

NEW YORK CITY COLLEGE OF TECHNOLOGY CITY UNIVERSITY OF NEW YORK

An Introduction to Trigonometry

Preparation for MAT 1275: College Algebra and Trigonometry

Prepared by Dr. Janet Liou-Mark

Supported by City Tech Black Male Initiative and NSF STEP grant #0622493

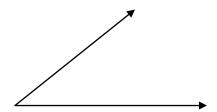
An Introduction to Trigonometry

Table of Contents

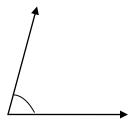
1	Angles	- 1
2	Radians and Degrees	7
3	Defining Trigonometric Functions	- 11
4	Trigonometric Functions of Special Angles	19
5	Reference Angles	24
6	Solving Trigonometric Equations	35
7	Trigonometric Identities	41

Section 1: Angles

1. An **angle** is the joining of two rays at a common endpoint called the vertex.



2. Angles can be named using a letter at the vertex, a Greek letter, or the letters from the rays forming the sides. Examples: _______.



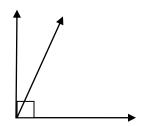
- **3.** Types of angles
 - a) Right angle

b) Straight angle

c) Acute angle

d) Obtuse angle

e) Complementary angles are two angles that sum to ______.

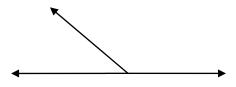


Example 1. Give the complement for each angle:

i) 42°

ii) 83°

- iii) 56°
- f) Supplementary angles are two angles that sum to ______.



Example 2. Give the supplement for each angle:

i) 42°

ii) 83°

iii) 118°

4. Quadrants

Quadrant I

x is ____ and y is ____

Quadrant II

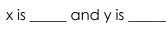
x is ____ and y is ____

Quadrant III

x is ____ and y is ____

Quadrant IV

x is ____ and y is ____



5. A **degree** is ______ of one complete rotation.

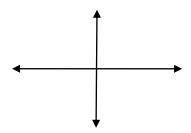
Angles drawn in a counterclockwise direction are _____ angles.

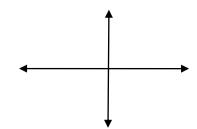
Terminal side

Initial side

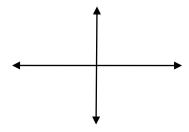
Example3. Draw the following angle:

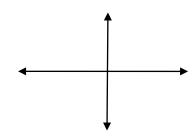
i) 60°



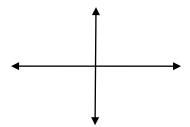


iii) 210°





v) 225°

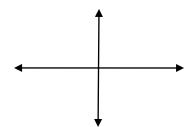


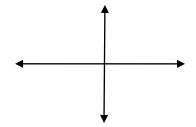
Angles drawn in a clockwise direction are _____ angles.

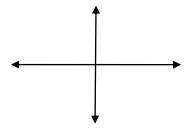
Initial side

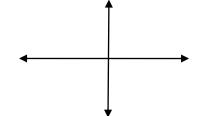
Terminal side

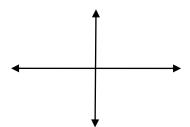
Example 4. Draw the following angle:

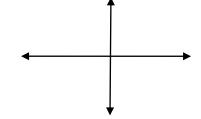












5.	Coterminal angles are angle that share the samesides.	and
	Coterminal angles will always differ by multiples of 360° .	
	The formula to find positive coterminal angles is $ heta+360n$, when	re n=1, 2, 3,
	The formula to find negative coterminal angles is $ heta-360n$, where	ere n=1, 2, 3,
	Example 5. Find two positive and two negative coterminal ar	ngles for each angle
	i) 45°	
	ii) 57°	
	iii) 145°	
	iv) 300°	
	v) -75°	
	vi) -130°	
	∨ii) −290°	

SECTION 1 SUPPLEMENTARY EXERCISES:

