Exam 4 Review

Math 1175, Fundamentals of Mathematics, Fall 2011, Mathematics and The Brooklyn Bridge

1. Explain why dividing both sides of $x^{2}=4 x$ by x is an illegal operation. Hint: when solving equations, doing something which may eliminate a legitimate solution is not allowed.
2. In contrast to eliminating a legitimate solution, doing something that introduces an extraneous or false solution is allowed. Give an example of such a process and explain how, in spite of the introduction of false solutions, you can finish with the correct solution set.
3. You have now learned 3 methods for solving quadratic equations. What are they? Select your 2 favorite methods. Compare the advantages and disadvantages of the 2 you have selected. For each of your 2 selected methods, give an example of an equation best solved by that method.
4. Simplify
a) $\sqrt{49 x^{10}}$
b) $2 p \sqrt{63 p^{5}}$ c) $-3 p q^{2} \sqrt{125 k^{7} q^{8}}$
5. Simplify and multiply:
a) $(2 \sqrt{3}-\sqrt{5})^{2}$
b) $3 \sqrt{3}(\sqrt{2 x}-4 x \sqrt{15})$
c) $(3 \sqrt{2}+2 \sqrt{3})(2 \sqrt{50}-3 \sqrt{12})$
6. Simplify and rationalize the denominator:
a) $\frac{\sqrt{24 x^{5}}}{\sqrt{3 x^{2} y}}$
b) $\frac{\sqrt{4 x}}{2 \sqrt{3}}$
c) $\frac{\sqrt{24}}{3-\sqrt{3}}$
d) $\frac{2 \sqrt{3}-3 \sqrt{2}}{\sqrt{3}+\sqrt{8}}$
e) $\frac{x \sqrt{2}}{x \sqrt{2}+3 \sqrt{5}}$
7. Solve for x and check for extraneous solutions:
a) $x-\sqrt{x-2}=4$
b) $x=4+3 \sqrt{x-4}$
c) $\sqrt{5-x}-x=1$
8. Use the square root property to solve for y :
a) $y^{2}=135$
b) $(y+4)^{2}=169$
9. Solve for x using the quadratic formula. Express the answers in simplest radical form.
a) $x^{2}+10 x+7=0$
b) $3 x^{2}+3=8 x$
c) $x^{2}-6 x=4$
d) $(x+2)(x+4)=2$
10. In $\triangle \mathrm{ABC}, \angle \mathrm{C}=90^{\circ}, \mathrm{AC}=x-1$, $\mathrm{BC}=2 x, \mathrm{AB}=2 x+1$. Find:
a) $x \quad$ b) all three sides of $\triangle A B C$
a) $x \quad$ b) all three sides of $\triangle A B C$
a) x
b) perimeter of $\triangle \mathrm{DEF}$
c) area of $\triangle \mathrm{ABC}$
c) area of $\triangle \mathrm{DEF}$
11. In $\triangle \mathrm{DEF}, \angle \mathrm{F}=90^{\circ}, \mathrm{EF}=3 \mathrm{~cm}, \mathrm{DE}=7 \mathrm{~cm}$. Find (exact and approximate to one decimal place):

12. Find exact and approximate perimeter of triangle to one decimal place

13. The rectangle has perimeter $12 \sqrt{7} \mathrm{~cm}$.

a) Find the exact value of x.
b) Find the area and perimeter of the rectangle.
14. One of the main cables of a model bridge has as equation $x^{2}=16 h$ where x is the horizontal distance from its lowest point and h is the height above its lowest point. The span between the towers is 16 inches.
a) Draw a sketch and determine the vertical height of the cable. (Hint: let $x=8$, solve for h.)
b) Determine exact and approx. location(s) where h is 2 inches. Use the square root principle in the solution.
