Problem 1. (1 point) CUNY/CityTech/CollegeAlgebra_Trig/setZeroProductProperty/ZPP-fundamental.pg
If we are told that $A B=0$, then what can we infer?

By the zero product property we know:
\qquad $=0 \mathrm{OR}$ \qquad $=0$

Hint: (Instructor hint preview: show the student hint after the following number of attempts: 2)
Remember that the zero product property states:
"If the product of two values is zero, then at least one of the values must be zero."

Correct Answers:

- A
- B

Problem 2. (1 point) CUNY/CityTech/CollegeAlgebra_Trig/setZeroProductProperty/ZPP-binomials.pg
If we are told that $(x-7)(x-8)=0$, then what can we infer?
By the zero product property we know:
$-=0 \mathrm{OR}$ \qquad $=0$

And therefore we know that:
$x=$ \qquad OR $x=$ \qquad

Hint: (Instructor hint preview: show the student hint after the following number of attempts: 2)
Remember that the zero product property states:
If $A B=0$, then either $A=0$ or $B=0$.

How does the zero product property apply to this problem?

Correct Answers:

- $x-7$
- $x-8$
- 7
- 8

Problem 3. (1 point) CUNY/CityTech/CollegeAlgebra_Trig/setZeroProductProperty/ZPP-binomials-medium.pg
If we are told that $(2 x-7)(3 x-4)=0$, then what can we infer?

By the zero product property we know:
$\square_{-}=0$ OR $\quad=0$

And therefore we know that:
$x=$ \qquad OR $x=$

- Do not use decimal approximations in your answer.
- Use fractions instead.

Hint: (Instructor hint preview: show the student hint after the following number of attempts: 2)
Remember that the zero product property states:
If $A B=0$, then either $A=0$ or $B=0$.

How does the zero product property apply to this problem?

Correct Answers:

- $2 x-7$
- $3 x-4$
- $\frac{7}{2}$
- $\frac{4}{3}$

Problem 4. (1 point) CuNY/CityTech/CollegeAlgebra_Trig/setZeroProductProperty/ZPP-standard-basic.pg
We want to solve the equation

$$
x^{2}-14 x+45=0
$$

First, factor $x^{2}-14 x+45$: \qquad

By the zero product property we know:
$[=0$ OR \qquad

And therefore we know that:
$x=_$OR $x=$

- Do not use decimal approximations in your answer.
- Use fractions instead.

Hint: (Instructor hint preview: show the student hint after the following number of attempts: 2)
Remember that the zero product property states:
If $M N=0$, then either $M=0$ or $N=0$.

How does the zero product property apply to this problem?

Perhaps you should factor the polynomial first...

Correct Answers:

- $(x-9)(x-5)$
- $x-5$
- $x-9$
- 5
- 9

Problem 5. (1 point) CunY/CityTech/CollegeAlgebra_Trig/setZeroProductProperty/ZPP-standard-medium.pg
We want to solve the equation

$$
3 x^{2}-17 x-28=0
$$

First, factor $3 x^{2}-17 x-28$: \qquad

By the zero product property we know:
\qquad $=0$ OR \qquad $=0$

And therefore we know that:

$$
x=\underline{O} \quad \text { OR } x=
$$

- Do not use decimal approximations in your answer.
- Use fractions instead.

Hint: (Instructor hint preview: show the student hint after the following number of attempts: 2)
Remember that the zero product property states:
If $M N=0$, then either $M=0$ or $N=0$.

How does the zero product property apply to this problem?

Perhaps you should factor the polynomial first...

Correct Answers:

- $(x-7)(3 x+4)$
- $3 x+4$
- $x-7$
- $-\frac{4}{3}$
- 7

Problem 6. (1 point) CUNY/CityTech/CollegeAlgebra_Trig/setZeroProductProperty/ZPP-standard-hard.pg
We want to solve the equation

$$
10 x^{2}+13 x-3=0
$$

First, factor $10 x^{2}+13 x-3$: \qquad

By the zero product property we know:
$[=0$ OR \qquad

And therefore we know that:
$x=_$OR $x=$

- Do not use decimal approximations in your answer.
- Use fractions instead.

Hint: (Instructor hint preview: show the student hint after the following number of attempts: 2)
Remember that the zero product property states:
If $M N=0$, then either $M=0$ or $N=0$.

How does the zero product property apply to this problem?

Perhaps you should factor the polynomial first...

Correct Answers:

- $(2 x+3)(5 x-1)$
- $5 x-1$
- $2 x+3$
- $\frac{1}{5}$
- $-\frac{3}{2}$

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

