More applications of exp and log
 Lesson \#16

MAT 1375 Precalculus

New York City College of Technology CUNY

Exponential models in applications

Exponential models

Exponential growth

Exponential models in applications

Exponential models

Exponential growth

Examples:

-Population growth

Exponential models in applications

Exponential models

Exponential growth

Examples:

-Population growth
-Investment at a fixed rate

Exponential models in applications

Exponential models

Exponential growth

Examples:

-Population growth
-Investment at a fixed rate
Model: $\quad A(t)=P \cdot e^{r \cdot t} \quad$ or $\quad A(t)=P \cdot(1+r)^{t}$

Exponential models in applications

Exponential models

Exponential growth

Examples:

-Population growth
-Investment at a fixed rate
Model: $\quad A(t)=P \cdot e^{r \cdot t} \quad$ or $\quad A(t)=P \cdot(1+r)^{t}$
$t=$ time
$P=$ initial amount
$A(t)=$ amount at time t

Exponential models in applications

Exponential models

Exponential growth

Examples:

-Population growth
-Investment at a fixed rate

Model: $\quad A(t)=P \cdot e^{r \cdot t} \quad$ or $\quad A(t)=P \cdot(1+r)^{t}$
$t=$ time $r=$ rate of growth
$P=$ initial amount
$A(t)=$ amount at time t

Exponential models in applications

Exponential models

Exponential growth

Exponential decline

Examples:

-Population growth
-Investment at a fixed rate
Model: $A(t)=P \cdot e^{r \cdot t} \quad$ or $\quad A(t)=P \cdot(1+r)^{t}$
$t=$ time $r=$ rate of growth or decay
$P=$ initial amount $r>0$: exponential growth
$A(t)=$ amount at time $t \quad r<0$: exponential decline

Exponential models in applications

Exponential models

Exponential growth

Examples:

-Population growth
-Investment at a fixed rate
Model: $\quad A(t)=P \cdot e^{r \cdot t}$
$t=$ time
$P=$ initial amount
$A(t)=$ amount at time t

Exponential decline

Examples:

-Population decline
or $\quad A(t)=P \cdot(1+r)^{t}$
$r=$ rate of growth or decay
$r>0$: exponential growth
$r<0$: exponential decline

Exponential models in applications

Exponential models

Exponential growth

Examples:

-Population growth
-Investment at a fixed rate
Model: $\quad A(t)=P \cdot e^{r \cdot t}$
$t=$ time
$P=$ initial amount
$A(t)=$ amount at time t

Exponential decline

Examples:

-Population decline
-Radioactive decay
or $\quad A(t)=P \cdot(1+r)^{t}$
$r=$ rate of growth or decay
$r>0$: exponential growth
$r<0$: exponential decline

Exponential models in applications

Exponential models

Exponential growth

Examples:

-Population growth
-Investment at a fixed rate
Model: $\quad A(t)=P \cdot e^{r \cdot t}$
$t=$ time
$P=$ initial amount
$A(t)=$ amount at time t

Exponential decline

Examples:

-Population decline
-Radioactive decay
or $\quad A(t)=P \cdot(1+r)^{t}$
$r=$ rate of growth or decay
$r>0$: exponential growth
$r<0$: exponential decline

Note:

Both
$A(t)=P \cdot e^{r \cdot t}$ and
$A(t)=P \cdot(1+r)^{t}$ could be used to model a situation.

For small r, these are close:

$$
e^{r} \approx 1+r
$$

Use the model as stated.
If no particular model is stated use $A=P \cdot e^{r \cdot t}$.

Compound interest on an investment

Compound interest

P	$=$ principal $=$ (initial investment)
r	$=$ (continuous) interest rate
t	$=$ time

The current value of the investment, using a continuous compounding, is given by:

$$
A(t)=P \cdot e^{r \cdot t}
$$

Compound interest on an investment

Compound interest

$P=$ principal $=($ initial investment $)$
$r=$ (continuous) interest rate
$t=$ time
The current value of the investment, using a continuous compounding, is given by:

$$
A(t)=P \cdot e^{r \cdot t}
$$

(1) A $\$ 6,000$ investment has an annual interest rate of 3% with a continuous compounding.
(a) How much is the investment worth after 7 years?
(b) How long will it take for the investment to grow to $\$ 10,000$?

