,21, \ldots$ $a_{n}=-19+(n-1) \cdot 8$

Find the stated term of the given arithmetic sequence.
(1) 500th term of $8,12,16,20,24, \ldots$
$a_{n}=8+(n-1) \cdot 4$
$\Rightarrow a_{500}=8+499 \cdot 4=2004$
(2) 444th term of $4,7,10,13,16, \ldots$
(3) 57th term of $5,-1,-7,-13,-20, \ldots$
(9) 1234th term of $-5,-7,-9,-11,-13, \ldots$

Arithmetic sequences - exercises

Arithmetic sequence

$$
a_{n}=a_{1}+(n-1) \cdot d
$$

Find the closed form formula for the given arithmetic sequence.
(1) $8,14,20,26, \ldots$

$$
a_{n}=8+(n-1) \cdot 6
$$

(2) $15,22,29,36, \ldots$

$$
a_{n}=15+(n-1) \cdot 7
$$

(3) $13,10,7,4,1,-2,-5, \ldots$
$a_{n}=13+(n-1) \cdot(-3)$
(9) $-19,-11,-3,5,13,21, \ldots$ $a_{n}=-19+(n-1) \cdot 8$

Find the stated term of the given arithmetic sequence.
(1) 500th term of $8,12,16,20,24, \ldots$
$a_{n}=8+(n-1) \cdot 4$
$\Rightarrow a_{500}=8+499 \cdot 4=2004$
(2) 444 th term of $4,7,10,13,16, \ldots$
$a_{n}=4+(n-1) \cdot 3$
$\Rightarrow a_{444}=4+443 \cdot 3=1333$
(3) 57 th term of $5,-1,-7,-13,-20, \ldots$
$a_{n}=5+(n-1) \cdot(-6)$
$\Rightarrow a_{57}=5+56 \cdot(-6)=-331$
(9) 1234th term of $-5,-7,-9,-11,-13, \ldots$
$a_{n}=-5+(n-1) \cdot(-2)$
$\Rightarrow a_{1234}=-5+1233 \cdot(-2)=-2471$

Series

Definition

A series is a sum of terms in a sequence. We use the following \sum "sigma" notation:

$$
\sum_{n=1}^{p} a_{n}=a_{1}+\cdots+a_{p}
$$

More generally: $\quad \sum_{n=m}^{p} a_{n}=a_{m}+\cdots+a_{p}$.

Series

Definition

A series is a sum of terms in a sequence. We use the following \sum "sigma" notation:

$$
\sum_{n=1}^{p} a_{n}=a_{1}+\cdots+a_{p}
$$

More generally: $\quad \sum_{n=m}^{p} a_{n}=a_{m}+\cdots+a_{p}$.
(1) $\sum_{n=1}^{4}(2 n+3)=$
(3) $\sum_{n=1}^{5}\left(n^{2}+2 n\right)=$
(2) $\sum_{n=1}^{6}(9-n)=$
(9) $\sum_{n=1}^{4} \frac{2}{n+3}=$

Series

Definition

A series is a sum of terms in a sequence. We use the following \sum "sigma" notation:

$$
\sum_{n=1}^{p} a_{n}=a_{1}+\cdots+a_{p}
$$

More generally: $\quad \sum_{n=m}^{p} a_{n}=a_{m}+\cdots+a_{p}$.
(1) $\sum_{n=1}^{4}(2 n+3)=$
(3) $\sum_{n=1}^{5}\left(n^{2}+2 n\right)=$
$=5+7+9+11$
$=32$
(2) $\sum_{n=1}^{6}(9-n)=$
(9) $\sum_{n=1}^{4} \frac{2}{n+3}=$

