LECTURE 8: PROBABILITY, CONDITIONAL PROBABILITY AND INDEPENDENCE

Definitions

The probability of the occurrence of an event A, given the occurrence of another event B, is called a conditional probability and is denoted by $P(B \mid A)$
For example:
$B=$ adult has lung cancer
$A=$ adult is a heavy smoker
Then $P(B \mid A)$ represents the probability of an adult having lung cancer, given that he/she is a heavy smoker.

Motivational Example:

Consider rolling a fair dire. die.
a) What is the probability of rolling a prime number?
b) What is the probability that a prime number has turned up if we are given the additional information that an odd number has turned up?

For events A and B in an arbitrary sample space S, we define the conditional probability of B given A by

$$
\begin{array}{r}
\text { Inwords } P(B \mid A)=\frac{P\left(A^{\prime \prime} a \text { ad " }^{\prime} B\right)}{P(A)} \\
P(B \mid A)=\frac{P(A \cap B) ;}{P(A) ; \text { where } P(A) \neq 0}
\end{array}
$$

Note that since we know that event A has occurred, it becomes our new sample space shown in figure below.

We obtain the following multiplication rule from conditional probability:

Two events A and B in a sample space S are said to be independent if and only if $P(A \cap B)=P(A) P(B)$.

If $P(B \mid A)=P(B)$, then the probability of B is not affected by occurrence of A.
Examples:

1) One of two urns is chosen at random with one as likely to be chosen as the other. Then a ball is withdrawn from the chosen urn. Urn 1 contains 1 white and
2) A card is drawn at random from a standard 52 -card deck. Events A and B are: $A=$ the drawn card is a club. 13 clubs in deck $B=$ the drawn card is even (face cards are not valued). 20 evencards (a) Find $P(B \mid A)$.
(b) Test A and B for ind \notin dependence.
a) $P($ even \mid club $)=\frac{5}{B} \quad$ Are $A+B$ independent?

Focus only on clubs

$$
\begin{aligned}
& \text { penalent } ?^{\circ}=P(B) \\
& P(B \mid A)^{=} \mid(\mid C l u b)^{2}=P(\text { even }) \\
& \frac{5}{13}=\frac{20}{52}
\end{aligned}
$$

b) $P(A)=.6 \cdot .2+.4 \cdot .7$

$$
=.4
$$

c) $P(M \mid A)=\frac{P(\text { Man })}{P(A)}=\frac{.6 \cdot .2}{.4}=.3$
(a) What is $P(A \mid M)$?
(b) What is $P(A)$?
(c) What is $P(M \mid A)$?