Compound interest on an investment

Compound interest

$P=$ principal $=($ initial investment $)$
$r=$ (continuous) interest rate
$t=$ time
The current value of the investment, using a continuous compounding, is given by:

$$
A(t)=P \cdot e^{r \cdot t}
$$

(1) A $\$ 6,000$ investment has an annual interest rate of 3% with a continuous compounding.
(a) How much is the investment worth after 7 years?
(b) How long will it take for the investment to grow to $\$ 10,000$?

Solution:

(a) $P=6,000$ (principal), $r=3 \%=0.03$
$\Rightarrow A(t)=6000 \cdot e^{0.03 \cdot t}$

$$
t=7 \Rightarrow A(7)=6000 \cdot e^{0.03 \cdot 7} \approx 7402
$$

It will be worth $\$ 7,402$.

Compound interest on an investment

Compound interest

$P=$ principal $=($ initial investment $)$
$r=$ (continuous) interest rate
$t=$ time
The current value of the investment, using a continuous compounding, is given by:

$$
A(t)=P \cdot e^{r \cdot t}
$$

(1) A $\$ 6,000$ investment has an annual interest rate of 3% with a continuous compounding.
(a) How much is the investment worth after 7 years?
(b) How long will it take for the investment to grow to $\$ 10,000$?

Solution:

(a) $P=6,000$ (principal), $r=3 \%=0.03$

$$
\begin{aligned}
\Rightarrow A(t) & =6000 \cdot e^{0.03 \cdot t} \\
& t=7
\end{aligned} \Rightarrow A(7)=6000 \cdot e^{0.03 \cdot 7} \approx 7402
$$

It will be worth $\$ 7,402$.
(b) $A(t)=10,000$
$\Rightarrow 10,000=6,000 \cdot e^{0.03 \cdot t}$
$\Rightarrow \frac{10,000}{6,000}=e^{0.03 \cdot t}$
$\Rightarrow \ln \left(\frac{10,000}{6,000}\right)=0.03 \cdot t$
$\Rightarrow t=\frac{\ln \left(\frac{10,000}{6,000}\right)}{0.03} \approx 17.0$
It will take approximately 17 years.

Compound interest - exercises

(2) A $\$ 10,000$ investment has an annual interest rate of 4.2% with a continuous compounding.
(a) How much is the investment worth after 5 years?
(b) How long will it take for the investment to double?

Compound interest - exercises

(2) A $\$ 10,000$ investment has an annual interest rate of 4.2% with a continuous compounding.
(a) How much is the investment worth after 5 years?
(b) How long will it take for the investment to double?

Solution:

(a) $P=10,000, r=4.2 \%=0.042$
$\Rightarrow A(t)=10000 \cdot e^{0.042 \cdot t}$
$t=5$
$\Rightarrow A(5)=10000 \cdot e^{0.042 \cdot 5} \approx 12,336.78$
It will be worth $\$ 12,336.78$.

Compound interest - exercises

(2) A $\$ 10,000$ investment has an annual interest rate of 4.2% with a continuous compounding.
(a) How much is the investment worth after 5 years?
(b) How long will it take for the investment to double?

Solution:

(a) $P=10,000, r=4.2 \%=0.042$
$\Rightarrow A(t)=10000 \cdot e^{0.042 \cdot t}$ $t=5$
$\Rightarrow A(5)=10000 \cdot e^{0.042 \cdot 5} \approx 12,336.78$
It will be worth $\$ 12,336.78$.
(b) $A(t)=20,000$
$\Rightarrow 20,000=10,000 \cdot e^{0.042 \cdot t}$
$\Rightarrow \frac{20,000}{10,000}=e^{0.042 \cdot t} \Rightarrow \ln (2)=0.042 \cdot t$
$\Rightarrow t=\frac{\ln (2)}{0.042} \approx 16.5$
It will take approximately 16.5 years for the investment to double its value.

