Handout for section

Equivalent Vectors

Every vector \overrightarrow{PQ} is equivalent to a vector \overrightarrow{OR} with initial point at the origin: If $P = (x_1, y_1)$ and $Q = (x_2, y_2)$, then

 $\overrightarrow{PQ} = \overrightarrow{OR}$, where

where $R = (x_2 - x_1, y_2 - y_1)$.

9.3

Scalar Multiplication

If k is a real number and $v = \langle a, b \rangle$ is a vector, then

kv is the vector $\langle ka, kb \rangle$.

The vector kv is called a scalar multiple of v.

Geometric Interpretation of Scalar Multiplication

The magnitude of the vector $k\mathbf{v}$ is |k| times the length of \mathbf{v} , that is,

$$||k\mathbf{v}|| = |k| \cdot ||\mathbf{v}||.$$

The direction of $k\mathbf{v}$ is the same as that of \mathbf{v} when k is positive and opposite that of \mathbf{v} when k is negative.

Vector Addition

If $\mathbf{u} = \langle a, b \rangle$ and $\mathbf{v} = \langle c, d \rangle$, then

$$\mathbf{u} + \mathbf{v} = \langle a + c, b + d \rangle.$$

Geometric Interpretations of Vector Addition

- 1. If \mathbf{u} and \mathbf{v} are vectors with the same initial point P, then $\mathbf{u} + \mathbf{v}$ is the vector \overrightarrow{PQ} , where \overrightarrow{PQ} is the diagonal of the parallelogram with adjacent sides \mathbf{u} and \mathbf{v} .
- 2. If the vector \mathbf{v} is moved (without changing its magnitude or direction) so that its initial point lies on the endpoint of the vector \mathbf{u} , then $\mathbf{u} + \mathbf{v}$ is the vector with the same initial point P as \mathbf{u} and the same terminal point Q as \mathbf{v} .

Vector Subtraction

Properties of Vector

Addition and Scalar

Multiplication

If $\mathbf{u} = \langle a, b \rangle$ and $\mathbf{v} = \langle c, d \rangle$, then $\mathbf{u} - \mathbf{v}$ is the vector

$$\mathbf{u} + (-\mathbf{v}) = \langle a, b \rangle + \langle -c, -d \rangle$$
$$= \langle a - c, b - d \rangle.$$

For

For any vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} and any scalars r and s,

1.
$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$$

$$2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

3.
$$v + 0 = v = 0 + v$$

4.
$$\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$$

5.
$$r(\mathbf{u} + \mathbf{v}) = r\mathbf{u} + r\mathbf{v}$$

6.
$$(r+s)\mathbf{v} = r\mathbf{v} + s\mathbf{v}$$

7.
$$(rs)\mathbf{v} = r(s\mathbf{v}) = s(r\mathbf{v})$$

8.
$$1v = v$$

9.
$$0v = 0$$
 and $r0 = 0$

Unit Vectors

If **v** is a nonzero vector, then $\frac{1}{\|\mathbf{v}\|}$ **v** is a unit vector with the same direction as **v**.

Components of the Direction Angle

If
$$\mathbf{v} = \langle a, b \rangle = a\mathbf{i} + b\mathbf{j}$$
, then

$$a = \|\mathbf{v}\| \cos \theta$$
 and $b = \|\mathbf{v}\| \sin \theta$

where θ is the direction angle of v.