Symmetries and operations on functions Lesson \#5

MAT 1375 Precalculus

New York City College of Technology CUNY

Even and odd functions

Even functions

A function is even, if

$$
f(-x)=f(x) \quad \text { for all } x
$$

Example: $f(x)=x^{2}$
Find

$$
\begin{array}{ll}
f(2)=4 & f(-2)=4 \\
f(3)=9 & f(-3)=9
\end{array}
$$

Even functions have graphs that are symmetric with respect to the y-axis.

Odd functions

A function is odd, if

$$
f(-x)=-f(x) \quad \text { for all } x
$$

Example: $f(x)=x^{3}$
Find $\quad f(2)=8 \quad f(-2)=-8$

Odd functions have graphs that are symmetric with respect to the origin.
Note: If 0 is in the domain, then $f(0)=f(-0)=-f(0)$, so that:

$$
f(0)=0
$$

Even and odd functions - exercises

Determine if the function is even, odd, or neither.
(1) $f(x)=x^{4}-3 x^{2}-3$
(3) $f(x)=\frac{1}{x^{3}}-\frac{4}{x}$

Odd
(9) $f(x)=x^{3}+x^{6}$

Neither
(c) $f(x)=\frac{x^{2}+2}{x^{4}-3}$

Even
©

Odd

Addition, subtraction, multiplication, division

(1) Let $f(x)=x^{2}+7 x+12$ and $g(x)=2 x-6$.

- Find the sum $(f+g)(x)=f(x)+g(x)$

Domains:

$$
=\left(x^{2}+7 x+12\right)+(2 x-6)=x^{2}+9 x+6
$$

$$
D_{f+g}=\mathbb{R}
$$

- Find the difference $(f-g)(x)=f(x)-g(x)$

$$
=\left(x^{2}+7 x+12\right)-(2 x-6)=x^{2}+5 x+18
$$

$$
D_{f-g}=\mathbb{R}
$$

- Find the product $(f \cdot g)(x)=f(x) \cdot g(x)$

$$
\begin{aligned}
& =\left(x^{2}+7 x+12\right) \cdot(2 x-6) \\
& =2 x^{3}-6 x^{2}+14 x^{2}-42 x+24 x-72 \\
& =2 x^{3}+8 x^{2}-18 x-72
\end{aligned}
$$

- Find the quotient $\frac{f}{g}(x)=\frac{f(x)}{g(x)}=\frac{x^{2}+7 x+12}{2 x-6}$
- Find the quotient $\frac{g}{f}(x)=\frac{g(x)}{f(x)}=\frac{2 x-6}{x^{2}+7 x+12}$

$$
\begin{aligned}
& D_{f \cdot g}=\mathbb{R} \\
& 2 x-6=0 \Rightarrow 2 x=6 \Rightarrow x=3 \\
& D_{\frac{f}{g}}=\mathbb{R}-\{3\} \\
& x^{2}+7 x+12=0 \\
& \Rightarrow(x+3)(x+4)=0 \\
& \Rightarrow x=-3 \text { or } x=-4 \\
& D_{\frac{g}{f}}=\mathbb{R}-\{-3,-4\}
\end{aligned}
$$

Domains:
$D_{f}=\mathbb{R}$
$D_{g}=\mathbb{R}$

Addition, subtraction, multiplication, division - exercise

(2) Let $f(x)=\frac{1}{x-5}$ and $g(x)=\sqrt{x-2}$.