Compound interest - exercises

(2) A $\$ 10,000$ investment has an annual interest rate of 4.2% with a continuous compounding.
(a) How much is the investment worth after 5 years?
(b) How long will it take for the investment to double?

Solution:

Compound n times per year

$$
A(t)=P \cdot\left(1+\frac{r}{n}\right)^{n \cdot t}
$$

annual compounding: $\quad n=1$ semi-annual compounding: $n=2$ quaterly compounding: $\quad n=4$
monthly compounding: $\quad n=12$
(a) $P=10,000, r=4.2 \%=0.042$
$\Rightarrow A(t)=10000 \cdot e^{0.042 \cdot t}$ $t=5$
$\Rightarrow A(5)=10000 \cdot e^{0.042 \cdot 5} \approx 12,336.78$
It will be worth $\$ 12,336.78$.
(b) $A(t)=20,000$
$\Rightarrow 20,000=10,000 \cdot e^{0.042 \cdot t}$
$\Rightarrow \frac{20,000}{10,000}=e^{0.042 \cdot t} \Rightarrow \ln (2)=0.042 \cdot t$
$\Rightarrow t=\frac{\ln (2)}{0.042} \approx 16.5$
It will take approximately 16.5 years for the investment to double its value.

Compound interest - exercises

(2) A $\$ 10,000$ investment has an annual interest rate of 4.2% with a continuous compounding.
(a) How much is the investment worth after 5 years?
(b) How long will it take for the investment to double?

Solution:

(a) $P=10,000, r=4.2 \%=0.042$
$\Rightarrow A(t)=10000 \cdot e^{0.042 \cdot t}$
$t=5$
$\Rightarrow A(5)=10000 \cdot e^{0.042 \cdot 5} \approx 12,336.78$
It will be worth $\$ 12,336.78$.
(b) $A(t)=20,000$
$\Rightarrow 20,000=10,000 \cdot e^{0.042 \cdot t}$
$\Rightarrow \frac{20,000}{10,000}=e^{0.042 \cdot t} \Rightarrow \ln (2)=0.042 \cdot t$
$\Rightarrow t=\frac{\ln (2)}{0.042} \approx 16.5$
It will take approximately 16.5 years for the investment to double its value.

Compound n times per year

$$
A(t)=P \cdot\left(1+\frac{r}{n}\right)^{n \cdot t}
$$

annual compounding: $\quad n=1$ semi-annual compounding: $n=2$ quaterly compounding: $\quad n=4$
monthly compounding: $\quad n=12$
(3) $\$ 5,000$ is being invested at a rate of 2.7% compounded monthly. The value of the investment after t years is

$$
A(t)=5000 \cdot\left(1+\frac{0.027}{12}\right)^{12 \cdot t}
$$

What will the investment be worth after 15 years?

Compound interest - exercises

(2) A $\$ 10,000$ investment has an annual interest rate of 4.2% with a continuous compounding.
(a) How much is the investment worth after 5 years?
(b) How long will it take for the investment to double?

Solution:

(a) $P=10,000, r=4.2 \%=0.042$
$\Rightarrow A(t)=10000 \cdot e^{0.042 \cdot t}$ $t=5$
$\Rightarrow A(5)=10000 \cdot e^{0.042 \cdot 5} \approx 12,336.78$
It will be worth $\$ 12,336.78$.
(b) $A(t)=20,000$
$\Rightarrow 20,000=10,000 \cdot e^{0.042 \cdot t}$
$\Rightarrow \frac{20,000}{10,000}=e^{0.042 \cdot t} \Rightarrow \ln (2)=0.042 \cdot t$
$\Rightarrow t=\frac{\ln (2)}{0.042} \approx 16.5$
It will take approximately 16.5 years for the investment to double its value.

