

HEW YORK CITY COLLEGE OF TECHNOLOGY WHERE CAN TECHNOLOGY TAKE YOU?

May 11,2015

Econ 2505 Environmental Economics

YOUSSOUF DIALLO

Prof.S.MacDonald

Topic BUILDING DESIGN & LAND USE

"LESS IS MORE"

Building Design:

Sustainable Material

- 1. Resource Consumption
- 2. Construction & Demo (C&D) Waste
- 3. Impact of Building Materials
- 4. Human Health & Safety
- 5. Life Cycle Assessment
- 6. Public Health & the Environment
- 7. Recycled Content
- 8. Embodied Energy / Carbon
- 9. What Makes a Material Green?

Renewable Energy

1. Solar

Water:

- 1. How Do Buildings Use Water?
- 2. Case study: the solaire

Resource Consumption

Buildings account for:

- 40% of the Virgin Minerals consumed
- 25% of the Virgin Wood consumed
- Significant energy and water use for materials extraction, manufacture
- Significant air, water, and land pollution

Sustainable Materials:

Impact of Building Materials

Construction & Demo (C&D) Waste

- Represents 40% of total solid waste stream in US
- •60% of the total NYC Waste Stream
- •US: generate > 4.5 lbs. waste per person per day

FRESH KILLS LANDFILL IN OPERATION

Resource Consumption

 In the space of just one generation, the earth has lost 30% of its natural wealth of forests, fisheries and biodiversity.

World Wildlife Fund, Living Planet Report 1999

Human Health & Safety

Materials impact Indoor Air Quality (IAQ)

 We spend over 90% of our time indoors
 Poor air quality reported in up to 30% of new/renovated bldgs.
 Products "off-gas" emissions of volatile or semi-volatile compounds
 Indoor pollutants can result in eye, skin or respiratory irritation

•Materials affect all humans who come in contact with any part of the process

Occupy the building and community
Construct the building
Manufacture the products that go into buildings
Live in communities that are impacted by raw material extraction,

manufacturing, or construction

Public Health & the Environment

•Products may contain carcinogens, reproductive toxins, or other hazardous substances

•Product emissions can contribute to exterior air pollution

Sustainable Materials: What Makes a Material Green?

- •Exceptionally Durable
- Incorporates recycled content
- Salvaged from buildings for reuse
- Made using natural and/or renewable resources
- Low "embodied energy"
- No highly toxic compounds
- Obtained from local resources and manufacturers
- Sustainable harvesting practices (for wood products)
- Easily reused or recycled
- •Biodegradable
- Minimally processed

Sustainable Materials: What Makes a Material Green?

Life Cycle Assessment

 Most green products have specific "green attributes" that separate them from competing products

•The "green attributes" are typically defined based on the concept of Life Cycle Assessment

Sustainable Materials:

Life Cycle Assessment (LCA)

Life Cycle of a Product

- Raw material extraction
- Material processing, manufacturing
- Transportation to building site
- Installation in a building

•Use

- •Repair
- Replacement
- Disposal

Life Cycle of a Building

- Demolition
- Construction
- Use / Operations
- Demolition

Sustainable Materials: Life Cycle Assessment (LCA)

Extraction Phase

- •Mining -e.g., bauxite to make aluminum
- Logging -wood products

Sustainable Materials: Life Cycle Assessment (LCA)

Disposal Phase

•Toxic ingredients -e.g., fluorescent lamps

•Recycling & reclamation -e.g., carpet industry Fresh nylon manufacture chemical feedstock polyamide ("nylon") recycle small amount of carpet manufacture waste collection use in homes and businesses

Fluorescent lamps

Sustainable Materials: Definitions

Recycled Content Materials

- Products that utilize existing material "waste" streams to replace virgin raw materials
- <u>Products that incorporate</u>:
 Post-consumer recycled materials
 Post-industrial materials
 Recovered materials
- -"Recycled content" ≠ "Recyclable"

Recycled Ceramic/Glass Tiles

Carpeting

Recycled-content Ceiling Tiles

Sustainable Materials: Recycled Content

Steel

- According to Steel Recycling Institute: Each year, more steel is recycled in the US than paper, plastic, aluminum and glass combined.
- Secondary Cementious Materials (SCMs)
- •Used as replacement for Portland cement in concrete mixes
- •Environmental benefit: reduced carbon footprint of concrete (by replacing Portland cement)

Types

•Fly Ash

- -Post-industrial waste product from coal power plants -Environmental benefit: reduced carbon footprint of concrete (by replacing portland cement)
- -Environmental concerns: toxicity and disposal
- -Performance impacts: slower setting time, but higher ultimate strength
- •Ground Granulated Blast Furnace Slag ("slag") -Post-industrial waste product from steel mills

Sustainable Materials: Recycled Content

Carpet Industry Initiatives Recycled content backings •Recycled content face fiber •Refurbished Carpet Tiles •Carpet Leasing •Environmentally-Preferable Standards

Sustainable Materials: Recycled Content

Recycled glass countertops

Recycled plastic decking

Recycled rubber pavers

Recycled-content insulation

Sustainable Materials: Embodied Energy / Carbon

Embodied energy: total energy consumed during a product's life cycle

- Embodied carbon: quantity of CO2 emitted during a product's life cycle
- The energy used (or carbon emitted) during the entire life cycle of a product, including manufacture, transportation, installation, and disposal
- The inherent energy (or carbon) captured within the product itself

U.S. Energy Consumption by Sector

Source: @2013 2030, Inc. / Architecture 2030. All Rights Reserved. Data Source: U.S. Energy Information Administration (2012).

Source: @2011 2030, Inc. / Architecture 2030. All Rights Reserved. Data Source: EIA (2011), Richard Stein.