1.	Find the compleme a) 73°	nt for each angle	e. d) 30°	
	b) 8°		e) 55°	
	c) 45°		f) 28°	
2.	Find the supplemen a) 6°	t for each angle. d) 45°		
	b) 99°	e) 115°		
	c) 101°	f) 137°		
3. Find two positive and two negative coterminal angles for each angle.				
	a) 10°		g) -60°	
	b) 104°		h) –75°	
	c) 195°		i) -172°	
	d) 315°		j) -320°	
	e) -122°		k) 135°	
	f) -247°			

Section 2: Radians and Degrees

1. Converting from Degrees to Radians

To change from degrees to radians- multiply by $\frac{\pi}{180}$

Example 1. Change the degree measurements to radians.

i) 45°

ii) 30°

iii) 60°

iv) 225°

v) 310°

vi) 28°

viii)
$$-30^{\circ}$$

2. Converting from Radians to Degrees

To change from radians to degrees- multiply by $\frac{180}{\pi}$

Example 2. Change the radian measurements to degrees.

i)
$$\frac{\pi}{4}$$

ii)
$$\frac{3\pi}{4}$$

iii)
$$\frac{2\pi}{3}$$

iv)
$$\frac{11\pi}{6}$$

$$v) \frac{7\pi}{4}$$

$$vi) - \frac{4\pi}{3}$$

$$\forall ii) -\frac{7\pi}{6}$$

$$\forall iii) -\frac{5\pi}{12}$$

SECTION 2 SUPPLEMENTARY EXERCISES:

- 1. Change the degree measurements to radians.
 - a) 120°

g) 315°

b) 270°

h) -160°

c) -12°

i) -290°

- d) -330°
- e) 18°
- f) 280°
- 2. Change the radian measurements to degrees.
 - a) $\frac{7\pi}{4}$

 $h) \frac{13\pi}{4}$

b) $\frac{4\pi}{3}$

i) $-\frac{5\pi}{18}$

c) $\frac{11\pi}{12}$

j) $-\frac{11\pi}{6}$

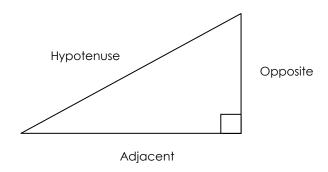
d) $-\frac{5\pi}{6}$

k) $\frac{17\pi}{12}$

- e) $\frac{13\pi}{18}$
- f) $-\pi$
- g) 2π

Section 3: Defining Trigonometric Functions

1. Trigonometric functions:



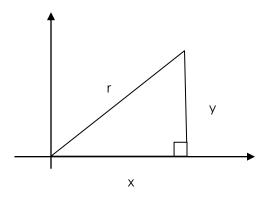
$$\sin \theta =$$
 $\csc \theta =$

$$\cos \theta = \sec \theta =$$

$$an \theta = an \theta = an \theta$$

SOH CAH TOA

2. Trigonometric functions:



$$\sin\theta = \frac{y}{r}$$

$$\csc\theta = \frac{r}{y}$$

$$\cos\theta = \frac{x}{r}$$

$$\sec\theta = \frac{r}{x}$$

$$\tan\theta = \frac{y}{x}$$

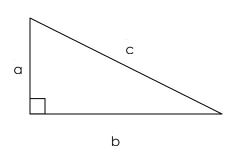
$$\cot \theta = \frac{x}{y}$$

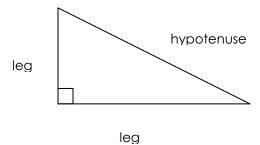
3. The Pythagorean Theorem: For any right triangle with legs a , b and hypotenuse c ,

$$c^2 = a^2 + b^2$$

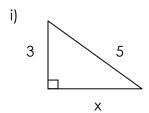
or

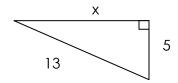
$$hypotenuse^2 = leg^2 + leg^2$$



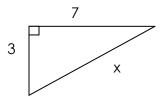


Example 1. Find the missing side of the right triangle.