Compound n times per year

$$
A(t)=P \cdot\left(1+\frac{r}{n}\right)^{n \cdot t}
$$

annual compounding: $\quad n=1$ semi-annual compounding: $n=2$ quaterly compounding: $\quad n=4$
monthly compounding: $\quad n=12$
(3) $\$ 5,000$ is being invested at a rate of 2.7% compounded monthly. The value of the investment after t years is

$$
A(t)=5000 \cdot\left(1+\frac{0.027}{12}\right)^{12 \cdot t}
$$

What will the investment be worth after 15 years?

Solution:

$A(15)=5000 \cdot\left(1+\frac{0.027}{12}\right)^{12 \cdot 15} \approx 7,493.10$
The investment will be worth $\$ 7,493.10$.

Radioactive decay

Radioactive decay

The half-life is the time it takes for a substance to decay to half of its original amount.

$$
A(t)=P \cdot e^{r \cdot t}
$$

For half-life h :

$$
\begin{aligned}
A(h) & =\frac{P}{2} \\
A(2 h) & =\frac{P}{4} \\
A(3 h) & =\frac{P}{8}
\end{aligned}
$$

Radioactive decay

Radioactive decay

The half-life is the time it takes for a substance to decay to half of its original amount.

$$
A(t)=P \cdot e^{r \cdot t}
$$

For half-life h :

$$
\begin{aligned}
A(h) & =\frac{P}{2} \\
A(2 h) & =\frac{P}{4} \\
A(3 h) & =\frac{P}{8}
\end{aligned}
$$

(1) A radioactive element has a half-life of 23 minutes. How long will it take for 85 g of this element to have decayed to $5 g$?

Radioactive decay

Radioactive decay

The half-life is the time it takes for a substance to decay to half of its original amount.

$$
A(t)=P \cdot e^{r \cdot t}
$$

For half-life h :

$$
\begin{aligned}
A(h) & =\frac{P}{2} \\
A(2 h) & =\frac{P}{4} \\
A(3 h) & =\frac{P}{8}
\end{aligned}
$$

(1) A radioactive element has a half-life of 23 minutes. How long will it take for 85 g of this element to have decayed to $5 g$?

Solution:

$$
\begin{aligned}
& P=85 g, r=? \\
& \Rightarrow A(t)=85 \cdot e^{r \cdot t}
\end{aligned}
$$

First, find r.
Note: $A(23)=\frac{1}{2} \cdot 85=42.5$
$\Rightarrow 42.5=A(23)=85 \cdot e^{r \cdot 23}$
$\Rightarrow \frac{42.5}{85}=e^{r .23}$
$\Rightarrow \ln \left(\frac{1}{2}\right)=r \cdot 23$
$\Rightarrow r=\frac{\ln \left(\frac{1}{2}\right)}{23} \approx-0.03$

Radioactive decay

Radioactive decay

The half-life is the time it takes for a substance to decay to half of its original amount.

$$
A(t)=P \cdot e^{r \cdot t}
$$

For half-life h :

$$
\begin{aligned}
A(h) & =\frac{P}{2} \\
A(2 h) & =\frac{P}{4} \\
A(3 h) & =\frac{P}{8}
\end{aligned}
$$

(1) A radioactive element has a half-life of 23 minutes. How long will it take for 85 g of this element to have decayed to $5 g$?

Solution:

$$
\begin{aligned}
& P=85 g, r=? \\
& \Rightarrow A(t)=85 \cdot e^{r \cdot t}
\end{aligned}
$$

First, find r.
Note: $A(23)=\frac{1}{2} \cdot 85=42.5$
$\Rightarrow 42.5=A(23)=85 \cdot e^{r \cdot 23}$
$\Rightarrow \frac{42.5}{85}=e^{r .23}$
$\Rightarrow \ln \left(\frac{1}{2}\right)=r \cdot 23$
$\Rightarrow r=\frac{\ln \left(\frac{1}{2}\right)}{23} \approx-0.03$
Then, for $A(t)=5$:
$\Rightarrow 5=85 \cdot e^{-0.03 \cdot t}$
$\Rightarrow \frac{5}{85}=e^{-0.03 \cdot t}$
$\Rightarrow \ln \left(\frac{5}{85}\right)=-0.03 \cdot t$
$\Rightarrow t=\frac{\ln \left(\frac{5}{85}\right)}{-0.03} \approx 94.4$
It takes about 94.4 minutes.

