
1 Rational exponents and roots

1.1 Prelude

Recall that 24 = 2 · 2 · 2 · 2, that is, the exponent counts the number of times the
base (in this case 2) gets multiplied. This is similar to the expression 4 · 2 where
the 4 counts the number of 2’s that are added.
It follows that for example:

32 · 34 = (write it out) = 3?.

(43)2 = (write it out) = 4?.

What are the general rules?
abac =?

(ab )c =?

Write out
(5 · 2)3 = 5? · 2?

Can you use this to find the general rule

(ab)c =

Write out (
5

2

)3
=

5?

2?

Can you use this to find the general rule(a
b

)c
=
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1.2 Non-natural number exponents

Consider the expression a0. None of the rules we have discussed so far make
sense here.

We would like to give it a meaning so that the rules of exponents continue to
work!

Consider a1 · a0 assuming the rules above are valid. Then

a1 · a0 = a1+0 = a1using the appropriate rule

So a · a0 = a. Dividing both sides by a tells us a0 = 1.
This dictates the definition of the zero exponent!

a0 := 1.

What about negative exponents?

a−b · ab = a−b+b = a0 = 1

so dividing both sides by ab gives a−b = 1
ab .

So we must define
a−b =

1
ab

!

That is to say, the negative in the exponent indicates a reciprocal.
One could also write (a

b

)−c
=

(
b

a

)c
.

Consider these examples:

1. 2−1 = 1
2

2. −2−2 = − 1
4 (Note what the base is!)

3. (−2)−2 = 1
4

4.
(
2
3

)−2
= 9

4

5. 2x−2 = 2
x 2

6. 3x
y−3z =

3xy3

z

2
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1.3 Scientific Notation

Small and large numbers are difficult to write down (for example imagine writing
down the distance in inches from here to the moon, or the width of a hair mea-
sured in miles). However, approximations can be easily written down in what is
called scientific notation. We first note that, for example,

2.63 · 10 = 263

and
63.4

10
= 6.34.

Observe what happened to the decimal place when multiplying or dividing by
10.
Multiply the following:

3.45 × 108 =

3.45 × 10−5 =
3.45

105
=

The numbers on the left-hand side in the above two equalities are written in
scientific notation, that is, each number has a specific format: each is a number
between 1 and 10 including 1, multiplied by an integer power of 10 (positive or
negative).

Here are a couple more examples of numbers written in scientific notation

2, 450, 000, 000 = 2.45 × 109.

0.0000067 = 6.7 × 10−6.

This notation makes it easy to multiply and divide such numbers:

(3 × 105)(2 × 10−10)
(1.2 × 10−4)(2.0 × 10−6) =

(
3 · 2
1.2 · 2

)
·
(
105 · 10−10

10−4 · 10−6

)
=

6

2.4
·
10−5

1
10−10

= .25 · 10−51010

= .25 · 105

= 2.5 × 10−1105

= 2.5 × 104
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1.4 Rational Exponents

What about rational exponents?

(3
1
2 )2 = 3 so 3

1
2 is a solution to the equation x2 = 3, but we know the positive

solution is exactly
√
3. So 3

1
2 :=

√
3.

Here are some other examples of rational exponents

(2
1
3 )3 = 2

1
3
3
1 = 2, so, 2

1
3 is the solution to the equation x3 = 2. So, 2

1
3 =

3√2

And,

(3
1
4 )4 = 3

1
4 ·

4
1 = 3, so, 3

1
4 is a solution to the equation x4 = 3, and taking it to be a positive solution, we see 3

1
4 =

4√3.

More generally, (a 1
b )b = a so a

1
b is a solution to the equation xb = a, which

we know as b√a, so, taking the positive solution, we must define

a
1
b := b√a.

For example

1. 81/3 = 3√8 = 2

2.
(

8
27

) 1
3
= 2

3

3. 4
3
2 = (4

1
2 )3 = (

√
4)3 = 23 = 8

4. 82/3 = (81/3)2 = 22 = 4

Here are some examples that require us to use several rules we have learned
in this chapter

1. (9x3y
2
3 )

3
2 = 9

3
2x3· 32y

2
3

3
2 = 27

√
x
9
y

2. (xy−3)1/3 = x 1/3y−1 =
3√x
y

3. xy−
1
2

(
x−2

y− 2
3 x

2

)− 1
2

= xy−
1
2

(
x

y
1
3 x−1

)
=

x 2y− 1
2

y
1
2 x−1
= x 2x

y
1
2 y

1
2

= x 3

y

4


	1 Rational exponents and roots
	1.1 Prelude
	1.2 Non-natural number exponents
	1.3 Scientific Notation
	1.4 Rational Exponents