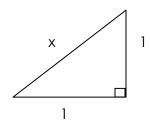




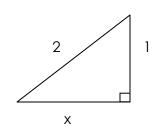
iii)



iv)



v)



4. Reciprocal Identities

$$\sin\theta = \frac{1}{\csc\theta}$$

$$\csc\theta = \frac{1}{\sin\theta}$$

$$\cos\theta = \frac{1}{\sec\theta}$$

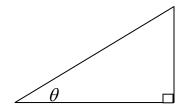
$$\sec \theta = \frac{1}{\cos \theta}$$

$$\tan \theta = \frac{1}{\cot \theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

Example 2. Assume all the triangles are right triangles.

i) Given $\sin \theta = \frac{1}{2}$ find the other five trigonometric functions.



$$\sin \theta =$$

$$\csc\theta =$$

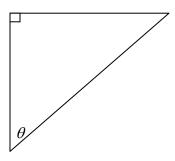
$$\cos \theta =$$

$$\sec \theta =$$

$$\tan \theta =$$

$$\cot \theta =$$

ii) Given $\tan \theta = 1$ find the other five trigonometric functions.



$$\sin \theta =$$

$$\csc\theta =$$

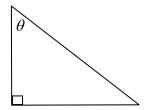
$$\cos \theta =$$

$$\sec \theta =$$

$$\tan \theta =$$

$$\cot \theta =$$

iii) Given $\cos \theta = \frac{\sqrt{3}}{2}$ find the other five trigonometric functions.



$$\sin \theta =$$

$$\csc\theta =$$

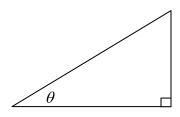
$$\cos \theta =$$

$$\sec \theta =$$

$$\tan \theta =$$

$$\cot \theta =$$

iv) Given $\sin \theta = \frac{\sqrt{7}}{4}$ find the other five trigonometric functions.



$$\sin \theta =$$

$$\csc\theta =$$

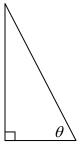
$$\cos \theta =$$

$$\sec \theta =$$

$$\tan \theta =$$

$$\cot \theta =$$

v) Given $\tan \theta = \frac{5}{2}$ find the other five trigonometric functions.



$$\sin \theta =$$

$$\csc\theta =$$

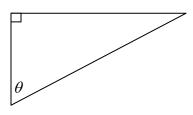
$$\cos \theta =$$

$$\sec \theta =$$

$$\tan \theta =$$

$$\cot \theta =$$

vi) Given $\cos \theta = \frac{\sqrt{5}}{5}$ find the other five trigonometric functions.



$$\sin \theta =$$

$$\csc\theta =$$

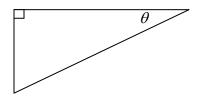
$$\cos \theta =$$

$$\sec \theta =$$

$$\tan \theta =$$

$$\cot \theta =$$

vi) Given $\sec \theta = \frac{4}{3}$ find the other five trigonometric functions.



$$\sin \theta =$$

$$\csc\theta =$$

$$\cos \theta =$$

$$\sec \theta =$$

$$\tan \theta =$$

$$\cot \theta =$$

SECTION 3 SUPPLEMENTARY EXERCISES:

1. In a right triangle, if $\sin \theta = \frac{12}{13}$ find the other five trigonometric functions.

2. In a right triangle, if $\cos \theta = \frac{7}{24}$ find the other five trigonometric functions.

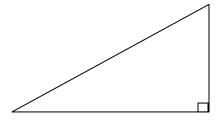
3. In a right triangle, if $\tan \theta = \frac{3}{2}$ find the other five trigonometric functions.