- Find the sum $(f+g)(x)=f(x)+g(x)$

$$
=\frac{1}{x-5}+\sqrt{x-2}
$$

- Find the difference $(f-g)(x)=f(x)-g(x)$

$$
=\frac{1}{x-5}-\sqrt{x-2}
$$

Domains:
$D_{f+g}=[2,5) \cup(5, \infty)$
$D_{f-g}=[2,5) \cup(5, \infty)$

- Find the product $(f \cdot g)(x)=f(x) \cdot g(x)$

$$
=\frac{1}{x-5} \cdot \sqrt{x-2}=\frac{\sqrt{x-2}}{x-5}
$$

- Find the quotient $\frac{f}{g}(x)=\frac{f(x)}{g(x)}=\frac{\frac{1}{x-5}}{\sqrt{x-2}}=\frac{\frac{1}{x-5}}{\frac{\sqrt{x-2}}{1}}$

$$
=\frac{1}{x-5} \cdot \frac{1}{\sqrt{x-2}}=\frac{1}{(x-5) \cdot \sqrt{x-2}}
$$

- Find the quotient $\frac{g}{f}(x)=\frac{g(x)}{f(x)}=\frac{\sqrt{x-2}}{\frac{1}{x-5}}$

$$
=\sqrt{x-2} \cdot \frac{x-5}{1}=\sqrt{x-2} \cdot(x-5)
$$

$D_{f . g}=[2,5) \cup(5, \infty)$
We need $x \neq 5, x-2 \geq 0$, and $x-2 \neq 0$
$D_{\frac{f}{g}}=(2,5) \cup(5, \infty)$
We need $x \neq 5, x-2 \geq 0$,
$D_{\frac{g}{f}}=[2,5) \cup(5, \infty)$

Domains:

$$
\begin{aligned}
& D_{f}=\mathbb{R}-\{5\} \\
& D_{g}=[2, \infty)
\end{aligned}
$$

Composition

Use the output of the function g as an input for the function f :

Definition

The composition $f \circ g$ is the function $(f \circ g)(x)=f(g(x))$.
The domain of $f \circ g$ are all x for which $g(x)$ is defined and then $f(g(x))$ is also defined.
(1) $f(x)=2 x+1$
$g(x)=x^{2}-5$
Evaluate:

$$
\begin{aligned}
& (f \circ g)(4)=f(g(4))=f\left(4^{2}-5\right) \\
& =f(11)=2 \cdot 11+1=23 \\
& (f \circ g)(3)=f(g(3))=f\left(3^{2}-5\right) \\
& =f(4)=2 \cdot 4+1=9
\end{aligned}
$$

(2) $f(x)=\frac{x+1}{x+2}$
$g(x)=x+3$
Evaluate:
$(f \circ g)(5)=f(g(5))=f(5+3)$
$=f(8)=\frac{8+1}{8+2}=\frac{9}{10}$
$(g \circ f)(5)=g(f(5))=g\left(\frac{5+1}{5+2}\right)$
$=g\left(\frac{6}{7}\right)=\frac{6}{7}+3=\frac{27}{7}$
(3) $f(x)=x^{2}-5 x+8$
$g(x)=x+3$
Evaluate:

$$
\begin{aligned}
& (f \circ g)(x)=f(g(x))= \\
& =f(x+3) \\
& =(x+3)^{2}-5(x+3)+8 \\
& =x^{2}+6 x+9-5 x-15+8 \\
& =x^{2}+x+2
\end{aligned}
$$

Composition - exercises

Find the compositions and state their domains.
(4) $f(x)=x^{2}+3 x$
$g(x)=x-7$

$$
\begin{aligned}
& (f \circ g)(x)=f(g(x)) \\
& \quad=f(x-7) \\
& \quad=(x-7)^{2}+3 \cdot(x-7) \\
& \quad=x^{2}-14 x+49+3 x-21 \\
& \quad=x^{2}-11 x+28
\end{aligned}
$$

Domain: $D=\mathbb{R}$
(5) $f(x)=\frac{x+2}{x-5}$
$g(x)=x^{2}+4$
$(f \circ g)(x)=f(g(x))$
$=f\left(x^{2}+4\right)$
$=\frac{x^{2}+4+2}{x^{2}+4-5}=\frac{x^{2}+6}{x^{2}-1}$
Domain:
Where is the denominator zero?

