Trigonometry - Double and Half-Angle Formulas

Proposition 18.1. For any angles α and β , we have

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

$$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

Proposition 18.5. Let α be an angle. Then we have the half-angle formulas:

$$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}$$

$$\cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}}$$

$$\tan\frac{\alpha}{2} = \frac{1-\cos\alpha}{\sin\alpha} = \frac{\sin\alpha}{1+\cos\alpha} = \pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}}$$

$$\sin(2\alpha) = 2\sin\alpha\cos\alpha$$

$$\cos(2\alpha) = \cos^2\alpha - \sin^2\alpha = 1 - 2\sin^2\alpha = 2\cos^2\alpha - 1$$

$$\tan(2\alpha) = \frac{2\tan\alpha}{1 - \tan^2\alpha}$$