Series

Definition

A series is a sum of terms in a sequence. We use the following \sum "sigma" notation:

$$
\sum_{n=1}^{p} a_{n}=a_{1}+\cdots+a_{p}
$$

More generally: $\quad \sum_{n=m}^{p} a_{n}=a_{m}+\cdots+a_{p}$.
(1) $\sum_{n=1}^{4}(2 n+3)=$
(3) $\sum_{n=1}^{5}\left(n^{2}+2 n\right)=$
$=5+7+9+11$
$=32$
(2) $\begin{aligned} \sum_{n=1}^{6} & (9-n)= \\ & =8+7+6+5+4+3 \\ & =33\end{aligned}$
(4) $\sum_{n=1}^{4} \frac{2}{n+3}=$

Series

Definition

A series is a sum of terms in a sequence. We use the following \sum "sigma" notation:

$$
\sum_{n=1}^{p} a_{n}=a_{1}+\cdots+a_{p}
$$

More generally: $\quad \sum_{n=m}^{p} a_{n}=a_{m}+\cdots+a_{p}$.
(1) $\sum_{n=1}^{4}(2 n+3)=$
$=5+7+9+11$
$=32$
(3) $\sum_{n=1}^{5}\left(n^{2}+2 n\right)=$ $=(1+2)+(4+4)+(9+6)$ $+(16+8)+(25+10)$ $=3+8+15+24+35=85$
(2) $\sum_{n=1}^{6}(9-n)=$
$=8+7+6+5+4+3$
$=33$

Series

Definition

A series is a sum of terms in a sequence. We use the following \sum "sigma" notation:

$$
\sum_{n=1}^{p} a_{n}=a_{1}+\cdots+a_{p}
$$

More generally: $\quad \sum_{n=m}^{p} a_{n}=a_{m}+\cdots+a_{p}$.
(1) $\sum_{n=1}^{4}(2 n+3)=$
$=5+7+9+11$
$=32$

$$
\text { (3) } \begin{aligned}
\sum_{n=1}^{5} & \left(n^{2}+2 n\right)= \\
= & (1+2)+(4+4)+(9+6) \\
& +(16+8)+(25+10) \\
= & 3+8+15+24+35=85
\end{aligned}
$$

(2) $\sum_{n=1}^{6}(9-n)=$
$=8+7+6+5+4+3$
$=33$
(4) $\sum_{n=1}^{4} \frac{2}{n+3}=$

$$
\begin{aligned}
& =\frac{2}{4}+\frac{2}{5}+\frac{2}{6}+\frac{2}{7}=\frac{1}{2}+\frac{2}{5}+\frac{1}{3}+\frac{2}{7} \\
& =\frac{105+84+70+60}{2 \cdot 5 \cdot 3 \cdot 7}=\frac{319}{210}
\end{aligned}
$$

Arithmetic series

Example

Find the sum of the first 100 terms of $2,4,6,8,10,12, \ldots$.

Arithmetic series

Example

Find the sum of the first 100 terms of $2,4,6,8,10,12, \ldots$.
Answer: Use the "Gauss trick" (Carl Friedrich Gauss, 1777-1855):

2	+4	+6	\ldots	+196	+198	+200
200	+198	+196	\ldots	+6	+4	+2
202	+202	+202	\ldots	+202	+202	+202

Arithmetic series

Example

Find the sum of the first 100 terms of $2,4,6,8,10,12, \ldots$.
Answer: Use the "Gauss trick" (Carl Friedrich Gauss, 1777-1855):

2	+4	+6	\ldots	+196	+198	+200
200	+198	+196	\ldots	+6	+4	+2
202	+202	+202	\ldots	+202	+202	+202

Therefore: $\quad 2 \cdot \sum_{n=1}^{100} a_{n}=100 \cdot 202$

Arithmetic series

Example

Find the sum of the first 100 terms of $2,4,6,8,10,12, \ldots$.
Answer: Use the "Gauss trick" (Carl Friedrich Gauss, 1777-1855):

2	+4	+6	\ldots	+196	+198	+200
200	+198	+196	\ldots	+6	+4	+2
202	+202	+202	\ldots	+202	+202	+202

Therefore: $\quad 2 \cdot \sum_{n=1}^{100} a_{n}=100 \cdot 202 \Rightarrow \sum_{n=1}^{100} a_{n}=\frac{100}{2} \cdot 202=50 \cdot 202=10100$.

