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Basic Definitions 
 
As a general rule, to be able to draw valid inferences about a population from a sample, 
one needs to know how likely it is that certain events will occur under various 
circumstances. 
 
Experiment: 
An experiment is any process that produces an observation, or outcome. 
 
Random Experiments:  
Experiments that don’t yield the same result s each time they are performed, no matter 
how carefully they are repeated under the same conditions, are called random 
experiments; i.e., the actual outcome cannot be determined in advance. 
e.g., flipping a coin, rolling a dice, scoring on a statistics class etc. 
 
Sample Space (S): 
A sample space of a random experiment is a list of all possible outcomes of the 
experiment.  Outcomes must be exhaustive and mutually exclusive. 
 
Event (E): 
An event is a subset of a sample space, ! ⊂ #.  
 
Simple Event:  
Simple event is an individual outcome of a sample space. 
 
Examples: 

1) Gender of a child: # = {&, (}, simple event ! = {(}. 
2) Rolling a die: # = {1, 2, 3, 4, 5, 6}, event !0 = {1, 3, 5}, simple event !1 = {6}. 
3) Flipping two coins: # = {22,23, 32, 33}. Create events: 

 
4) An experiment consists of flipping a coin three times and each time noting 

whether it lands heads or tails. 
(a) What is the sample space of this experiment? 
(b) What is the event that tails occur more often than heads? 
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5) Rolling two dice:  
(a) Determine the sample space. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Determine the event that produces a sum of 7. 
 
 
 
 
 
 
 
 
 
 
 

(c) Determine the event of rolling the same number for both dice. 
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6) A cafeteria offers a three-course meal. One chooses a main course, a starch, and 
a dessert. The possible choices are as follows: 

Meal Choices 
Main course Chicken or roast beef 
Starch course Pasta or rice or potatoes 
Dessert Ice cream or gelatin or apple pie 

 
An individual is to choose one course from each category. 

(a) List all the outcomes in the sample space. 
(b) Let A be the event that ice cream is chosen. List all the outcomes in A. 
(c) Let B be the event that chicken is chosen. List all the outcomes in B. 
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Set Operations for Events: 
Venn diagram below shows the union of events 4 and & and it is represented by 4⋃&; 
i.e., an element is in either 4 OR &. 

 
Venn diagram below shows the intersection of events 4 and & and it is represented by 
4⋂&; i.e., an element is in either 4 AND &. 

 
Venn diagram below shows two disjoint events (mutually exclusive) 4 and &. The 
intersection is a null set (empty set) and it is represented by 4⋂& =⊘. 

 
For any event 4 we define the event 48, called the complement of 4, to consist of all 
outcomes in the sample space that are not in 4. That is, 48  will occur when 4 does not, 
and vice versa. Venn diagram of this case is shown below. 
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Example: 

 
Let # = {1, 2, 3, 4, 5, 6}, 4 = {1, 3, 5}, & = {4, 6}, and 9 = {1, 4}. Find  
(a) 4 ∪ & 
(b) & ∪ 9 
(c) 4 ∪ (& ∩ 9) 
(d) (4 ∪ &)8  
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Basic Counting Principles 
 
We will use set operations to determine the number of elements in a set without 
actually enumerating the elements one by one.  
 
Addition Principle 
For any sets A and B, 
 >(4 ∪ &) = >(4) + >(&) − >(4 ∩ &) 
If sets A and B are disjoint, then 
>(4 ∪ &) = >(4) + >(&). 
Here >(4) represents the number of elements in set A. 
 
Example: 
 

A survey of 1,000 people indicates that 310 have invested in stocks, 480 have 
invested in bonds, and 210 have invested in stocks and bonds.  
(a) How many people in the survey have invested in stocks or bonds? 
(b) How many have invested in neither stocks nor bonds? 
(c) How many have invested in bonds but not in stocks? 
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Properties of Probability 
 
The determination of the likelihood, or chance, that an event will occur is the subject 
matter of probability. 
 
Consider an experiment whose sample space is S. We suppose that for each event A 
there is a number, denoted P(A), called the probability of event A, that has the following 
three properties. 
 

(i) The probability of a simple event is a number between 0 and 1. That is 0 ≤
C(4) ≤ 1. 

(ii) The probability of sample space is # is 1. That is C(#) = 1. 
(iii) The probability of the union of disjoint events is equal to the sum of the 

probabilities of these events. For instance, if A and B are disjoint, then 
C(4 ∪ &) = C(4) + C(&) 

Above properties can be used to establish some general results: 
1) # = 4 ∪ 48  
2) 1 = C(#) = C(4 ∪ 48) = C(4) + C(48), that is C(48) = 1 − C(4). 

 
Addition Rule 
For any events A and B, C(4 ∪ &) = C(4) + C(&) − C(4 ∩ &). Note that events A and 
B are not necessarily disjoint.  

 
 
Examples: 
 



8 Lecture 6: Assigning Probabilities to Events; Probability Rules 
	

1) Anita has a 40 percent chance of receiving an A grade in statistics, a 60 percent 
chance of receiving an A in physics, and an 86 percent chance of receiving an A in 
either statistics or physics. Find the probability that she 

a) Does not receive an A in either statistics or physics 
b) Receives A’s in both statistics and physics 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1) Consider	the	sample	space	# = {D, E, F}.	Determine	if	the	following	
probability	assignment	is	acceptable:	C(D) = 0.2,	C(E) = 0.3,	C(F) = 0.8;	
give	reasons.	
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BONUS	QUESTION:	Consider	three	sets	A,	B,	and	C.	What	does	>(4 ∪ & ∪ 9)	
look	like?	

 
 
 
 
 
 


