Lesson \#21

MAT 1372 Statistics with Probability
 Dr. Bonanome

Hypothesis Tests

Hypothesis test

- A process that uses sample statistics to test a claim about the value of a population parameter.
- For example: An automobile manufacturer advertises that its new hybrid car has a mean mileage of 50 miles per gallon. To test this claim, a sample would be taken. If the sample mean differs enough from the advertised mean, you can decide the advertisement is wrong.

Hypothesis Tests

Statistical hypothesis

- A statement, or claim, about a population parameter.
- Need a pair of hypotheses
- one that represents the claim
- the other, its complement
- When one of these hypotheses is false, the other must be true.

Stating a Hypothesis

Null hypothesis

- A statistical hypothesis that contains a statement of equality such as $\leq,=$, or \geq.
- Denoted $\boldsymbol{H}_{\mathbf{0}}$ read "H sub-zero" or "H naught."

Alternative hypothesis

- A statement of strict inequality such as $>, \neq$, or <.
- Must be true if H_{0} is false.
- Denoted $\boldsymbol{H}_{\boldsymbol{a}}$ read "H sub-a."

Stating a Hypothesis

- To write the null and alternative hypotheses, translate the claim made about the population parameter from a verbal statement to a mathematical statement.
- Then write its complement.

$$
\begin{array}{lll}
H_{0}: \mu \leq k & H_{0}: \mu \geq k & H_{0}: \mu=k \\
H_{a}: \mu>k & H_{a}: \mu<k & H_{a}: \mu \neq k
\end{array}
$$

- Regardless of which pair of hypotheses you use, you always assume $\mu=k$ and examine the sampling distribution on the basis of this assumption.

Example: Stating the Null and Alternative Hypotheses

Write the claim as a mathematical sentence. State the null and alternative hypotheses and identify which represents the claim.

1. A school publicizes that the proportion of its students who are involved in at least one extracurricular activity is 61%.

Solution:

$$
\begin{aligned}
& H_{0}: p=0.61 \longleftarrow \text { Equality condition (Claim) } \\
& H_{a}: p \neq 0.61 \longleftarrow \text { Complement of } H_{0}
\end{aligned}
$$

Example: Stating the Null and Alternative Hypotheses

Write the claim as a mathematical sentence. State the null and alternative hypotheses and identify which represents the claim.
2. A car dealership announces that the mean time for an oil change is less than 15 minutes.

Solution:

$H_{0}: \mu \geq 15$ minutes \longleftarrow Complement of H_{a}
$H_{a}: \mu<15$ minutes \longleftarrow Inequality condition (Claim)

Example: Stating the Null and Alternative Hypotheses

Write the claim as a mathematical sentence. State the null and alternative hypotheses and identify which represents the claim.
3. A company advertises that the mean life of its furnaces is more than 18 years

Solution:

$H_{0}: \mu \leq 18$ years \longleftarrow Complement of H_{a}
$H_{a}: \mu>18$ years \longleftarrow Inequality condition (Claim)

Types of Errors

- No matter which hypothesis represents the claim, always begin the hypothesis test assuming that the equality condition in the null hypothesis is true.
- At the end of the test, one of two decisions will be made:
- reject the null hypothesis
- fail to reject the null hypothesis
- Because your decision is based on a sample, there is the possibility of making the wrong decision.

Types of Errors

	Actual Truth of $\boldsymbol{H}_{\mathbf{0}}$	
Decision	H_{0} is true	H_{0} is false
Do not reject H_{0}	Correct Decision	Type II Error
Reject H_{0}	Type I Error	Correct Decision

- A type I error occurs if the null hypothesis is rejected when it is true.
- A type II error occurs if the null hypothesis is not rejected when it is false.

Example: Identifying Type I and Type II Errors

The USDA limit for salmonella contamination for chicken is 20%. A meat inspector reports that the chicken produced by a company exceeds the USDA limit. You perform a hypothesis test to determine whether the meat inspector's claim is true. When will a type I or type II error occur? Which is more serious?
(Source: United States Department of Agriculture)

Solution: Identifying Type I and Type II Errors

Let p represent the proportion of chicken that is contaminated.