Arithmetic series

Example

Find the sum of the first 100 terms of $2,4,6,8,10,12, \ldots$.
Answer: Use the "Gauss trick" (Carl Friedrich Gauss, 1777-1855):

2	+4	+6	\ldots	+196	+198	+200
200	+198	+196	\ldots	+6	+4	+2
202	+202	+202	\ldots	+202	+202	+202

Therefore: $\quad 2 \cdot \sum_{n=1}^{100} a_{n}=100 \cdot 202 \Rightarrow \sum_{n=1}^{100} a_{n}=\frac{100}{2} \cdot 202=50 \cdot 202=10100$.

Arithmetic series

For any arithmetic sequence $a_{n}=a_{1}+(n-1) \cdot d \quad$ the sum of the first p terms is

$$
\sum_{n=1}^{p} a_{n}=\frac{p}{2} \cdot\left(a_{1}+a_{p}\right)
$$

Arithmetic series - exercises

Arithmetic series

For $a_{n}=a_{1}+(n-1) \cdot d$:

$$
\sum_{n=1}^{p} a_{n}=\frac{p}{2} \cdot\left(a_{1}+a_{p}\right)
$$

(1) Find $\sum_{n=1}^{300}(7+(n-1) \cdot 5)$
(2) Find $\sum_{n=1}^{555}(-3 n+9)$

Find the sum of the given arithmetic sequence.
(1) Sum the first 97 terms of $11,15,19,23, \ldots$
(2) Sum the first 234 terms of $-17,-5,7,19, \ldots$
(3) Sum the first 500 terms of $18,13,8,3,-2, \ldots$

Arithmetic series - exercises

Arithmetic series

For $a_{n}=a_{1}+(n-1) \cdot d$:

$$
\sum_{x_{2}=\frac{0}{2}(a+c+0)}
$$

(1) Find $\sum_{n=1}^{300}(7+(n-1) \cdot 5)$

$$
\begin{aligned}
& p=300, \quad a_{1}=7, \\
& a_{300}=7+299 \cdot 5=1502
\end{aligned}
$$

(2. Find $\sum_{n=1}^{555}(-3 n+9)$

Find the sum of the given arithmetic sequence.
(1) Sum the first 97 terms of $11,15,19,23, \ldots$
(2) Sum the first 234 terms of $-17,-5,7,19, \ldots$
(3) Sum the first 500 terms of $18,13,8,3,-2, \ldots$

Arithmetic series - exercises

Arithmetic series

For $a_{n}=a_{1}+(n-1) \cdot d$:
(1) Find $\sum_{n=1}^{300}(7+(n-1) \cdot 5)$

$$
\begin{aligned}
& p=300, \quad a_{1}=7, \\
& a_{300}=7+299 \cdot 5=1502 \\
& \Rightarrow \sum_{n=1}^{300}(7+(n-1) \cdot 5) \\
& \quad=\frac{300}{2} \cdot(7+1502)=226,350
\end{aligned}
$$

(2) Find $\sum_{n=1}^{555}(-3 n+9)$

Find the sum of the given arithmetic sequence.
(1) Sum the first 97 terms of $11,15,19,23, \ldots$
(2) Sum the first 234 terms of $-17,-5,7,19, \ldots$
(3) Sum the first 500 terms of $18,13,8,3,-2, \ldots$

Arithmetic series - exercises

Arithmetic series

For $a_{n}=a_{1}+(n-1) \cdot d$:

$$
\sum_{\sum_{2}^{n}=\frac{\theta}{2}(a+c+0)}
$$

(1) Find $\sum_{n=1}^{300}(7+(n-1) \cdot 5)$

$$
\begin{aligned}
& p=300, \quad a_{1}=7, \\
& a_{300}=7+299 \cdot 5=1502 \\
& \Rightarrow \sum_{n=1}^{300}(7+(n-1) \cdot 5) \\
& \quad=\frac{300}{2} \cdot(7+1502)=226,350
\end{aligned}
$$

