Lecture \#18-Learning about the world through surveys

Some important definitions:

1. Population - A group of objects or people we wish to study.
2. Parameter - A numerical value that characterizes some aspect of this population.
3. Census - A survey in which EVERY member of the population is measured.
4. Sample - A collection of people or objects taken from the population of interest.
5. Statistic - A numerical characteristic of a sample data. Statistics are used to estimate parameters. Statistics are sometimes called estimators and the numbers that result are called estimates.
6. Bias is measured using the center of the sampling distribution: It is the distance between the center and the population parameter value.
7. Precision is measured using the standard deviation of the sampling distribution, which is called the standard error. When the standard error is small, we say the estimator is precise.
8. Sampling Distribution - the special name for the probability distribution of a statistic. Used to make inferences about a population.

Facts:

1. No matter how many different samples we take, the value of μ (the population mean) is always the same, but the value of \bar{x} changes from sample to sample.
2. The precision of an estimator does NOT depend on the size of a population; it depends only on the sample size.
3. Surveys based on larger sample sizes have smaller standard error and therefore better precision. Increasing sample size improves precision.

Keeping track of parameters and statistics:

Parameters (typically unknown)

1. μ-population mean
2. σ-population standard deviation
3. σ^{2} - population variance
4. p-population proportion

Statistics (based on data)
5. \bar{x} - sample mean
6. s - sample standard deviation
7. s^{2} - sample variance
8. \hat{p} - sample proportion

THE CENTRAL LIMIT THEOREM - Three ways

1. The Central Limit Theorem for a Sample PROPORTION tells us that if we take a random sample from a population, and if the sample size n is large and the population size is much larger than the sample size, then the sampling distribution of the sample proportion \hat{p} is approximately normal with mean p and standard deviation

$$
\sqrt{\frac{p(1-p)}{n}}
$$

(If you don't know the value of p, then you can substitute the value of \hat{p} to calculate the estimated standard error.)
2. The Central Limit Theorem for Sample SUM tells us that if we take a random sample $X_{1}, X_{2}, \ldots, X_{n}$ from a population, and if the sample size n is large and the population size is much larger than the sample size, then the sampling distribution of the sum $X_{1}+X_{2}+\cdots+X_{n}$ is approximately normal with mean $n \mu$ and standard deviation $\sigma \sqrt{n}$.
3. The Central Limit Theorem for Sample MEAN tells us that if we take a random sample from a population, and if the sample size n is large and the population size is much larger than the sample size, then the sampling distribution of the mean \bar{X} is approximately normal with mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$.