4. In a right triangle, if $\sin \theta = \frac{\sqrt{5}}{7}$ find the other five trigonometric functions.

5. In a right triangle, if $\tan \theta = \frac{\sqrt{3}}{5}$ find the other five trigonometric functions.

Section 4: Trigonometric Functions of Special Angles

1. 30°,45°,60° Trigonometric Functions



$$\sin 30^{\circ} =$$

$$\sin 60^{\circ} =$$

$$\cos 30^{\circ} =$$

$$\cos 60^{\circ} =$$

$$\tan 30^{\circ} =$$

$$\tan 60^{\circ} =$$

$$csc 30^{\circ} =$$

$$\csc 60^{\circ} =$$

$$\sec 30^{\circ} =$$

$$\cot 30^{\circ} =$$

$$\cot 60^{\circ} =$$

$$\sin 45^{\circ} =$$

$$\cos 45^{\circ} =$$

$$\tan 45^{\circ} =$$

$$\csc 45^{\circ} =$$

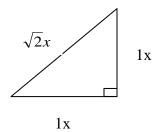
$$\sec 45^{\circ} =$$

$$\cot 45^{\circ} =$$

2. $45^{\circ} - 45^{\circ} - 90^{\circ}$ Triangles

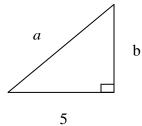
Given a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle with one side of length x, the relationship between the corresponding sides is:

 $1x:1x:\sqrt{2}x$



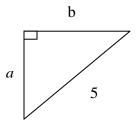
Example 1. Find the missing sides.

i)



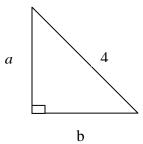
٠

ii)



а

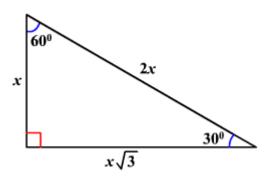
iii)



3. $30^{\circ} - 60^{\circ} - 90^{\circ}$ Triangles

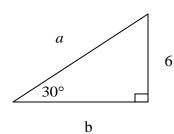
Given a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle with one side of length x, the relationship between the corresponding sides is:

 $1x:\sqrt{3}x:2x$

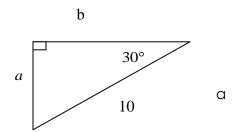


Example 2. Find the missing site.

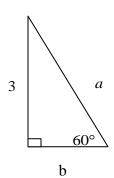
i)



ii)



iii)



SECTION 4 SUPPLEMENTARY EXERCISES:

1. Evaluate.

$$\sin 30^{\circ} =$$

$$\cos 30^{\circ} =$$

$$\cos 60^{\circ} =$$

$$\tan 30^{\circ} =$$

$$\tan 60^{\circ} =$$

$$\csc 30^{\circ} =$$

$$\csc 60^{\circ} =$$

$$\cot 30^{\circ} =$$

$$\sin 45^{\circ} =$$

$$\cos 45^{\circ} =$$

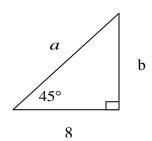
$$\tan 45^{\circ} =$$

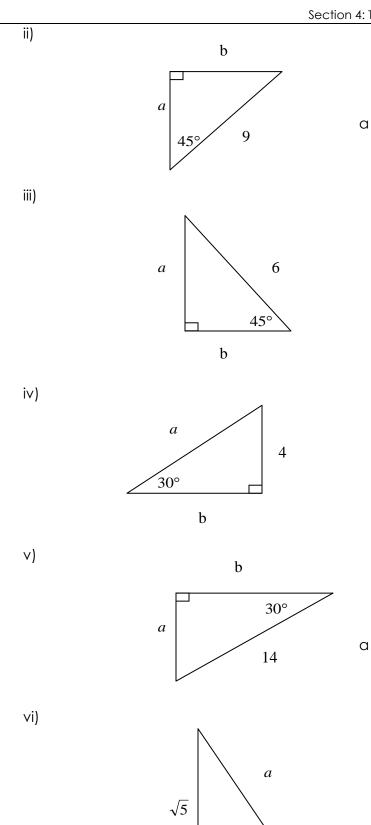
$$\csc 45^{\circ} =$$

$$sec 45^{\circ} =$$

2. Find the missing sides.

i)