(2) Sum the first 234 terms of $-17,-5,7,19, \ldots$
(3) Sum the first 500 terms of $18,13,8,3,-2, \ldots$

Arithmetic series - exercises

Arithmetic series

For $a_{n}=a_{1}+(n-1) \cdot d$:

- Find $\sum_{n=1}^{300}(7+(n-1) \cdot 5)$

$$
\begin{aligned}
& p=300, \quad a_{1}=7, \\
& a_{300}=7+299 \cdot 5=1502 \\
& \Rightarrow \sum_{n=1}^{300}(7+(n-1) \cdot 5) \\
& \quad=\frac{300}{2} \cdot(7+1502)=226,350
\end{aligned}
$$

(2) Sum the first 234 terms of $-17,-5,7,19, \ldots$
(3) Sum the first 500 terms of $18,13,8,3,-2, \ldots$
(2 Find $\sum_{n=1}^{555}(-3 n+9)$

$$
\begin{aligned}
& p=555, \quad a_{1}=6, \\
& a_{555}=-3 \cdot 555+9=-1656 \\
& \Rightarrow \sum_{n=1}^{555}(-3 n+9) \\
& \quad=\frac{555}{2} \cdot(6+(-1656))=-457,875
\end{aligned}
$$

Arithmetic series - exercises

Arithmetic series

For $a_{n}=a_{1}+(n-1) \cdot d$:
(1) Find $\sum_{n=1}^{300}(7+(n-1) \cdot 5)$

$$
\begin{aligned}
& p=300, \quad a_{1}=7, \\
& a_{300}=7+299 \cdot 5=1502 \\
& \Rightarrow \sum_{n=1}^{300}(7+(n-1) \cdot 5) \\
& \quad=\frac{300}{2} \cdot(7+1502)=226,350
\end{aligned}
$$

(2) Sum the first 234 terms of $-17,-5,7,19, \ldots$
(3) Sum the first 500 terms of $18,13,8,3,-2, \ldots$
(2 Find $\sum_{n=1}^{555}(-3 n+9)$

$$
\begin{aligned}
& p=555, \quad a_{1}=6 \\
& a_{555}=-3 \cdot 555+9=-1656 \\
& \Rightarrow \sum_{n=1}^{555}(-3 n+9) \\
& \quad=\frac{555}{2} \cdot(6+(-1656))=-457,875
\end{aligned}
$$

Arithmetic series - exercises

Arithmetic series

For $a_{n}=a_{1}+(n-1) \cdot d$:
(1) Find $\sum_{n=1}^{300}(7+(n-1) \cdot 5)$

$$
\begin{aligned}
& p=300, \quad a_{1}=7, \\
& a_{300}=7+299 \cdot 5=1502 \\
& \Rightarrow \sum_{n=1}^{300}(7+(n-1) \cdot 5) \\
& \quad=\frac{300}{2} \cdot(7+1502)=226,350
\end{aligned}
$$

(2) Sum the first 234 terms of $-17,-5,7,19, \ldots$
(3) Sum the first 500 terms of $18,13,8,3,-2, \ldots$
(2 Find $\sum_{n=1}^{555}(-3 n+9)$

$$
\begin{aligned}
& p=555, \quad a_{1}=6 \\
& a_{555}=-3 \cdot 555+9=-1656 \\
& \Rightarrow \sum_{n=1}^{555}(-3 n+9) \\
& \quad=\frac{555}{2} \cdot(6+(-1656))=-457,875
\end{aligned}
$$

