Parabolas: The basic equation: $y=x^{2}$
As with all equations, solutions are ordered pairs (a, b) such that $b=a^{2}$. We will find several solutions and graph them:

Note that
there is symmetry:

$$
(-a)^{2}=a^{2}
$$

Note the shape of the graph of $y=x^{2}$.
The "turning point" is called the vertex. Here, the vertex is $(0,0)$.
Remark: There is a geometric description of the parabola, but we wont this discuss here.
Circles: The basic circle:
The basic circle of radius r is the set of points
 a distance r from $(0,0) ;(0,0)$ is called the center.
Let (x, y) be any point on the circle. Then, Using the Pythagorean Theorem ($b \hat{\}_{a}^{c} \Rightarrow a^{2}+b^{2}=c^{2}$) we see $x^{2}+y^{2}=r^{2}$.

Let $d=$ distance between $\left(x_{1}, y_{1}\right) \&\left(x_{2}, y_{2}\right)$.
Note :

$$
\begin{aligned}
& \text { So, }\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}=d^{2} \\
& \Rightarrow d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} .}
\end{aligned}
$$

This is called the distance formula.

Summary: $y=x^{2}$ basic parabola

Transformations:

Examples:
$(0,0)$ is the vertex of $y=x^{2}$.
$(2,0)$ is the vertex of $y=(x-2)^{2}$

At the vertex:
The lefter right hand sides of $y=x^{2}$ are 0 . $y=(x-2)^{2}$ are 0

Try: What does the graph of $y=(x+2)^{2}$ look like? What is the vertex?

$$
(x-2)^{2}+y^{2}=r^{2}
$$

$(0,0)$ is the center of $x^{2}+y^{2}=r^{2}$.
At the center
the left side of its equation is 0 .
$(2,0)$ is the center of

$$
(x-2)^{2}+y^{2}=r^{2}
$$

Try: What does the graph of $(x+z)^{2}+y^{2}=25$ look like? What is the center? what is the radius?

Example:

The vertex is $(0,1)$, which is where both sides of the equation $y=x^{2}$ are zero.

$$
x^{2}+(y-1)^{2}=r^{2}
$$

Try: What does the graph of $y+2=x^{2}$ look like? What is the vertex?

Example Graph $y-2=(x+1)^{2}$
The vertex is $(-1,2)$; but is

Graph: $(x+1)^{2}+(y-2)^{2}=2$.
The center is $(-1,2)$.

Example

Consider The graph of

y	$2 y$	x
2	4	-2
$\frac{1}{2}$	1	-1
0	0	0
$\frac{1}{2}$	1	1
2	4	2

$2 y=x^{2}$ is

The difference between this graph and the graph of $y=x^{2}$ is the scale on the y-axis : If the unit for $y=x^{z}$ is 1 cm then the unit for $2 y=x^{2}$ is $\frac{1}{2} \mathrm{~cm}$ $\left(2 \cdot \frac{1}{2}=1\right)$.
Graph these: $y=x^{2}$ \& $2 y=x^{2}$ On Desmos.
Compared to the graph of $y=x^{2}$, the graph of $2 y=x^{2}$ is compressed by a factor of 2 .

Note

$$
\begin{gathered}
x^{2}+(2 y)^{2}=r^{2} \\
\text { or } x^{2}+4 y^{2}=r^{2} \\
y
\end{gathered}
$$

View $x^{2}+y^{2}=4$
\& $x^{2}+(2 y)^{2}=4$
on Desmos!
Example:

$$
\frac{\text { Example: }}{\frac{1}{2} y=x^{2}}
$$

Example $-y=x^{2}$

y	$-y$	x
-4	4	-2
-1	1	-1
0	0	0
-1	1	1
-4	4	2

A similar transform for a circle produces no change! why?

Graph: $-3(y-2)=(x+2)^{2}$:
Vertex is $(-2,2)$.
$-3 y=x^{2}:$

Compared to $y=x^{2}$, it is compressed along the y-axis by a factor of $\frac{1}{3}$ and

Toy: Graph

$$
\frac{1}{2}(y+3)=(x-1)^{2}
$$

What is the vertex?

Example Graph: $y-x^{2}+4 x-2=0$
Let's complete the square to putt in form $a(y-k)=(x-h)^{2}$

$$
\begin{aligned}
& y-2=x^{2}-4 x+4-4 \\
\Rightarrow & y-2=(x-2)^{2}-4 \\
\Rightarrow & y+2=(x-2)^{2}
\end{aligned}
$$

Try: Graph:

$$
y+2 x^{2}-8 x-3=0
$$

$$
\begin{aligned}
& \text { Example: } x^{2}+y^{2}+4 x-6 y-7=0 \\
& \Rightarrow x^{2}+4 x+4-4+y^{2}-6 y+9-9-7=0 \\
& \Rightarrow(x+2)^{2}+(y-3)^{2}-9-7=0 \\
& \Rightarrow(x+2)^{2}+(y-3)^{2}=16
\end{aligned}
$$

So $r=4$ \& the vertex is $(-2,3)$.

Try: Graph

$$
x^{2}+y^{2}-4 x+2 y+1=0
$$

Remark: for some problems you will
need the distance formula and the midpoint formula:

