Numbers and functions
 Lesson \#1

MAT 1375 Precalculus

New York City College of Technology CUNY

Number systems

Natural numbers \mathbb{N} Examples:

Number systems

Natural numbers \mathbb{N}
Examples: 7, 2, 5, 1003
$1,2,3,4,5, \ldots$

Number systems

Natural numbers \mathbb{N}
Examples: 7, 2, 5, 1003
$1,2,3,4,5, \ldots$
Integers \mathbb{Z}
Examples:

Number systems

Natural numbers \mathbb{N}
$1,2,3,4,5, \ldots$

Integers \mathbb{Z}

Examples: 7, 2, 5, 1003

Examples: $-3,7,2,5,0,1$
$\ldots,-3,-2,-1,0,1,2,3, \ldots$

Number systems

Natural numbers \mathbb{N}
$1,2,3,4,5, \ldots$
Integers \mathbb{Z}
$\ldots,-3,-2,-1,0,1,2,3, \ldots$

Rational numbers \mathbb{Q}

Examples: 7, 2, 5, 1003

Examples: -3, 7, 2, 5, 0, 1

Examples:

Number systems

Natural numbers \mathbb{N}
$1,2,3,4,5, \ldots$
Integers \mathbb{Z}
$\ldots,-3,-2,-1,0,1,2,3, \ldots$

Rational numbers \mathbb{Q}

Examples: 7, 2, 5, 1003

Examples: $-3,7,2,5,0,1$
fractions $\frac{\partial}{b}$ for integers a, b, and $b \neq 0$

Examples: $\frac{2}{3}, 7=\frac{7}{1},-3,0, \frac{-36}{17}$

Number systems

Natural numbers \mathbb{N}
$1,2,3,4,5, \ldots$
Integers \mathbb{Z}
$\ldots,-3,-2,-1,0,1,2,3, \ldots$
Rational numbers \mathbb{Q}
fractions $\frac{a}{b}$ for integers a, b, and $b \neq 0$
Real numbers \mathbb{R}

Examples: 7, 2, 5, 1003

Examples: $-3,7,2,5,0,1$

Examples: $\frac{2}{3}, 7=\frac{7}{1},-3,0, \frac{-36}{17}$

Examples:

Number systems

Natural numbers \mathbb{N}
$1,2,3,4,5, \ldots$
Integers \mathbb{Z}
$\ldots,-3,-2,-1,0,1,2,3, \ldots$
Rational numbers \mathbb{Q}
fractions $\frac{a}{b}$ for integers a, b, and $b \neq 0$

Real numbers \mathbb{R}

numbers on the number line

Examples: 7, 2, 5, 1003

Examples: $-3,7,2,5,0,1$

Examples: $\frac{2}{3}, 7=\frac{7}{1},-3,0, \frac{-36}{17}$

Examples: $\frac{2}{3}, 7,-3,0, \frac{-36}{17}$

Number systems

Natural numbers \mathbb{N}
$1,2,3,4,5, \ldots$
Integers \mathbb{Z}
$\ldots,-3,-2,-1,0,1,2,3, \ldots$
Rational numbers \mathbb{Q}
fractions $\frac{a}{b}$ for integers a, b, and $b \neq 0$

Real numbers \mathbb{R}

numbers on the number line

Examples: 7, 2, 5, 1003

Examples: - 3, 7, 2, 5, 0, 1

Examples: $\frac{2}{3}, 7=\frac{7}{1},-3,0, \frac{-36}{17}$

Examples: $\frac{2}{3}, 7,-3,0, \frac{-36}{17}$
Examples of irrational numbers:

Number systems

Natural numbers \mathbb{N}
$1,2,3,4,5, \ldots$
Integers \mathbb{Z}
$\ldots,-3,-2,-1,0,1,2,3, \ldots$
Rational numbers \mathbb{Q}
fractions $\frac{a}{b}$ for integers a, b, and $b \neq 0$