Arithmetic series - exercises

Arithmetic series

For $a_{n}=a_{1}+(n-1) \cdot d$:

$$
\sum_{c^{2 x}=-\frac{e}{2}(x+2 x+2)}
$$

(1) Find $\sum_{n=1}^{300}(7+(n-1) \cdot 5)$

$$
\begin{aligned}
& p=300, \quad a_{1}=7, \\
& a_{300}=7+299 \cdot 5=1502 \\
& \Rightarrow \sum_{n=1}^{300}(7+(n-1) \cdot 5) \\
& \quad=\frac{300}{2} \cdot(7+1502)=226,350
\end{aligned}
$$

(3) Sum the first 500 terms of $18,13,8,3,-2, \ldots$
(2 Find $\sum_{n=1}^{555}(-3 n+9)$

$$
\begin{aligned}
& p=555, \quad a_{1}=6 \\
& a_{555}=-3 \cdot 555+9=-1656 \\
& \Rightarrow \sum_{n=1}^{555}(-3 n+9) \\
& \quad=\frac{555}{2} \cdot(6+(-1656))=-457,875
\end{aligned}
$$

Arithmetic series - exercises

Arithmetic series

For $a_{n}=a_{1}+(n-1) \cdot d$:

$$
\sum_{n=1}^{p} a_{n}=\frac{p}{2} \cdot\left(a_{1}+a_{p}\right)
$$

(1) Find $\sum_{n=1}^{300}(7+(n-1) \cdot 5)$

$$
\begin{aligned}
& p=300, \quad a_{1}=7, \\
& a_{300}=7+299 \cdot 5=1502 \\
& \Rightarrow \sum_{n=1}^{300}(7+(n-1) \cdot 5) \\
& \quad=\frac{300}{2} \cdot(7+1502)=226,350
\end{aligned}
$$

Find the sum of the given arithmetic sequence.
(1) Sum the first 97 terms of $11,15,19,23, \ldots$

We need $\sum_{n=1}^{97} a_{n}$ for $a_{n}=11+(n-1) \cdot 4$.
$p=97, a_{1}=11, a_{97}=11+96 \cdot 4=395$
$\Rightarrow \sum_{n=1}^{97} a_{n}=\frac{97}{2} \cdot(11+395)=19,691$
(3) Sum the first 234 terms of $-17,-5,7,19, \ldots$

We need $\sum_{n=1}^{234} a_{n}$ for $a_{n}=-17+(n-1) \cdot 12$.
(3) Sum the first 500 terms of $18,13,8,3,-2, \ldots$
(2 Find $\sum_{n=1}^{555}(-3 n+9)$

$$
\begin{aligned}
& p=555, \quad a_{1}=6 \\
& a_{555}=-3 \cdot 555+9=-1656 \\
& \Rightarrow \sum_{n=1}^{555}(-3 n+9) \\
& \quad=\frac{555}{2} \cdot(6+(-1656))=-457,875
\end{aligned}
$$

Arithmetic series - exercises

Arithmetic series

For $a_{n}=a_{1}+(n-1) \cdot d$:

$$
\sum_{n=1}^{p} a_{n}=\frac{p}{2} \cdot\left(a_{1}+a_{p}\right)
$$

(1) Find $\sum_{n=1}^{300}(7+(n-1) \cdot 5)$

$$
\begin{aligned}
& p=300, \quad a_{1}=7, \\
& a_{300}=7+299 \cdot 5=1502 \\
& \Rightarrow \sum_{n=1}^{300}(7+(n-1) \cdot 5) \\
& \quad=\frac{300}{2} \cdot(7+1502)=226,350
\end{aligned}
$$

(2 Find $\sum_{n=1}^{555}(-3 n+9)$

$$
\begin{aligned}
& p=555, \quad a_{1}=6 \\
& a_{555}=-3 \cdot 555+9=-1656 \\
& \Rightarrow \sum_{n=1}^{555}(-3 n+9) \\
& \quad=\frac{555}{2} \cdot(6+(-1656))=-457,875
\end{aligned}
$$