Sustainable Materials: Material Health

Transparency Movement

- What's in our building materials?
- Precautionary Principle
- Health Product Declaration (HPD)
- Material Red List -Living Building Challenge

Renewable Energy: Supply

Solar

• Every hour the sun provides energy to satisfy global energy needs for an entire year

- Solar photovoltaic (PV): generate electricity
- Solar thermal: generates hot water
- <u>Utility scale:</u> Concentrating solar plants (CSP):

- the heat boils water, drives steam turbine, generates electricity

- Downside: not at night (without batteries)
- World leaders: Germany, Spain, US, China
- US States: California, NJ
- Manufacturing leader: China, then Germany

Water: How Do Buildings Use Water?

Sustainable building: Cyclical use of resources

Conventional building: Wasteful use of resources

Water: How Do Buildings Use Water?

Residential

- Plumbing fixtures (domestic water)
 - Flush fixtures (toilets)
 - Flow fixtures (faucets, showerheads)
- Heating (service water)
- Clothes washers
- Dishwashers
- Sprinklers for plants

Washing machines use 56 gallons

to complete an average load.

A standard toilet uses six gallons per flush.

A dishwasher will use 24 gallons per load.

A typical shower uses seven gallons of water every minute it is running.

A lawn sprinkler covering one-fifth of an acre will use 24 gallons each month.

A faucet with a slow drip uses 17 gallons of water per day.

Water: Water Use Priorities

First #1, then #2...

- 1. Reduce demand for potable water (conserve water)
- -Low flow plumbing fixtures
- -Drought tolerant plants on site (native or adaptive)
- -Efficient irrigation for plants (drip with smart controllers and rain sensors)
- -Water efficient mechanical systems
- -Water efficient kitchen, laundry, etc.

2. Increase supply of available water (recycle water)

-Collect or harvest water (stormwater, greywater, backwater, cooling condensate) -Reuse water for non-potable uses(instead of using potable water)

Rain sensor

Water: Efficient Strategies

- Require special design, installation, and operation
- Storm water management (green roofs)Water collection ("harvesting")
- -Stormwater
- -Greywater
- -Cooling condensate
- •Water reuse systems -Irrigation -Mechanical system (cooling towers) -Flushing fixtures

NYC Dept. of Design & Construction: Water Matters, June 2010

The good news is ... It's Getting Easier to Be Green again!!!

CASE STUDY: THE SOLAIRE

SUMMARY INFORMATION

Located in Manhattan's Battery Park City

Occupancy: 27-story residential tower with 293 units Size 357,000 sq. feet.

- Completed August 2003
- Owner River Terrace Associates, LLC
- Developer Albanese Development Corporation
- Architect Schuman, Lichtenstein, Claman, Efron Archi
- Awards and Ratings LEED Gold certification
- Green Project Award (2004)

The Solaire offers its residents

- convenient access to public transportation,
- on-demand hybrid rental cars, bicycle parking
- electric vehicle charging

Project overview

theproject

building-integrated photovoltaic panels and how they are an important design element in the building's main façade

maximize the thermal efficiency of the wall

the exterior building materials used REVEALED

Materials choices, furniture selections

detail of the facade and the photovoltaic panels within it

NICAL & ROOF LEVE

SET BACK ROOF LEVE

ENVIRONMENTALLY SUSTAINABLE FEATUR

the building envelope, and details environmentally sustainable features. These include sustainable strategies for the mechanical systems, exterior building materials and systems, and roof-level landscaping, irrigation, and heat reduction strategies

The building...help

- Reduce potable water demand by 50 percent overall,
- The building uses recycled wastewater for its cooling tower.
- Low-flow toilets and for irrigating landscaping.
- Cut its energy demand by 35% using automatic dimming fluorescent lights.
- High-performance windows.
- Day lighting and other strategies; westfacing photovoltaic panels supply 5% of the building's energy needs
- Gardens of native shrubs, perennials and bamboo cover 75 percent of the roof, helping to lower heating and cooling loads and increase tenant satisfaction

- 93% of the construction waste for the project was recycled.
- 60 percent of the building materials were made from recycled content.

- To maintain superior air quality, the building features filtered fresh air.
- Operable windows and controlled humidity

- One of only seven buildings to benefit from the New York green building tax credit initiative
- A total of 66.79% of the building materials (by cost) were manufactured within a 500-mile radius of the building

- First building designed in accordance with new environmental guidelines instituted in 2000 by the Battery Park City Authority (BPCA),
- The project's annual pollution was reduced by 1,662 tons/yr of CO, 1.9 tons/yr of NOx and 1.9 tons/yr of SOx

COSTS AND SAVINGS

Construction Costs

Total: \$114,489,750 (without land) Per square foot: \$321 **Greening Costs** Total: \$17,250,000 Per square foot: \$44.57 *Photovoltaic system: \$375,000 4-year payback period. Low-e windows: \$1,500,000 7-year payback. Lighting control system: \$125,000 4-year payback*

Economic view

Scenario A

- No customer cost benefit until sometime after 2016
- Developer experiences \$1 million of additional capital expense with no economic benefit and a payback period of over 20 years³

Scenario B

- Immediate customer cost benefit
- Reduced capital expenditure from approximately \$1 million to \$300,000
- Payback period is still approximately 10 years

Scenario C

- No customer cost benefit until 2014
- Developer experiences \$1 million of capital expense with a payback period of over 20 years

KEEP CALM BECAUSE LESS IS MORE

ALWAYS REMEMBER in Building Design & Land use

"LESS IS MOERE"

Mies van der Rohe

THANK YOU

THE STORY OF STUFF

http://storyofstuff.org/movies/story-of-stuff/