Real numbers \mathbb{R}

numbers on the number line

Examples: 7, 2, 5, 1003

Examples: - 3, 7, 2, 5, 0, 1

Examples: $\frac{2}{3}, 7=\frac{7}{1},-3,0, \frac{-36}{17}$

Examples: $\frac{2}{3}, 7,-3,0, \frac{-36}{17}$
Examples of irrational numbers:
$\pi, \sqrt{2}, \sqrt[3]{7}$

Number systems

Natural numbers \mathbb{N}
$1,2,3,4,5, \ldots$
Integers \mathbb{Z}
$\ldots,-3,-2,-1,0,1,2,3, \ldots$
Rational numbers \mathbb{Q}
fractions $\frac{a}{b}$ for integers a, b, and $b \neq 0$

Real numbers \mathbb{R}

numbers on the number line

Complex numbers \mathbb{C}

Number systems

Natural numbers \mathbb{N}
$1,2,3,4,5, \ldots$
Integers \mathbb{Z}
$\ldots,-3,-2,-1,0,1,2,3, \ldots$
Rational numbers \mathbb{Q}
fractions $\frac{a}{b}$ for integers a, b, and $b \neq 0$

Real numbers \mathbb{R}

numbers on the number line

Complex numbers \mathbb{C}
$a+b i$, for real numbers a, b

Interval notation - review

3 ways to express an interval
(1) On the number line:

(2) Inequality notation:

$$
2 \leq x \leq 5
$$

(3) Interval notation:
$[2,5]$

Interval notation - exercises

	Inequality notation	Number line	Interval notation
(a)			
(b)	$2<x<5$		
(c)			
(d)			$(-5,-2]$
(e)	$-1.5 \leq x<\sqrt{5}$		
(f)	$2 \leq x$		
(g)			$(-\infty, 5]$
(h)	$-\pi<x$		
(i)	$5 \leq x \leq 2$		
(j)			

Interval notation - exercises

	Inequality notation	Number line	Interval notation
(a)	$1 \leq x \leq 6$		$[1,6]$
(b)	$2<x<5$	$\begin{array}{llllllllll} 1 & 1 & 1 & 1 & & 1 & & & 1 & 1 \\ -3-2-1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{array}$	
(c)		$\begin{array}{llllllllll} \\ \hline & & & & & & \mathbf{O} & \mathbf{l} & \mathbf{l} \\ -5 & -4 & -3 & -2 & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline \end{array}$	
(d)			$(-5,-2]$
(e)	$-1.5 \leq x<\sqrt{5}$		
(f)	$2 \leq x$	$\begin{array}{lllllllllll} + & 1 & & & & & & & & & \\ \hline-2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{array}$	
(g)		$\begin{array}{lllllllllll} \hline & 1 & 1 & 1 & 1 & 1 & & 1 & & 1 & 1 \\ -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline \end{array}$	$(-\infty, 5]$
(h)	$-\pi<x$	$\begin{array}{l\|ccccccccc} \hline & 1 & 1 & 1 & 1 & 1 & & 1 & 1 & \mathbf{1} \\ -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ 5 \end{array}$	
(i)	$5 \leq x \leq 2$	$\begin{array}{lllllllllll} \hline & & & & & & & 1 & & & \\ \hline-2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline \end{array}$	
(j)			

Interval notation - exercises

	Inequality notation	Number line	Interval notation
(a)	$1 \leq x \leq 6$		[1, 6]
(b)	$2<x<5$		$(2,5)$
(c)		$\begin{array}{llllllllll} \\ \hline & & & & & & \mathbf{O} & \mathbf{l} & \mathbf{l} \\ -5 & -4 & -3 & -2 & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline \end{array}$	
(d)			$(-5,-2]$
(e)	$-1.5 \leq x<\sqrt{5}$		
(f)	$2 \leq x$	$\begin{array}{lllllllllll} + & 1 & & & & & & & & & \\ \hline-2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{array}$	
(g)		$\begin{array}{lllllllllll} \hline & 1 & 1 & 1 & 1 & 1 & & 1 & & 1 & 1 \\ -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline \end{array}$	$(-\infty, 5]$
(h)	$-\pi<x$	$\begin{array}{cccccccccc} + & 1 & 1 & 1 & 1 & 1 & & 1 & 1 & 1 \\ -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \end{array}$	
(i)	$5 \leq x \leq 2$	$\begin{array}{lllllllllll} \hline & & & & & & & 1 & & & \\ \hline-2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline \end{array}$	
(j)			

Interval notation - exercises

	nequality notation	Number line	Interval notation
(a)	$1 \leq x \leq 6$		[1, 6]
(b)	$2<x<5$	$\begin{array}{lllllllll} \hline 1 & 1 & 1 & \mathbf{O} & & & \mathbf{0} & & \\ \hline-3 & 1 \\ -3 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline \end{array}$	$(2,5)$
(c)	$-3 \leq x<2$	$\begin{array}{llllllll} \hline & & & & & & \mathbf{O} & \\ \hline-5-4 & & & \mathbf{l} \\ \hline-3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline \end{array}$	$[-3,2)$
(d)			$(-5,-2]$
(e)	$-1.5 \leq x<\sqrt{5}$		
(f)	$2 \leq x$		
(g)		$\begin{array}{l\|llllllllll} 1 & 1 & 1 & 1 & 1 & 1 & & 1 \end{array}$	$(-\infty, 5]$
(h)	$-\pi<x$	$\begin{array}{llllllllll} \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline-5-4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline \end{array}$	
(i)	$5 \leq x \leq 2$	$\begin{array}{llllllllllll} \hline & & & & 1 & & & & 1 & & l \end{array}$	
(j)			

Interval notation - exercises

	nequality notation	Number line	Interval notation
(a)	$1 \leq x \leq 6$	$\begin{array}{llllllllllllll} \\ \hline-3-2-1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{array}$	[1, 6]
(b)	$2<x<5$		$(2,5)$
(c)	$-3 \leq x<2$	$\begin{array}{lllllllll} \hline \\ \hline-\quad & & & & & \mathbf{O} & & & \\ \hline-5-4-3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline \end{array}$	$[-3,2)$
(d)	$-5<x \leq-2$		$(-5,-2]$
(e)	$-1.5 \leq x<\sqrt{5}$		
(f)	$2 \leq x$	$\begin{array}{lllllllllll} +1 & 1 & & 1 & & & & 1 & & 1 \\ \hline-2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline \end{array}$	
(g)		$\begin{array}{llllllllllll} \hline 1 & 1 & 1 & & 1 & 1 & 1 & & 1 & 1 \\ \hline-2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{array}$	$(-\infty, 5]$
(h)	$-\pi<x$	$\begin{array}{llllllllll} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ -5-4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline \end{array}$	
(i)	$5 \leq x \leq 2$	$\begin{array}{llllllllll} \hline & 1 & 1 & 1 & & A & 1 & \\ \hline-2-1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline \end{array}$	
(j)			

Interval notation - exercises

	nequality notation	Number line	Interval notation
(a)	$1 \leq x \leq 6$	1	[1, 6]
(b)	$2<x<5$		$(2,5)$
(c)	$-3 \leq x<2$	$\begin{array}{llllllll} \hline & - \\ \hline-5-4-3 & -2 & -1 & 0 & 1 & 2 & & \\ \hline \end{array}$	$[-3,2)$
(d)	$-5<x \leq-2$		$(-5,-2]$
(e)	$-1.5 \leq x<\sqrt{5}$		$[-1.5, \sqrt{5})$
(f)	$2 \leq x$	$\begin{aligned} & 1 \\ & \hline-2 \end{aligned}$	
(g)		$\begin{array}{lllllllllll} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \\ \hline-2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline \end{array}$	$(-\infty, 5]$
(h)	$-\pi<x$	$\begin{array}{llllllllll} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ -5-4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline \end{array}$	
(i)	$5 \leq x \leq 2$	$\begin{array}{llllllllll} \hline & 1 & 1 & 1 & & A & 1 & \\ \hline-2-1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline \end{array}$	
(j)			

