Final Exam Review- MAT 1275 - Fall 2023

The following are the types of problems you may see on the final exam (they are not necessarily the exact problems).

1 Questions requiring supportive work

- 1. Simplify $\frac{x^2}{x^2-4} \frac{x-2}{x+2}$.
- 2. Simplify $\left(\frac{4x^3y^{-2}}{16x^{-3}y^4}\right)^{-1/2}$.
- 3. Write in the form a + bi: $\frac{2 5i}{3 4i}$.
- 4. Simplify $(3\sqrt{5} + 2\sqrt{7})(3\sqrt{5} 2\sqrt{7})$.
- 5. Simplify $\frac{9x^4y^3 12x^2y^4 + 3xy^3}{3xy^3}.$
- 6. Simplify $\frac{\frac{x^2 4}{x^2 x}}{\frac{x^2 3x + 2}{x}}.$
- 7. Write using one radical $\sqrt[3]{\sqrt{x^5}}$.
- 8. Solve for x and simplify the answer: $2x^2 2x 3 = 0$.
- 9. Solve $\frac{x}{x-2} = -\frac{1}{3} + \frac{10}{x}$.
- 10. Solve for y and simplify the answer: $\sqrt{y-2}-4=-y$.
- 11. Evaluate $x^3 2x^2 5x + 6$ at x = 1. What does this tell you about $x^3 2x^2 5x + 6$? Use long division to rewrite this polynomial as a product of two factors and then find all solutions to the equation $x^3 2x^2 5x + 6 = 0$.
- 12. Find all solutions to the equation $3x^3 27x = 0$.
- 13. Find an equation for a line which passes through (1,-5) which is perpendicular to $y=\frac{1}{3}x+4$. Graph your line.
- 14. Given the following quadratic equation, sketch and label the graph: $y^2 = -x^2 4x + 5$.
- 15. By completing the square, find the vertex and the axis of symmetry of the parabola whose equation is the following: $y = x^2 4x + 5$.
- 16. (This problem doesn't require work but the answer is included below.) Consider the following graph of an equation of the form $y = ax^2 + bx + c$.

Mark true or false.

- (a) There is a solution for which y = -9.
- (b) There is exactly one solution for which $x = \sqrt{3}$.
- (c) The value of c is -9.
- (d) The value of a is negative.
- (e) The system $\begin{cases} y = ax^2 + bx + c \\ y = 3 \end{cases}$ has exactly two solutions.
- (f) The axis of symmetry is given by the equation y = -9.
- 17. Find all solutions to

$$\begin{cases} 2x - 3y^2 = 1\\ -x + 2y = -4 \end{cases}$$

18. Find all solutions to

$$\begin{cases} 2x - 3y = 7 \\ -x + 2y = -4 \end{cases}$$

- 19. A 10-foot ladder is leaning up against a wall. If the base of the ladder is situated 4 feet away from the base of the wall, what is the angle of elevation of the ladder? Draw a picture that depicts the situation and label the relevant information. Round your answer to the nearest tenth of a degree.
- 20. For each of the two expressions $\cos(-210^{\circ})$ and $\tan\left(\frac{7\pi}{4}\right)$:
 - (a) identify the quadrant in which the angle is located,
 - (b) find the reference angle,
 - (c) find the exact value.
- 21. Given $\sin(x) = -\frac{2}{5}$ and $\cos(x) > 0$, find the other 5 trigonometric values.
- 22. Given a $\triangle ABC$ with $\angle C = 40^{\circ}$, c = 3 feet and b = 4 feet, find $\angle A$. Draw a picture of the triangle and label it with the information provided. Round each answer to the nearest tenth. You may use either the law of sines:

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

or the law of cosines:

$$c^{2} = a^{2} + b^{2} - 2ab\cos(C)$$

 $a^{2} = c^{2} + b^{2} - 2cb\cos(A)$

$$b^2 = a^2 + c^2 - 2ac\cos(B).$$

23. Solve for x and round your answer to the nearest tenth:

$$3^x = 12.$$

24. Evaluate (without using a calculator):

$$\log_5(25\sqrt[4]{5}).$$

25. Evaluate $-2^{-4} + 3^0 - (2/3)^{-1}$ and indicate where it is on a number line.

26. Simplify
$$\frac{\sqrt[4]{x^3}}{\sqrt{x}}$$
.

2 True/False questions

The following is just a sample of the types of problems you may find. Label the following True or False.