60°

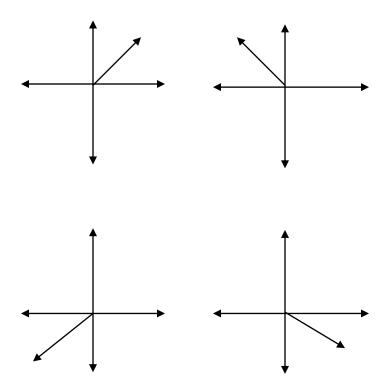
b

Section 5: Reference Angles

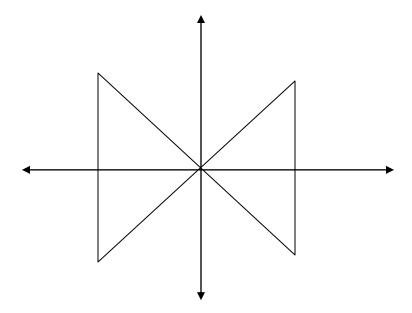
1. The **reference angle** for any angle θ in standard position is the positive acute angle between the terminal side of θ and the x-axis.

2. Quadrants Quadrant I contains angles between _____ Quadrant II contains angles between _____ Quadrant III contains angles between _____ Quadrant IV contains angles between _____ Quadrant II Quadrant I Positive functions: Positive functions: Negative functions: Negative functions: Quadrant III **Quadrant IV** Positive functions: Positive functions: Negative functions: Negative functions:

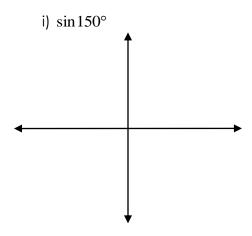
3. Draw where the reference angle is found:

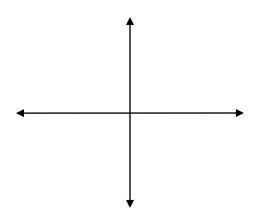


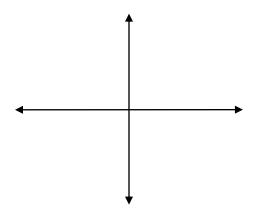
4. To find the reference angle of a triangle in the four quadrants draw a bow-tie.



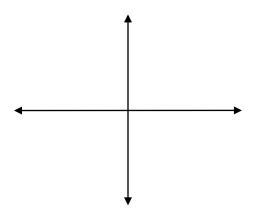
5. Example 1. Express the give trigonometric function in terms of the same function of a positive acute angle and find the value without using a calculator.



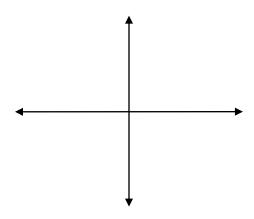




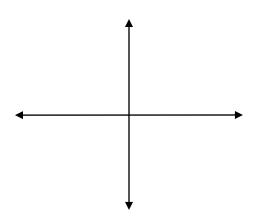
iv) $tan 315^{\circ}$



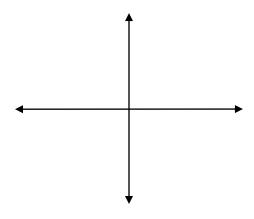
v) sin(-150°)



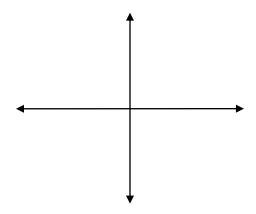
vi) $\cos(-210^{\circ})$



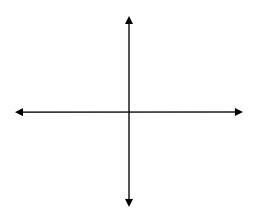
vii) tan(-135°)