Arithmetic series - exercises

Arithmetic series

For $a_{n}=a_{1}+(n-1) \cdot d$:

$$
\sum_{n=1}^{p} a_{n}=\frac{p}{2} \cdot\left(a_{1}+a_{p}\right)
$$

(1) Find $\sum_{n=1}^{300}(7+(n-1) \cdot 5)$

$$
\begin{aligned}
& p=300, \quad a_{1}=7, \\
& a_{300}=7+299 \cdot 5=1502 \\
& \Rightarrow \sum_{n=1}^{300}(7+(n-1) \cdot 5) \\
& \quad=\frac{300}{2} \cdot(7+1502)=226,350
\end{aligned}
$$

(2 Find $\sum_{n=1}^{555}(-3 n+9)$

$$
\begin{aligned}
& p=555, \quad a_{1}=6 \\
& a_{555}=-3 \cdot 555+9=-1656 \\
& \Rightarrow \sum_{n=1}^{555}(-3 n+9) \\
& \quad=\frac{555}{2} \cdot(6+(-1656))=-457,875
\end{aligned}
$$

Arithmetic series - exercises

Arithmetic series

For $a_{n}=a_{1}+(n-1) \cdot d$:

$$
\sum_{n=1}^{p} a_{n}=\frac{p}{2} \cdot\left(a_{1}+a_{p}\right)
$$

(1) Find $\sum_{n=1}^{300}(7+(n-1) \cdot 5)$

$$
\begin{aligned}
& p=300, \quad a_{1}=7, \\
& a_{300}=7+299 \cdot 5=1502 \\
& \Rightarrow \sum_{n=1}^{300}(7+(n-1) \cdot 5) \\
& \quad=\frac{300}{2} \cdot(7+1502)=226,350
\end{aligned}
$$

(2 Find $\sum_{n=1}^{555}(-3 n+9)$

$$
\begin{aligned}
& p=555, \quad a_{1}=6 \\
& a_{555}=-3 \cdot 555+9=-1656 \\
& \Rightarrow \sum_{n=1}^{555}(-3 n+9) \\
& \quad=\frac{555}{2} \cdot(6+(-1656))=-457,875
\end{aligned}
$$

Find the sum of the given arithmetic sequence.
(1) Sum the first 97 terms of $11,15,19,23, \ldots$

We need $\sum_{n=1}^{97} a_{n}$ for $a_{n}=11+(n-1) \cdot 4$.
$p=97, a_{1}=11, a_{97}=11+96 \cdot 4=395$
$\Rightarrow \sum_{n=1}^{97} a_{n}=\frac{97}{2} \cdot(11+395)=19,691$
(2) Sum the first 234 terms of $-17,-5,7,19, \ldots$

We need $\sum_{n=1}^{234} a_{n}$ for $a_{n}=-17+(n-1) \cdot 12$.
$p=234, a_{1}=-17, a_{234}=-17+233 \cdot 12=2,779$
$\Rightarrow \sum_{n=1}^{234} a_{n}=\frac{234}{2} \cdot(-17+2779)=323,154$
(3) Sum the first 500 terms of $18,13,8,3,-2, \ldots$

We need $\sum_{n=1}^{500} a_{n}$ for $a_{n}=18+(n-1) \cdot(-5)$.

Arithmetic series - exercises

Arithmetic series

For $a_{n}=a_{1}+(n-1) \cdot d$:

$$
\sum_{n=1}^{p} a_{n}=\frac{p}{2} \cdot\left(a_{1}+a_{p}\right)
$$

(1) Find $\sum_{n=1}^{300}(7+(n-1) \cdot 5)$

$$
\begin{aligned}
& p=300, \quad a_{1}=7, \\
& a_{300}=7+299 \cdot 5=1502 \\
& \Rightarrow \sum_{n=1}^{300}(7+(n-1) \cdot 5) \\
& \quad=\frac{300}{2} \cdot(7+1502)=226,350
\end{aligned}
$$