Interval notation - exercises

	nequality notation	Number line	Interval notation
(a)	$1 \leq x \leq 6$	$\begin{array}{lllllllllllll} \hline & \\ \hline-3-2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline \end{array}$	[1, 6]
(b)	$2<x<5$		$(2,5)$
(c)	$-3 \leq x<2$	$\begin{array}{llllllll} \\ \hline & - & & & & & 0 & \\ \hline-5-4-3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline \end{array}$	$[-3,2)$
(d)	$-5<x \leq-2$		$(-5,-2]$
(e)	$-1.5 \leq x<\sqrt{5}$	$\begin{array}{lllllllll} \\ \hline & & & & & & & 0 & 0 \end{array}$	$[-1.5, \sqrt{5})$
(f)	$2 \leq x$		$[2, \infty)$
(g)		$\begin{array}{lllllllllll} 1 & 1 & 1 & 1 & 1 & & & 1 & 1 \\ \hline-2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{array}$	$(-\infty, 5]$
(h)	$-\pi<x$	$\begin{array}{llllllllll} 1 & 1 & 1 & 1 & 1 & 1 & 1 & \\ \hline-5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline \end{array}$	
(i)	$5 \leq x \leq 2$	$\begin{array}{lllllllllllll} & & & & 1 & & 1 & 1 & & \\ \hline-2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline \end{array}$	
(j)		$\begin{array}{lllllllllllll} \hline & & & & & & & -0 & & & & & \\ \hline-1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline \end{array}$	

Interval notation - exercises

	Inequality notation	Number line	Interval notation
(a)	$1 \leq x \leq 6$		[1, 6]
(b)	$2<x<5$	$\begin{array}{lllllllll} \hline 1 & 1 & 1 & \mathbf{O} & & & \mathbf{0} & & \\ \hline-3 & 1 \\ -3 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline \end{array}$	$(2,5)$
(c)	$-3 \leq x<2$		$[-3,2)$
(d)	$-5<x \leq-2$		$(-5,-2]$
(e)	$-1.5 \leq x<\sqrt{5}$	$\begin{array}{llllllllll} \hline & & & & & & 0 & 0 & & \\ \hline-5-4-3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline \end{array}$	$[-1.5, \sqrt{5})$
(f)	$2 \leq x$		$[2, \infty)$
(g)	$x \leq 5$		$(-\infty, 5]$
(h)	$-\pi<x$	$\begin{array}{lllllllll} 1 & 1 & 1 & 1 & 1 & 1 & & 1 \\ -5-4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline \end{array}$	
(i)	$5 \leq x \leq 2$	$\begin{array}{lllllllllll} \hline & 1 & & 1 & & 1 & & 1 & & \\ \hline-2-1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline \end{array}$	
(j)			