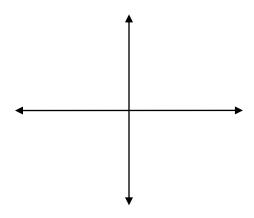
viii) sin 300°



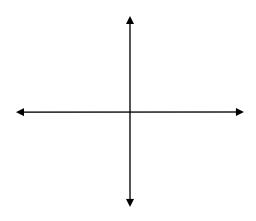
ix) $sin(-45^\circ)$



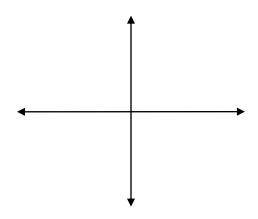
x) cos 495°



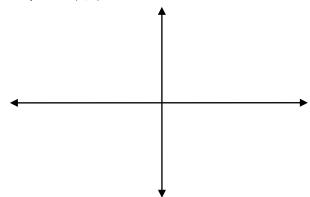
xi) sin 390°



xii) $\tan 405^{\circ}$



- 6. Example 2.
 - i) Find the values of the trigonometric functions of the angle θ with its terminal side passing through the point (3,4):

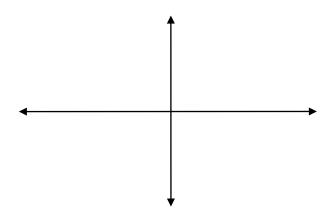


$$\sin \theta = \qquad \qquad \csc \theta =$$

$$\cos \theta = \sec \theta =$$

$$an \theta = cot \theta = cot \theta$$

ii) Find the values of the trigonometric functions of the angle θ with its terminal side passing through the point (-5,12):

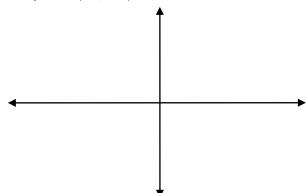


$$\sin \theta = \qquad \qquad \csc \theta =$$

$$\cos \theta = \sec \theta =$$

$$\tan \theta = \cot \theta =$$

iii) Find the values of the trigonometric functions of the angle θ with its terminal side passing through the point (-7,-24):

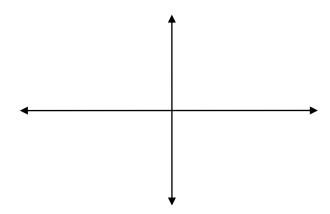


$$\sin \theta = \qquad \qquad \csc \theta =$$

$$\cos \theta = \sec \theta =$$

$$\tan \theta = \cot \theta =$$

iv) Find the values of the trigonometric functions of the angle θ with its terminal side passing through the point (6,-8):

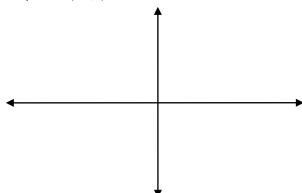


$$\sin \theta = \qquad \qquad \csc \theta =$$

$$\cos \theta = \sec \theta =$$

$$an \theta = cot \theta = cot \theta$$

v) Find the values of the trigonometric functions of the angle θ with its terminal side passing through the point (-3,3) :

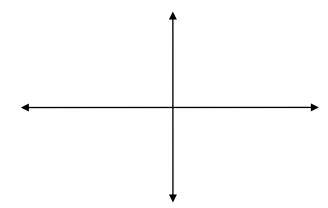


$$\sin \theta = \qquad \qquad \csc \theta =$$

$$\cos \theta = \sec \theta =$$

$$\tan \theta = \cot \theta =$$

vi) Find the values of the trigonometric functions of the angle θ with its terminal side passing through the point $(-\sqrt{7}, -\sqrt{3})$:

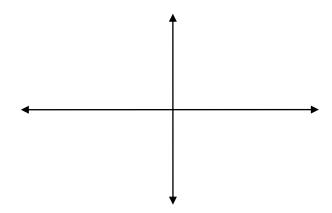


$$\sin \theta = \qquad \qquad \csc \theta =$$

$$\cos \theta = \sec \theta =$$

$$an \theta = cot \theta = cot \theta$$

vii) Find the values of the trigonometric functions of the angle θ with its terminal side passing through the point $(-\sqrt{3},-5)$:



$$\sin \theta = \qquad \qquad \csc \theta =$$

$$\cos \theta = \sec \theta =$$

$$an \theta = cot \theta = cot \theta$$

SECTION 5 SUPPLEMENTARY EXERCISES:

