Assignment Interval_Notation due 09/14/2022 at 12:00pm EDT

Problem 1. (1 point) CUNY/CityTech/Precalculus/setIntervalNotation/interval-intro.pg

It is straightforward to graph specific values for x; for instance, consider this graph of x = 4 or x = -4:

But sometimes we want to refer to a *interval* of values, such as "all numbers greater than 4":

All the numbers greater than 4 have been shaded blue.

There is an open circle on the number 4 to indicate "4" is not included in the interval. (4 is not greater than itself!)

- Inequality notation: x > 4 (we could also write: 4 < x)
- Interval notation: $(4, \infty)$ (∞ indicates that we want *all* values greater than 4, up to *infinity* as symbolized by the shaded arrow in the graph; note that the left parenthesis "(" next to the "4" indicates that the left endpoint 4 is *not* included in the interval.)

If we want to include an endpoint in our interval, we must consider something like "all numbers less than or equal to -4":

This interval *includes* -4 because of the additional "or equal to" in the description of our range of values.

- Inequality notation: x < -4 (alternatively: -4 > x)
- Interval notation: $(-\infty, -4]$ (here the square bracket "]" indicates that the endpoint -4 is included in the interval.)

Rewrite each of the following interval expressions in *interval notation*:

• You can use "inf" and "-inf" for ∞ and $-\infty$.

b.
$$-7 \le x$$

c.
$$x < -6$$

d.
$$x \le -3$$

e.
$$-16 < x$$

Hint: (Instructor hint preview: show the student hint after the following number of attempts: 2)

- Think about each inequality: is *x bigger* or *smaller* than the specified number?
- Is the number *included* in the interval $(\le \text{ or } \ge)$? Or is it *excluded* (< or >)?
- Use a parenthesis "(" or ")" when an endpoint is *excluded* from the interval; use square brackets "[" or "]" when an endpoint is *included* in the interval.
- Consider drawing a visual representation of the range given by each inequality does that help you determine the interval notation?
- The order matters: $-\infty$ always goes on the left and ∞ always goes on the right.

Correct Answers:

- $(-\infty,0)$
- [-7,∞)
- $(-\infty, -6)$
- $(-\infty, -3]$
- (-16,∞)

Problem 2. (1 point) CUNY/CityTech/Precalculus/setIntervalNotation/interval-compound.pg

Consider the set of values described by the phrase "all numbers larger than -4 AND also less than or equal to 4":

This interval includes one endpoint but not the other; do you see why?

We can express this range of values in inequality notation and in interval notation:

• Inequality notation: $-4 < x \le 4$ (alternatively: x > -4 AND $x \le 4$)

• Interval notation: (-4,4]

Rewrite each of the following inequalities in *interval notation*:

a.

as an inequality: $-6 \le x < 1$ in interval notation:

b.

as an inequality: $3 \le x < 6$ in interval notation:

c.

as an inequality: $2 \le x \le 3$ in interval notation:

d.

as an inequality: 6 < x < 8 in interval notation:

e.

as an inequality: $-8 < x \le -4$ in interval notation: _____

Hint: (*Instructor hint preview: show the student hint after the following number of attempts: 2*)

- For each endpoint, is it *included* in the range $(\le \text{ or } \ge)$? Or is it *excluded* (< or >)?
- Use a parenthesis "(" or ")" when an endpoint is *excluded* from the interval; use square brackets "[" or "]" when an endpoint is *included* in the interval.
- The order matters. When you write an interval such as (a,b], the number on the left, a, has to be always smaller than the number on the right, b. Likewise, $-\infty$ always goes on the left, and ∞ always goes on the right.

Correct Answers:

- [-6,1)
- [3,6)
- [2,3]
- (6,8)
- (-8, -4]

Problem 3. (1 point) CUNY/CityTech/Precalculus/setIntervalNotation/interval-compound-union.pg

Consider the following set of numbers, which combines two intervals:

As an expression using inequalities, this is the set of all numbers x such that $-6 < x \le 1$ or $3 \le x \le 5$.

This is called the *union* of the two intervals, and is represented by the symbol \cup . Thus, in interval notation, this set is $(-6,1] \cup [3,5]$.

Rewrite each of the following inequality expressions in interval notation:

 \bullet Type the capital letter "U" to represent the union symbol $\cup.$

a.

as an inequality: -8 < x < -1 or $2 \le x < 5$ in interval notation:

b.

as an inequality: -4 < x < 3 or $6 \le x < 8$ in interval notation:

c.

as an inequality: -4 < x < -2 or $0 < x \le 4$ in interval notation:

d.

as an inequality: $-6 < x \le -5$ or $4 \le x < 7$ in interval notation:

e.

as an inequality:
$$-8 < x < -1$$
 or $1 \le x < 3$ in interval notation:

Hint: (Instructor hint preview: show the student hint after the following number of attempts: 2)

- For each endpoint, is it *included* in the interval (\leq or \geq)? Or is it *excluded* (< or >)?
- Use a parenthesis "(" or ")" when an endpoint is *excluded* from the interval; use square brackets "[" or "]" when an endpoint is *included* in the interval.
- "Join" the intervals using the union symbol \cup (type the *capital* letter U).
- The order matters. When you write an interval such as (a,b], the number on the left, a, has to be always smaller than the number on the right, b. Likewise, $-\infty$ always goes on the left, and ∞ always goes on the right.

Correct Answers:

- $[2,5) \cup (-8,-1)$
- $[6,8) \cup (-4,3)$
- $(0,4] \cup (-4,-2)$
- $[4,7) \cup (-6,-5]$
- $[1,3) \cup (-8,-1)$

Problem 4. (1 point) CUNY/CityTech/Precalculus/setIntervalNotation/interval-mixed-union.pg

Consider the following set, which consists of the union of two intervals, but with the single point x = 3 excluded:

As an interval expression, this is the set of all numbers x such that x < -6 or $x \ge 1$ and $x \ne 3$.

In order to express this set in interval notation, we express it as the union of 3 separate intervals: $(-\infty, -6) \cup [1,3) \cup (3,\infty)$

Do you understand why this excludes the number 3 from the set?

Rewrite each of the following interval expressions in *interval notation*:

- Type "inf" and "-inf" for ∞ and $-\infty$, respectively.
- Type the capital letter "U" to represent the union symbol \cup .

a.

as an inequality: x < 0 or 6 < x and $x \ne 7$ in interval notation:

b.

as an inequality: x < 5 and $x \ne -4$ or $6 \le x$ in interval notation:

c.

as an inequality: x < -5 or 1 < x < 8 in interval notation:

d.

as an inequality:
$$1 < x \le 2$$
 or $6 < x$ in interval notation:

Hint: (Instructor hint preview: show the student hint after the following number of attempts: 2)

- Think about each inequality: is *x larger* or *smaller* than the specified number?
- Is the number *included* in the range $(\le \text{ or } \ge)$? Or is it *excluded* (< or >)?
- The order matters. When you write an interval such as (a,b], the number on the left, a, has to be always smaller than the number on the right, b. Likewise, $-\infty$ always goes on the left, and ∞ always goes on the right.

Correct Answers:

- $(-\infty,0) \cup (6,7) \cup (7,\infty)$
- $\bullet \ (-\infty, -4) \cup (-4, 5) \cup [6, \infty)$
- $\bullet (-\infty, -5) \cup (1, 8)$
- $(1,2] \cup (6,\infty)$

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America