$$
\begin{aligned}
& x^{2}-1=0 \\
& (x+1)(x-1)=0 \Rightarrow x= \pm 1 \\
\Rightarrow & D=\mathbb{R}-\{-1,+1\}
\end{aligned}
$$

(6) $f(x)=x^{2}+4 x+6$
$g(x)=2 x+3$
$(f \circ g)(x)=f(g(x))$

$$
=f(2 x+3)
$$

$$
=(2 x+3)^{2}+4 \cdot(2 x+3)+6
$$

$$
=4 x^{2}+12 x+9+8 x+12+6
$$

$$
=4 x^{2}+20 x+27
$$

Domain: $D=\mathbb{R}$
(7) $f(x)=x^{2}+4 x+6$

$$
g(x)=2 x+3
$$

$$
(g \circ f)(x)=g(f(x))
$$

$$
=g\left(x^{2}+4 x+6\right)
$$

$$
=2 \cdot\left(x^{2}+4 x+6\right)+3
$$

$$
=2 x^{2}+8 x+12+3
$$

$$
=2 x^{2}+8 x+15
$$

Domain: $D=\mathbb{R}$

Composition - exercises

Find the compositions and state their domains.
(8) $f(x)=\sqrt{3-2 x}$

$$
\begin{aligned}
& g(x)=5-4 x \\
& (f \circ g)(x)=f(g(x)) \\
& \quad=f(5-4 x) \\
& \quad=\sqrt{3-2 \cdot(5-4 x)} \\
& \quad=\sqrt{3-10+8 x} \\
& \quad=\sqrt{8 x-7}
\end{aligned}
$$

Domain:

$$
\begin{aligned}
& 8 x-7 \geq 0 \quad \Rightarrow 8 x \geq 7 \quad \Rightarrow x \geq \frac{7}{8} \\
& D=\left[\frac{7}{8}, \infty\right)
\end{aligned}
$$

(9) $f(x)=\sqrt{3-2 x}$
$g(x)=5-4 x$
$(g \circ f)(x)=g(f(x))$
$=g(\sqrt{3-2 x})$

$$
=5-4 \cdot \sqrt{3-2 x}
$$

Domain:

$$
\begin{aligned}
& 3-2 x \geq 0 \Rightarrow-2 x \geq-3 \Rightarrow x \leq \frac{3}{2} \\
& D=\left(-\infty, \frac{3}{2}\right]
\end{aligned}
$$

(10) $f(x)=\frac{1}{x^{2}-x-12}$

$$
g(x)=3 x-5
$$

$$
(g \circ f)(x)=g(f(x))
$$

$$
=g\left(\frac{1}{x^{2}-x-12}\right)=3 \cdot \frac{1}{x^{2}-x-12}-5
$$

$$
=\frac{3}{x^{2}-x-12}-\frac{5\left(x^{2}-x-12\right)}{x^{2}-x-12}
$$

$$
=\frac{3-5 x^{2}+5 x+60}{x^{2}-x-12}=\frac{-5 x^{2}+5 x+63}{x^{2}-x-12}
$$

Domain:

$$
\begin{aligned}
& x^{2}-x-12=0 \\
& \Rightarrow(x+3)(x-4)=0 \quad \Rightarrow x=-3, x=4 \\
& D=\mathbb{R}-\{-3,4\}
\end{aligned}
$$

(17) $f(x)=\frac{1}{x^{2}-x-12}=\frac{1}{(x+3)(x-4)}$

$$
g(x)=3 x-5
$$

$$
(f \circ g)(x)=f(g(x))=f(3 x-5)
$$

$$
=\frac{1}{((3 x-5)+3) \cdot((3 x-5)-4)}=\frac{1}{(3 x-2)(3 x-9)}
$$

Domain:

$$
\begin{aligned}
& 3 x-2=0 \text { or } 3 x-9=0 \\
& \Rightarrow x=\frac{2}{3} \text { or } x=3 \quad \Rightarrow D=\mathbb{R}-\left\{\frac{2}{3}, 3\right\}
\end{aligned}
$$

