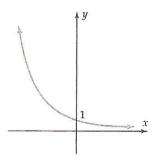


When a > 1, the graph of $f(x) = a^x$ has the shape shown here and the pr erties listed below.

The graph is above the x-axis.


asymptote. The y-intercept is 1. f(x) is an increasing function.

The larger the base a, the more stee ρ the graph rises to the right.

The negative x-axis is a horizontal

The Exponential Function $f(x) = a^{x} (0 < a < 1)$

When 0 < a < 1, the graph of $f(x) = a^x$ has the shape shown here and the properties listed below.

Handout For Section

The y-intercept is 1.

f(x) is a decreasing function.

The graph is above the x-axis. The positive x-axis is a horizontal asymptote.

> The closer the base a is to 0, the more steeply the graph falls to the right.

Exponential Growth

Exponential growth can be described by a function of the form

$$f(x) = Pa^x,$$

where f(x) is the quantity at time x, P is the initial quantity (when x = 0) and a > 1 is the factor by which the quantity changes when x increases by 1. If the quantity is growing at the rate r per time period, then a = 1 + r, and

$$f(x) = Pa^x = P(1+r)^x.$$

Exponential Decay

Exponential decay can be described by a function of the form

$$f(x) = Pa^x,$$

where f(x) is the quantity at time x, P is the initial quantity (when xand 0 < a < 1. Here, a is the factor by which the quantity changes x increases by 1.

If the quantity is decaying at the rate r per time period, then a = 1 - r

$$f(x) = Pa^x = P(1 - r)^x.$$

Radioactive Decay

The mass M(x) of a radioactive element at time x is given by

$$M(x) = c(.5^{x/h}),$$

where c is the original mass and h is the half-life of the element.