(2 Find $\sum_{n=1}^{555}(-3 n+9)$

$$
\begin{aligned}
& p=555, \quad a_{1}=6 \\
& a_{555}=-3 \cdot 555+9=-1656 \\
& \Rightarrow \sum_{n=1}^{555}(-3 n+9) \\
& \quad=\frac{555}{2} \cdot(6+(-1656))=-457,875
\end{aligned}
$$

(1) Sum the first 97 terms of $11,15,19,23, \ldots$

We need $\sum_{n=1}^{97} a_{n}$ for $a_{n}=11+(n-1) \cdot 4$.
$p=97, a_{1}=11, a_{97}=11+96 \cdot 4=395$
$\Rightarrow \sum_{n=1}^{97} a_{n}=\frac{97}{2} \cdot(11+395)=19,691$
(2) Sum the first 234 terms of $-17,-5,7,19, \ldots$

We need $\sum_{n=1}^{234} a_{n}$ for $a_{n}=-17+(n-1) \cdot 12$.
$p=234, a_{1}=-17, a_{234}=-17+233 \cdot 12=2,779$
$\Rightarrow \sum_{n=1}^{234} a_{n}=\frac{234}{2} \cdot(-17+2779)=323,154$
(3) Sum the first 500 terms of $18,13,8,3,-2, \ldots$

We need $\sum_{n=1}^{500} a_{n}$ for $a_{n}=18+(n-1) \cdot(-5)$.
$p=500, a_{1}=18, a_{500}=18+499 \cdot(-5)=-2,477$

Arithmetic series - exercises

Arithmetic series

For $a_{n}=a_{1}+(n-1) \cdot d$:

$$
\sum_{n=1}^{p} a_{n}=\frac{p}{2} \cdot\left(a_{1}+a_{p}\right)
$$

(1) Find $\sum_{n=1}^{300}(7+(n-1) \cdot 5)$

$$
\begin{aligned}
& p=300, \quad a_{1}=7, \\
& a_{300}=7+299 \cdot 5=1502 \\
& \Rightarrow \sum_{n=1}^{300}(7+(n-1) \cdot 5) \\
& \quad=\frac{300}{2} \cdot(7+1502)=226,350
\end{aligned}
$$

(2 Find $\sum_{n=1}^{555}(-3 n+9)$

$$
\begin{aligned}
& p=555, \quad a_{1}=6 \\
& a_{555}=-3 \cdot 555+9=-1656 \\
& \Rightarrow \sum_{n=1}^{555}(-3 n+9) \\
& \quad=\frac{555}{2} \cdot(6+(-1656))=-457,875
\end{aligned}
$$

Find the sum of the given arithmetic sequence.
(1) Sum the first 97 terms of $11,15,19,23, \ldots$

We need $\sum_{n=1}^{97} a_{n}$ for $a_{n}=11+(n-1) \cdot 4$.
$p=97, a_{1}=11, a_{97}=11+96 \cdot 4=395$
$\Rightarrow \sum_{n=1}^{97} a_{n}=\frac{97}{2} \cdot(11+395)=19,691$
(2) Sum the first 234 terms of $-17,-5,7,19, \ldots$

We need $\sum_{n=1}^{234} a_{n}$ for $a_{n}=-17+(n-1) \cdot 12$.
$p=234, a_{1}=-17, a_{234}=-17+233 \cdot 12=2,779$
$\Rightarrow \sum_{n=1}^{234} a_{n}=\frac{234}{2} \cdot(-17+2779)=323,154$
(3) Sum the first 500 terms of $18,13,8,3,-2, \ldots$

We need $\sum_{n=1}^{500} a_{n}$ for $a_{n}=18+(n-1) \cdot(-5)$.
$p=500, a_{1}=18, a_{500}=18+499 \cdot(-5)=-2,477$
$\Rightarrow \sum_{n=1}^{500} a_{n}=\frac{500}{2} \cdot(18+(-2,477))=-614,750$