Interval notation - exercises

	nequality notation	Number line	Interval notation
(a)	$1 \leq x \leq 6$	$\begin{array}{lllllllllllll} \hline & \\ \hline-3-2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline \end{array}$	[1, 6]
(b)	$2<x<5$	$\begin{array}{llllllllll} +1 & 1 & 1 & \mathbf{1} & & & & 0 & & \\ \hline-3 & 1 \\ -3 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline \end{array}$	$(2,5)$
(c)	$-3 \leq x<2$	$\begin{array}{llllllll} \\ \hline & - & & & & & 0 & \\ -5-4-3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline \end{array}$	$[-3,2)$
(d)	$-5<x \leq-2$		$(-5,-2]$
(e)	$-1.5 \leq x<\sqrt{5}$	$\begin{array}{lllllllll} \\ \hline & & & & & & \mathbf{O} & \mathbf{O} & \\ \hline-5-4-3-2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 \end{array}$	$[-1.5, \sqrt{5})$
(f)	$2 \leq x$		$[2, \infty)$
(g)	$x \leq 5$		$(-\infty, 5]$
(h)	$-\pi<x$		$(-\pi, \infty)$
(i)	$5 \leq x \leq 2$	$\begin{array}{lllllllllll} \hline & 1 & & 1 & & 1 & & 1 & & \\ \hline-2-1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline \end{array}$	
(j)		$\begin{array}{lllllllllllll} \hline & & & & & & & -0 & & & & & \\ \hline-1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline \end{array}$	

Interval notation - exercises

	nequality notation	Number line	Interval notation
(a)	$1 \leq x \leq 6$	1	[1, 6]
(b)	$2<x<5$		$(2,5)$
(c)	$-3 \leq x<2$		$[-3,2)$
(d)	$-5<x \leq-2$		$(-5,-2]$
(e)	$-1.5 \leq x<\sqrt{5}$	$\begin{array}{lllllllll} \\ \hline & & & & & & & 0 & \\ \hline-5-4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline \end{array}$	$[-1.5, \sqrt{5})$
(f)	$2 \leq x$		$[2, \infty)$
(g)	$x \leq 5$		$(-\infty, 5]$
(h)	$-\pi<x$		$(-\pi, \infty)$
(i)	$5 \leq x \leq 2$		no such number
(j)			

Interval notation - exercises

	Inequality notation	Number line	Interval notation
(a)	$1 \leq x \leq 6$		[1, 6]
(b)	$2<x<5$	$\begin{array}{llllllllll} \hline 1 & 1 & 1 & 0 & & & 0 & & 1 \end{array}$	$(2,5)$
(c)	$-3 \leq x<2$		$[-3,2)$
(d)	$-5<x \leq-2$		$(-5,-2]$
(e)	$-1.5 \leq x<\sqrt{5}$		$[-1.5, \sqrt{5})$
(f)	$2 \leq x$		$[2, \infty)$
(g)	$x \leq 5$		$(-\infty, 5]$
(h)	$-\pi<x$		$(-\pi, \infty)$
(i)	$5 \leq x \leq 2$		no such number
(j)	$1 \leq x \leq 3$ or $5<x \leq 7$		$[1,3] \cup(5,7]$

Functions - definition

Definition

A function is an assignment, which assign to each input x exactly one output y.

Functions - definition

Definition

A function is an assignment, which assign to each input x exactly one output y.

The set of all inputs is called the

Functions - definition

Definition

A function is an assignment, which assign to each input x exactly one output y.

The set of all inputs is called the domain, denoted by D.

Functions - definition

Definition

A function is an assignment, which assign to each input x exactly one output y.

The set of all inputs is called the domain, denoted by D.

The set of all outputs is called the

Functions - definition

Definition

A function is an assignment, which assign to each input x exactly one output y.

The set of all inputs is called the domain, denoted by D.

The set of all outputs is called the range, denoted by R.

We write $f(x)=y$ or $f: x \mapsto y$, if f assigns to the input x the output y.

Functions - definition

Definition

A function is an assignment, which assign to each input x exactly one output y.

The set of all inputs is called the domain, denoted by D.

The set of all outputs is called the range, denoted by R.

We write $f(x)=y$ or $f: x \mapsto y$, if f assigns to the input x the output y.
(1)

Functions - definition

Definition

A function is an assignment, which assign to each input x exactly one output y.

The set of all inputs is called the domain, denoted by D.

The set of all outputs is called the range, denoted by R.