Hypotheses: $H_{0}: p \leq 0.2$

$$
H_{a}: p>0.2 \text { (Claim) }
$$

Chicken meets Chicken exceeds USDA limits. USDA limits.

Solution: Identifying Type I and Type II Errors

Hypotheses: $H_{0}: p \leq 0.2$

$$
H_{a}: p>0.2 \text { (Claim) }
$$

A type I error is rejecting H_{0} when it is true.
The actual proportion of contaminated chicken is less than or equal to 0.2 , but you decide to reject H_{0}.

A type II error is failing to reject H_{0} when it is false.
The actual proportion of contaminated chicken is greater than 0.2 , but you do not reject H_{0}.

Solution: Identifying Type I and Type II Errors

Hypotheses: $H_{0}: p \leq 0.2$

$$
H_{\mathrm{a}}: p>0.2 \text { (Claim) }
$$

- With a type I error, you might create a health scare and hurt the sales of chicken producers who were actually meeting the USDA limits.
- With a type II error, you could be allowing chicken that exceeded the USDA contamination limit to be sold to consumers.
- A type II error could result in sickness or even death.

Level of Significance

Level of significance

- Your maximum allowable probability of making a type I error.
- Denoted by α, the lowercase Greek letter alpha.
- By setting the level of significance at a small value, you are saying that you want the probability of rejecting a true null hypothesis to be small.
- Commonly used levels of significance:
- $\alpha=0.10 \quad \alpha=0.05 \quad \alpha=0.01$
- $P($ type II error $)=\beta$ (beta)

Statistical Tests

- After stating the null and alternative hypotheses and specifying the level of significance, a random sample is taken from the population and sample statistics are calculated.
- The statistic that is compared with the parameter in the null hypothesis is called the test statistic.

Population parameter	Test statistic	Standardized test statistic
μ	\bar{x}	z (Section 7.2 $n \geq 30)$ t (Section 7.3 $n<30)$
p	\hat{p}	z (Section 7.4)
σ^{2}	s^{2}	$\chi^{2}($ Section 7.5)

P-values

\boldsymbol{P}-value (or probability value)

- The probability, if the null hypothesis is true, of obtaining a sample statistic with a value as extreme or more extreme than the one determined from the sample data.
- Depends on the nature of the test.

Nature of the Test

- Three types of hypothesis tests
- left-tailed test
- right-tailed test
- two-tailed test
- The type of test depends on the region of the sampling distribution that favors a rejection of H_{0}.
- This region is indicated by the alternative hypothesis.

Left-tailed Test

- The alternative hypothesis H_{a} contains the less-than inequality symbol (<).

$$
\begin{aligned}
& H_{0}: \mu \geq k \\
& H_{a}: \mu<k
\end{aligned}
$$

$$
\begin{aligned}
& P \text { is the area to } \\
& \text { the left of the } \\
& \text { standardized } \\
& \text { test statistic. } \\
& \text { Test } \\
& \text { statistic }
\end{aligned}
$$

Right-tailed Test

- The alternative hypothesis H_{a} contains the greaterthan inequality symbol (>).

$$
\begin{aligned}
& H_{0}: \mu \leq k \\
& H_{a}: \mu>k
\end{aligned}
$$

Two-tailed Test

- The alternative hypothesis H_{a} contains the not-equalto symbol (\neq). Each tail has an area of $1 / 2 P$.

$$
H_{0}: \mu=k
$$

$$
H_{a}: \mu \neq k
$$

P is twice the area to
the left of the
negative standardized test statistic.

Example: Identifying The Nature of a Test

For each claim, state H_{0} and H_{a}. Then determine whether the hypothesis test is a left-tailed, right-tailed, or two-tailed test. Sketch a normal sampling distribution and shade the area for the P-value.