Radioactive decay - exercises

(2) Sodium-24 has a half-life of 14.96 hours. How long does it take for 30 mg of Sodium- 24 to decay to less than 2 mg ?

- How much is left after 26 weeks of 4.7 lb of a radioactive substance, if the half-life of the substance is 8.9 weeks?

Radioactive decay - exercises

(2) Sodium-24 has a half-life of 14.96 hours. How long does it take for 30 mg of Sodium-24 to decay to less than $2 m g$?

Solution:

$P=30 g, r=$?
$\Rightarrow A(t)=30 \cdot e^{r \cdot t}$
First, find r.
Note: $A(14.96)=\frac{1}{2} \cdot 30=15$
$\Rightarrow 15=A(14.96)=30 \cdot e^{r \cdot 14.96}$
$\Rightarrow 0.5=e^{r .14 .96}$
$\Rightarrow \ln (0.5)=r \cdot 14.96$
$\Rightarrow r=\frac{\ln (0.5)}{14.96} \approx-0.04633$
Then, for $A(t)=2$:
$\Rightarrow 2=30 \cdot e^{-0.04633 \cdot t}$
$\Rightarrow \frac{2}{30}=e^{-0.04633 \cdot t}$
$\Rightarrow \ln \left(\frac{2}{30}\right)=-0.04633 \cdot t$
$\Rightarrow t=\frac{\ln \left(\frac{2}{30}\right)}{-0.04633} \approx 58.45$
It takes about 58.45 hours.
(3) How much is left after 26 weeks of 4.7 lb of a radioactive substance, if the half-life of the substance is 8.9 weeks?

Radioactive decay - exercises

(2) Sodium-24 has a half-life of 14.96 hours. How long does it take for 30 mg of Sodium- 24 to decay to less than 2 mg ?

Solution:

$P=30 \mathrm{~g}, \mathrm{r}=$?
$\Rightarrow A(t)=30 \cdot e^{r \cdot t}$
First, find r.
Note: $A(14.96)=\frac{1}{2} \cdot 30=15$
$\Rightarrow 15=A(14.96)=30 \cdot e^{r .14 .96}$
$\Rightarrow 0.5=e^{r \cdot 14.96}$
$\Rightarrow \ln (0.5)=r \cdot 14.96$
$\Rightarrow r=\frac{\ln (0.5)}{14.96} \approx-0.04633$
Then, for $A(t)=2$:
$\Rightarrow 2=30 \cdot e^{-0.04633 \cdot t}$
$\Rightarrow \frac{2}{30}=e^{-0.04633 \cdot t}$
$\Rightarrow \ln \left(\frac{2}{30}\right)=-0.04633 \cdot t$
$\Rightarrow t=\frac{\ln \left(\frac{2}{30}\right)}{-0.04633} \approx 58.45$
It takes about 58.45 hours.
(3) How much is left after 26 weeks of 4.7 lb of a radioactive substance, if the half-life of the substance is 8.9 weeks?

Solution:

$P=4.7, r=$?
$\Rightarrow A(t)=4.7 \cdot e^{r \cdot t}$
First, find r.
Note: $A(8.9)=\frac{1}{2} \cdot 4.7=2.35$
$\Rightarrow 2.35=A(8.9)=4.7 \cdot e^{r .8 .9}$
$\Rightarrow 0.5=e^{r \cdot 8.9}$
$\Rightarrow \ln (0.5)=r \cdot 8.9$
$\Rightarrow r=\frac{\ln (0.5)}{8.9} \approx-0.07788$
$\Rightarrow A(t)=4.7 \cdot e^{-0.07788 \cdot t}$
Then, for $t=26$:
$\Rightarrow A(26)=4.7 \cdot e^{-0.07788 .26} \approx 0.62$
After 26 weeks, only 0.62 lb of the substance will be left.