- 1. There could be 5 solutions to the system of equations: $\begin{cases} x^2 + y^2 = 6 \\ x^2 y = 8 \end{cases}$
- 2. The product of two polynomials of degree 3 has degree 9.
- 3. If 7 is a root of a polynomial, then (x-7) is a factor of that polynomial.
- 4. The lines $y = \frac{1}{2}x 9$ and $y = 2x \frac{1}{2}$ are perpendicular.
- 5. If $\cos \theta < 0$, then θ is either in the second or the third quadrant.
- 6. The equation $3^x = 12$ has one solution and it is between 2 and 3.
- 7. log 7 is bigger than 2.
- 8. The expression $\sqrt{9x^9y^4}$ is equal to $3x^3y^2$ for all positive x and y.
- 9. The equations $\frac{1}{2}x^2 + \frac{1}{3}x = \frac{1}{6}$ and $3x^2 + 2x = 1$ are equivalent (they have the same solutions).
- 10. $(a+b)^2 = a^2 + b^2$
- 11. $(2\sqrt{7} 3\sqrt{5})(2\sqrt{7} + 3\sqrt{5}) = 4 \cdot 7 9 \cdot 5.$
- 12. $x^{-1} = -x$.
- 13. $(2\sqrt{7})^2 = 2 \cdot 7 = 14$.

3 Give example questions

The following are just examples of the types of examples you may be asked to provide. Give an example of:

- (a) an equation of a line that passes through (2,5)
- (b) a radical expression
- (c) a rational equation in one variable for which -3 cannot be a solution
- (d) a polynomial with leading coefficient -7, degree 5, and 4 terms
- (e) a polynomial of degree 2 with roots -3 and 5
- (f) an equation of a horizontal line that passes through $(8, -\sqrt{3})$
- (g) an equation of a circle with center in the second quadrant
- (h) trigonometric ratio which has a different sign than tangent of an angle in quadrant III.
- (i) an equation that has no real solution
- (j) an equation with one variable that has two solutions
- (k) Give an example of how to add fractions with unequal denominators.

4 Answers to questions from part 1

1.
$$\frac{4(x-1)}{(x+2)(x-2)}$$

2.
$$\sqrt{\frac{3y^6}{2x^6}}$$

$$3. \ \frac{26}{25} - \frac{7}{25}i$$

5.
$$3x^3 - 4xy + 1$$

6.
$$\frac{x+2}{(x-1)^2}, x \neq 2$$

7.
$$\sqrt[6]{x^5}$$

8.
$$\frac{1}{2} \pm \frac{\sqrt{7}}{2}$$

9.
$$x = 3 \text{ or } 5$$

10.
$$y = 3$$

11.
$$x = -2, 1, \text{ or } 3$$

12.
$$x = 0, 3, \text{ or } -3$$

13.
$$y + 5 = -3(x - 1)$$

14. This equation is equivalent to
$$(x+2)^2 + y^2 = 9$$
 and so the solutions form a circle centered at $(-2,0)$ with radius 3:

15.
$$y-1=(x-2)^2$$
, The vertex is $(2,1)$ and the axis of symmetry is $x=2$.

17.
$$(2,-1), (\frac{26}{3}, \frac{7}{3})$$

- 18. (2,-1)
- 19. $\cos^{-1} \frac{4}{10} \approx 66.4^{\circ}$
- 20. II, 30°, $\frac{-\sqrt{3}}{2}$; IV, $\frac{\pi}{4}$,-1
- $21. \ \cos(x) = \frac{\sqrt{21}}{5}, \tan(x) = \frac{-2}{\sqrt{21}}, \csc(x) = \frac{-5}{2}, \sec(x) = \frac{5}{\sqrt{21}}, \cot(x) = \frac{-\sqrt{21}}{2}$
- 22. 81°
- 23. 2.3
- 24. $\frac{9}{4}$
- 25. $-\frac{9}{16}$, which is between -1 and 0 on the number line.
- 26. $\sqrt[4]{x}$.