1 Rational exponents and roots

1.1 Prelude

Recall that $2^{4}=2 \cdot 2 \cdot 2 \cdot 2$, that is, the exponent counts the number of times the base (in this case 2) gets multiplied. This is similar to the expression $4 \cdot 2$ where the 4 counts the number of 2's that are added.
It follows that for example:

$$
\begin{array}{ll}
3^{2} \cdot 3^{4}= & \text { (write it out) }=3 ? \\
\left(4^{3}\right)^{2}= & \text { (write it out) }=4^{?}
\end{array}
$$

What are the general rules?

$$
\begin{aligned}
& a^{b} a^{c}=? \\
& \left(a^{b}\right)^{c}=?
\end{aligned}
$$

Write out

$$
(5 \cdot 2)^{3}=5^{?} \cdot 2^{?}
$$

Can you use this to find the general rule

$$
(a b)^{c}=
$$

Write out

$$
\left(\frac{5}{2}\right)^{3}=\frac{5^{?}}{2^{?}}
$$

Can you use this to find the general rule

$$
\left(\frac{a}{b}\right)^{c}=
$$

1.2 Non-natural number exponents

Consider the expression a^{0}. None of the rules we have discussed so far make sense here.

We would like to give it a meaning so that the rules of exponents continue to work!

Consider $a^{1} \cdot a^{0}$ assuming the rules above are valid. Then

$$
a^{1} \cdot a^{0}=a^{1+0}=a^{1} \text { using the appropriate rule }
$$

So $a \cdot a^{0}=a$. Dividing both sides by a tells us $a^{0}=1$.
This dictates the definition of the zero exponent!

$$
a^{0}:=1
$$

What about negative exponents?

$$
a^{-b} \cdot a^{b}=a^{-b+b}=a^{0}=1
$$

so dividing both sides by a^{b} gives $a^{-b}=\frac{1}{a^{b}}$.
So we must define

$$
a^{-b}=\frac{1}{a^{b}}!
$$

That is to say, the negative in the exponent indicates a reciprocal.
One could also write

$$
\left(\frac{a}{b}\right)^{-c}=\left(\frac{b}{a}\right)^{c}
$$

Consider these examples:

1. $2^{-1}=\frac{1}{2}$
2. $-2^{-2}=-\frac{1}{4}$ (Note what the base is!)
3. $(-2)^{-2}=\frac{1}{4}$
4. $\left(\frac{2}{3}\right)^{-2}=\frac{9}{4}$
5. $2 x^{-2}=\frac{2}{x^{2}}$
6. $\frac{3 x}{y^{-3} z}=\frac{3 x y^{3}}{z}$

1.3 Scientific Notation

Small and large numbers are difficult to write down (for example imagine writing down the distance in inches from here to the moon, or the width of a hair measured in miles). However, approximations can be easily written down in what is called scientific notation. We first note that, for example,

$$
2.63 \cdot 10=263
$$

and

$$
\frac{63.4}{10}=6.34
$$

Observe what happened to the decimal place when multiplying or dividing by 10.

Multiply the following:

$$
\begin{gathered}
3.45 \times 10^{8}= \\
3.45 \times 10^{-5}=\frac{3.45}{10^{5}}=
\end{gathered}
$$

The numbers on the left-hand side in the above two equalities are written in scientific notation, that is, each number has a specific format: each is a number between 1 and 10 including 1, multiplied by an integer power of 10 (positive or negative).

Here are a couple more examples of numbers written in scientific notation

$$
\begin{gathered}
2,450,000,000=2.45 \times 10^{9} . \\
0.0000067=6.7 \times 10^{-6}
\end{gathered}
$$

This notation makes it easy to multiply and divide such numbers:

$$
\begin{aligned}
\frac{\left(3 \times 10^{5}\right)\left(2 \times 10^{-10}\right)}{\left(1.2 \times 10^{-4}\right)\left(2.0 \times 10^{-} 6\right)} & =\left(\frac{3 \cdot 2}{1.2 \cdot 2}\right) \cdot\left(\frac{10^{5} \cdot 10^{-10}}{10^{-4} \cdot 10^{-6}}\right) \\
& =\frac{6}{2.4} \cdot \frac{10^{-5}}{1} 10^{-10} \\
& =.25 \cdot 10^{-5} 10^{10} \\
& =.25 \cdot 10^{5} \\
& =2.5 \times 10^{-1} 10^{5} \\
& =2.5 \times 10^{4}
\end{aligned}
$$

1 Rational exponents and roots

1.4 Rational Exponents

What about rational exponents?
$\left(3^{\frac{1}{2}}\right)^{2}=3$ so $3^{\frac{1}{2}}$ is a solution to the equation $x^{2}=3$, but we know the positive solution is exactly $\sqrt{3}$. So $3^{\frac{1}{2}}:=\sqrt{3}$.

Here are some other examples of rational exponents
$\left(2^{\frac{1}{3}}\right)^{3}=2^{\frac{1}{3} \frac{3}{1}}=2$, so, $2^{\frac{1}{3}}$ is the solution to the equation $x^{3}=2$. So, $2^{\frac{1}{3}}=\sqrt[3]{2}$
And,
$\left(3^{\frac{1}{4}}\right)^{4}=3^{\frac{1}{4} \cdot \frac{4}{1}}=3$, so, $3^{\frac{1}{4}}$ is a solution to the equation $x^{4}=3$, and taking it to be a positive sol
More generally, $\left(a^{\frac{1}{b}}\right)^{b}=a$ so $a^{\frac{1}{b}}$ is a solution to the equation $x^{b}=a$, which we know as $\sqrt[b]{a}$, so, taking the positive solution, we must define

$$
a^{\frac{1}{b}}:=\sqrt[b]{a}
$$

For example

1. $8^{1 / 3}=\sqrt[3]{8}=2$
2. $\left(\frac{8}{27}\right)^{\frac{1}{3}}=\frac{2}{3}$
3. $4^{\frac{3}{2}}=\left(4^{\frac{1}{2}}\right)^{3}=(\sqrt{4})^{3}=2^{3}=8$
4. $8^{2 / 3}=\left(8^{1 / 3}\right)^{2}=2^{2}=4$

Here are some examples that require us to use several rules we have learned in this chapter

1. $\left(9 x^{3} y^{\frac{2}{3}}\right)^{\frac{3}{2}}=9^{\frac{3}{2}} x^{3 \cdot \frac{3}{2}} y^{\frac{2}{3} \frac{3}{2}}=27 \sqrt{x}^{9} y$
2. $\left(x y^{-3}\right)^{1 / 3}=x^{1 / 3} y^{-1}=\frac{\sqrt[3]{x}}{y}$
3. $x y^{-\frac{1}{2}}\left(\frac{x^{-2}}{y^{-\frac{2}{3} x^{2}}}\right)^{-\frac{1}{2}}=x y^{-\frac{1}{2}}\left(\frac{x}{y^{\frac{1}{3}} x^{-1}}\right)=\frac{x^{2} y^{-\frac{1}{2}}}{y^{\frac{1}{2}} x^{-1}}=\frac{x^{2} x}{y^{\frac{1}{2}} y^{\frac{1}{2}}}=\frac{x^{3}}{y}$