- 1. Fill in the blanks:
 - a) $\sin\theta$ and $\csc\theta$ is positive in Quadrants ____ and ___ $\sin\theta$ and $\csc\theta$ is negative in Quadrants ____ and ____
 - b) $\cos \theta$ and $\sec \theta$ is positive in Quadrants ____ and ___ $\cos \theta$ and $\sec \theta$ is negative in Quadrants and
 - c) $\tan \theta$ and $\cot \theta$ is positive in Quadrants ____ and ___ $\tan \theta$ and $\cot \theta$ is negative in Quadrants ____ and ___
- 2. Express the give trigonometric function in terms of the same function of a positive acute angle and find the value without using a calculator.
 - a) cos 150°

i) $\cot(-135^{\circ})$

b) sin 240°

 $i) \sin(480^\circ)$

c) tan 225°

k) $cos(210^{\circ})$

d) cos 300°

 $1) \cos(-225^{\circ})$

- e) tan120°
- f) sin 135°
- g) cos(-240°)
- h) $tan(-150^{\circ})$
- 3. Find the values of the trigonometric functions of the angle θ with its terminal side passing through the following points:
 - a) (1,1)

g) (-5, -12)

b) (-4,3)

h) $(\sqrt{7}, -12)$

c) $(\sqrt{5},-2)$

i) $(\frac{5}{2},7)$

d) $(6, -\sqrt{10})$

j) $(-3\sqrt{3}, \sqrt{5})$

e) $(-\sqrt{6}, -\sqrt{7})$

k) (-3, -11)

f) $(\sqrt{3}, \sqrt{6})$

Section 6: Solving Trigonometric Equations

1. In algebra, linear equations are solved by isolating the variable and quadratic equations by factoring.

Example 1. Solve for x.

i)
$$2x-1=0$$

ii)
$$\sqrt{3} x - 1 = 0$$

iii)
$$4x^2 - 1 = 0$$

2. The process of solving trigonometric equations is very similar to the process of solving algebraic equations. With trigonometric equations, we look for values of an angle by solving for a specific trigonometric function of that angle.

Example: Find all solutions of the following equations in degrees in the interval $[0^{\circ}, 360^{\circ})$ and in radians in the interval $[0, 2\pi)$

i) Solve:
$$2\sin x - 1 = 0$$

ii) Solve:
$$2\cos x + 1 = 0$$

iii) Solve:
$$5 \tan x + 5 = 0$$

iv) Solve:
$$\sqrt{3}\cos x - 1 = 0$$

v) Solve:
$$5\sin x - \sqrt{3} = 3\sin x$$

vi) Solve: $2\cos x = 6\cos x - \sqrt{12}$

vii) Solve: $4\sin^2 x - 1 = 0$

viii) Solve: $6\tan^2 x - 6 = 0$

ix) Solve: $(2\cos x - \sqrt{3})(2\cos x - 1) = 0$

SECTION 6 SUPPLEMENTARY EXERCISES:

1. Find all solutions of the following equations in degrees in the interval $[0^{\circ}, 360^{\circ})$ and in radians in the interval $[0, 2\pi)$