We write $f(x)=y$ or $f: x \mapsto y$, if f assigns to the input x the output y.
(1)

Function values: $f(\square)$ yellow $\quad f(\diamond)=$ green $\quad f(\Omega)=$ yellow \ldots

Functions - definition

Definition

A function is an assignment, which assign to each input x exactly one output y.

The set of all inputs is called the domain, denoted by D.

The set of all outputs is called the range, denoted by R.

We write $f(x)=y$ or $f: x \mapsto y$, if f assigns to the input x the output y.
(1)

Function values: $f(\square)=$ yellow Domain $D=$

$$
f(\diamond)=\text { green } \quad f(\diamond)=\text { yellow } \quad \ldots
$$

Range $R=$

Functions - definition

Definition

A function is an assignment, which assign to each input x exactly one output y.

The set of all inputs is called the domain, denoted by D.

The set of all outputs is called the range, denoted by R.

We write $f(x)=y$ or $f: x \mapsto y$, if f assigns to the input x the output y.
(1)

Function values: $f(\square)=$ yellow Domain $D=\{\triangle, \diamond, \bigcirc, \square, \odot\}$

$$
f(\diamond)=\text { green } \quad f(\Omega)=\text { yellow }
$$

Range $R=\{$ red, green, blue, yellow $\}$

Functions - examples

(2)

Function values: $f(\triangle)=\quad f(\square)=$

Functions - examples

(2)

Function values: $f(\triangle)=$ green $\quad f(\square)=$??? blue or yellow ???
$\Longrightarrow f$ is not a function X, since \square has more than one output! (f is a relation.)

Functions - examples

(2)

Function values: $f(\triangle)=$ green $f(\square)=$??? blue or yellow ???
$\Longrightarrow f$ is not a function X, since \square has more than one output! (f is a relation.)
(3)

Is f a function?

Functions - examples

(2)

Function values: $f(\triangle)=$ green $f(\square)=$??? blue or yellow ???
$\Longrightarrow f$ is not a function X, since \square has more than one output! (f is a relation.)
B

Is f a function? Yes, f is a function! $\sqrt{ }$
Domain $D=$
Range $R=$

Function values: $f(\square)=$

$$
f(\diamond)=\quad f(ৎ)=
$$

Functions - examples

(2)

Function values: $f(\triangle)=$ green $\quad f(\square)=$??? blue or yellow ???
$\Longrightarrow f$ is not a function X, since \square has more than one output! (f is a relation.)
©

Is f a function? Yes, f is a function!
Domain $D=\{\triangle, \diamond, \bigcirc, \square, \ominus\} \quad$ Range $R=\{$ green $\}$
Codomain $C=\{$ green, yellow, red, blue $\}$

- Notation: we write $f: D \rightarrow C$

Function values: $f(\square)=$ green

$$
f(\diamond)=\text { green } \quad f(\diamond)=\text { green }
$$

Functions - word problems

(1) Consider the assignment which associates to each student the chair on which the student sits.

- Question: What is the domain?
- Question: What is the range?

Functions - word problems

(1) Consider the assignment which associates to each student the chair on which the student sits.

- Question: What is the domain?

Answer: The domain is the set of all students in the classroom.

- Question: What is the range?

Functions - word problems

(1) Consider the assignment which associates to each student the chair on which the student sits.

- Question: What is the domain?

Answer: The domain is the set of all students in the classroom.

- Question: What is the range?

Answer: The range is the set of all chairs in the classroom.

Functions - word problems

(1) Consider the assignment which associates to each student the chair on which the student sits.

- Question: What is the domain?

Answer: The domain is the set of all students in the classroom.

- Question: What is the range?

Answer: The range is the set of all chairs in the classroom.

- Question: Does this assignment constitute a function?

Functions - word problems

(1) Consider the assignment which associates to each student the chair on which the student sits.

- Question: What is the domain?

Answer: The domain is the set of all students in the classroom.

- Question: What is the range?

Answer: The range is the set of all chairs in the classroom.