1. A school publicizes that the proportion of its students who are involved in at least one extracurricular activity is 61%.
Solution:

$$
\begin{gathered}
H_{0}: p=0.61 \\
H_{a}: p \neq 0.61 \\
\uparrow \\
\text { Two-tailed test }
\end{gathered}
$$

Example: Identifying The Nature of a Test

For each claim, state H_{0} and H_{a}. Then determine whether the hypothesis test is a left-tailed, right-tailed, or two-tailed test. Sketch a normal sampling distribution and shade the area for the P-value.
2. A car dealership announces that the mean time for an oil change is less than 15 minutes.

Solution:

$$
\begin{aligned}
& H_{0}: \mu \geq 15 \mathrm{~min} \\
& H_{a}: \mu<15 \mathrm{~min} \\
& \text { Left-tailed test }
\end{aligned}
$$

Example: Identifying The Nature of a Test

For each claim, state H_{0} and H_{a}. Then determine whether the hypothesis test is a left-tailed, right-tailed, or two-tailed test. Sketch a normal sampling distribution and shade the area for the P-value.
3. A company advertises that the mean life of its furnaces is more than 18 years.

Solution:

$$
\begin{aligned}
& H_{0}: \mu \leq 18 \mathrm{yr} \\
& H_{a}: \mu>18 \mathrm{yr} \\
& \text { Right-tailed test }
\end{aligned}
$$

Making a Decision

Decision Rule Based on \boldsymbol{P}-value

- Compare the P-value with α.
- If $P \leq \alpha$, then reject H_{0}.
- If $P>\alpha$, then fail to reject H_{0}.

	Claim	
Decision	Claim is H_{0}	Claim is H_{a}
Reject H_{0}	There is enough evidence to reject the claim	There is enough evidence to support the claim
Fail to reject H_{0}	There is not enough evidence to reject the claim	There is not enough evidence to support the claim

Example: Interpreting a Decision

You perform a hypothesis test for the following claim. How should you interpret your decision if you reject H_{0} ? If you fail to reject H_{0} ?

1. H_{0} (Claim): A school publicizes that the proportion of its students who are involved in at least one extracurricular activity is 61%.

Solution:

- The claim is represented by H_{0}.

Solution: Interpreting a Decision

- If you reject H_{0}, then you should conclude "there is enough evidence to reject the school's claim that the proportion of students who are involved in at least one extracurricular activity is 61%."
- If you fail to reject H_{0}, then you should conclude "there is not enough evidence to reject the school's claim that proportion of students who are involved in at least one extracurricular activity is 61%."

Example: Interpreting a Decision

You perform a hypothesis test for the following claim. How should you interpret your decision if you reject H_{0} ? If you fail to reject H_{0} ?
2. H_{a} (Claim): A car dealership announces that the mean time for an oil change is less than 15 minutes.

Solution:

- The claim is represented by H_{a}.
- H_{0} is "the mean time for an oil change is greater than or equal to 15 minutes."

Solution: Interpreting a Decision

- If you reject H_{0}, then you should conclude "there is enough evidence to support the dealership's claim that the mean time for an oil change is less than 15 minutes."
- If you fail to reject H_{0}, then you should conclude "there is not enough evidence to support the dealership's claim that the mean time for an oil change is less than 15 minutes."

Steps for Hypothesis Testing

1. State the claim mathematically and verbally. Identify the null and alternative hypotheses.

$$
H_{0}: ? \quad H_{a}: ?
$$

2. Specify the level of significance.

$$
\alpha=?
$$

3. Determine the standardized sampling distribution and sketch its graph.
4. Calculate the test statistic and its corresponding standardized test statistic. Add it to your sketch.

Standardized test statistic

Steps for Hypothesis Testing

5. Find the P-value.
6. Use the following decision rule.

Is the P-value less than or equal to the level of significance? Yos Reject H_{0}

7. Write a statement to interpret the decision in the context of the original claim.