a) Solve:
$$2\cos x - 1 = 0$$

b) Solve:
$$2\sin x + 1 = 0$$

c) Solve:
$$7 \tan x - 7 = 0$$

d) Solve:
$$\sqrt{3} \tan x - 1 = 0$$

e) Solve:
$$5\cos x - \sqrt{3} = 3\cos x$$

f) Solve:
$$2\sin x = 6\sin x - \sqrt{12}$$

g) Solve:
$$4\cos^2 x - 1 = 0$$

h) Solve:
$$5 \tan^2 x - 5 = 0$$

i) Solve:
$$(2\sin x - \sqrt{3})(2\sin x - 1) = 0$$

j) Solve:
$$3(\sin x + 2) = 3 - \sin x$$

k) Solve:
$$(3\tan x + 1)(\tan x - 2) = 0$$

I) Solve:
$$4(\cot x + 1) = 2(\cot x + 2)$$

m) Solve:
$$3\cos^2 x - 4\cos x + 1 = 0$$

n) Solve:
$$3\sin^2 x + 7\sin x + 2 = 0$$

o) Solve:
$$2\cot^2 x - 13\cot x + 6 = 0$$

Section 7: Trigonometric Identities

1. Reciprocal Identities

$$\sin\theta = \frac{1}{\csc\theta}$$

$$\csc\theta = \frac{1}{\sin\theta}$$

$$\cos\theta = \frac{1}{\sec\theta}$$

$$\sec \theta = \frac{1}{\cos \theta}$$

$$\tan \theta = \frac{1}{\cot \theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

2. Ratio Identities

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

3. Pythagorean Identities

$$\sin^2 \theta + \cos^2 \theta = 1$$

$$\sin^2 \theta =$$

$$\cos^2 \theta =$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

$$\cot^2 \theta =$$
 _____ = (

$$\tan^2\theta + 1 = \sec^2\theta$$

$$\tan^2 \theta =$$
 ______ = (

4. i) Derivation of the Pythagorean Identity $1 + \cot^2 \theta = \csc^2 \theta$

Begin with
$$\sin^2 \theta + \cos^2 \theta = 1$$

Divide the equation by $\sin^2 \theta$.

ii) Derivation of the Pythagorean Identity $\tan^2 \theta + 1 = \sec^2 \theta$

Begin with
$$\sin^2 \theta + \cos^2 \theta = 1$$

Divide the equation by $\cos^2 \theta$.

- **5. To prove or verify a trigonometric identity**, we use trigonometric substitution and algebraic manipulations to either
 - a) transform the right side of the identity into the left side, or
 - b) transform the left side of the identity into the right side.

Example 1.

i) Prove: $\cos \theta \tan \theta = \sin \theta$

ii) Prove: $\cot \alpha \sec \alpha \sin \alpha = 1$

iii) Prove: $\sec x \csc x = \cot x + \tan x$

iv) Prove:
$$\frac{\cos y}{1-\sin y} = \frac{1+\sin y}{\cos y}$$

v) Prove:
$$1 + \cos A = \frac{\sin^2 A}{1 - \cos A}$$

vi) Prove: $\tan B + \cot B = \sec B \csc B$

vii) Prove:
$$\sin^2 a = \frac{1 - \cos^4 a}{1 + \cos^2 a}$$

SECTION 7 SUPPLEMENTARY EXERCISES:

1. Prove the following identities:

$$\frac{\tan A}{\sin A} = \sec A$$

b)
$$\frac{\cot \theta}{\csc \theta} = \cos \theta$$

$$c) \sin B \cot^2 B + \sin B = \csc B$$

$$\frac{1+\cos y}{\sin y} = \frac{\sin y}{1-\cos y}$$

e)
$$\frac{1 + \tan x}{1 + \cot x} = \tan x$$

f)
$$\frac{1}{\cos B} - \cos B = \sin B \tan B$$

g)
$$2\csc^2 t = \frac{1}{1 - \cos t} + \frac{1}{1 + \cos t}$$

h)
$$\sin^4 x - \cos^4 x = 2\sin^2 x - 1$$

i)
$$\sin x \cos x \tan x = 1 - \cos^2 x$$

j)
$$\frac{\tan x}{\sec x} + \frac{\cot x}{\csc x} = \sin x + \cos x$$

$$k) \qquad \frac{\cos x + 1}{\sin^3 x} = \frac{\csc x}{1 - \cos x}$$

$$\cos x + \tan x = \frac{\cos^2 x + \sin x}{\cos x}$$

m)
$$\cot x + \sin x = \frac{\cos x + \sin^2 x}{\sin x}$$

n)
$$\frac{\tan x}{1 + \tan x} = \frac{\sin x}{\sin x + \cos x}$$

p)
$$\frac{1+\cos x}{\tan x + \sin x} = \cot x$$

$$(q) \qquad \frac{\tan x - \sin x}{\tan x \sin x} = \frac{1 - \cos x}{\sin x}$$