- Question: Does this assignment constitute a function?

Answer: It is a function as long as each student sits on a chair.

Functions - word problems

(1) Consider the assignment which associates to each student the chair on which the student sits.

- Question: What is the domain?

Answer: The domain is the set of all students in the classroom.

- Question: What is the range?

Answer: The range is the set of all chairs in the classroom.

- Question: Does this assignment constitute a function?

Answer: It is a function as long as each student sits on a chair.

- Pick a specific student.

Describe what the function assigns to this student in your own words!

Functions - word problems

(1) Consider the assignment which associates to each student the chair on which the student sits.

- Question: What is the domain?

Answer: The domain is the set of all students in the classroom.

- Question: What is the range?

Answer: The range is the set of all chairs in the classroom.

- Question: Does this assignment constitute a function?

Answer: It is a function as long as each student sits on a chair.

- Pick a specific student.

Describe what the function assigns to this student in your own words!
(2) A gift card has been preloaded with a value of $\$ 30$. You want to use the gift card at a coffee shop, where your favorite cup of coffee costs $\$ 2$. The function $f(x)=30-2 x$ models the amount of money left on the card after purchasing x many cups of coffee.

- Question: Interpret the meaning of $f(8)=14$.

Functions - word problems

(1) Consider the assignment which associates to each student the chair on which the student sits.

- Question: What is the domain?

Answer: The domain is the set of all students in the classroom.

- Question: What is the range?

Answer: The range is the set of all chairs in the classroom.

- Question: Does this assignment constitute a function?

Answer: It is a function as long as each student sits on a chair.

- Pick a specific student.

Describe what the function assigns to this student in your own words!
(2) A gift card has been preloaded with a value of $\$ 30$. You want to use the gift card at a coffee shop, where your favorite cup of coffee costs $\$ 2$. The function $f(x)=30-2 x$ models the amount of money left on the card after purchasing x many cups of coffee.

- Question: Interpret the meaning of $f(8)=14$.

Answer: After buying 8 cups of coffee, there is $\$ 14$ left on the card.

Functions - word problems

(1) Consider the assignment which associates to each student the chair on which the student sits.

- Question: What is the domain?

Answer: The domain is the set of all students in the classroom.

- Question: What is the range?

Answer: The range is the set of all chairs in the classroom.

- Question: Does this assignment constitute a function?

Answer: It is a function as long as each student sits on a chair.

- Pick a specific student.

Describe what the function assigns to this student in your own words!
(2) A gift card has been preloaded with a value of $\$ 30$. You want to use the gift card at a coffee shop, where your favorite cup of coffee costs $\$ 2$. The function $f(x)=30-2 x$ models the amount of money left on the card after purchasing x many cups of coffee.

- Question: Interpret the meaning of $f(8)=14$.

Answer: After buying 8 cups of coffee, there is $\$ 14$ left on the card.

- Question: Interpret the meaning of $f(x)>0$.

Functions - word problems

(1) Consider the assignment which associates to each student the chair on which the student sits.

- Question: What is the domain?

Answer: The domain is the set of all students in the classroom.

- Question: What is the range?

Answer: The range is the set of all chairs in the classroom.

- Question: Does this assignment constitute a function?

Answer: It is a function as long as each student sits on a chair.

- Pick a specific student.

Describe what the function assigns to this student in your own words!
(2) A gift card has been preloaded with a value of $\$ 30$. You want to use the gift card at a coffee shop, where your favorite cup of coffee costs $\$ 2$. The function $f(x)=30-2 x$ models the amount of money left on the card after purchasing x many cups of coffee.

- Question: Interpret the meaning of $f(8)=14$.

Answer: After buying 8 cups of coffee, there is $\$ 14$ left on the card.

- Question: Interpret the meaning of $f(x)>0$.

Answer: $f(x)>0$ means that after purchasing x cups of coffee there is still some money left on the card.

