SOLVING EQUATIONS BY USING THE ZERO PRODUCT RULE

SESSION 10

4.8(EX. 1-3,7,8)

PP. 388-393

Quadratic equation

- Definition: Quadratic equation in one variable is an equation that can be written in the form:
$a x^{2}+b x+c=0$ $a \neq 0$
- \& a , b , c are real numbers

Write into the standard form

- Check if these equations are quadratic:
- 1) $-4 x^{2}+4 x=1$
- 2) $x(x-2)=3$
- 3) $(x-4)(x+4)=0$

Using the product rule to solve the equation

The zero product rule: If a product $\mathrm{a} \cdot \mathrm{b}=0$ than $\mathrm{a}=0$ or $b=0$
So if let say:

$$
\begin{gathered}
(x-4)(x+4)=0 \text { than } \\
x-4=0 \text { or } x+4=0 \\
x=4 \text { or } x=-4
\end{gathered}
$$

$$
\text { Ex.1. } \quad 2 x^{2}-5 x=12
$$

- First smplify:2x²-5x -12=0
- AC product $2 \cdot(-12)=-24$
- Sum; -5 (what is the strategy to find the numbers).
-Numbers are: -8, 5

$\|\|\|$
 $2 x^{2}-5 x=12$

$2 x^{2}-5 x-12=0$

- $2 \mathrm{x}^{2}-8 \mathrm{x}+3 \mathrm{x}-12=0$
- $\left(2 x^{2}-8 x\right)+(3 x-12)=0$
- $2 \mathrm{x}(\mathrm{x}-4)+3(\mathrm{x}-4)=0$
- (X-4)(2x+3)=0 (0 pr rule)
- $\mathrm{X}-4=0$ or $2 \mathrm{x}+3=0$
$\cdot \mathrm{X}=4 \quad \mathrm{X}=-3 / 2(-1.5)$

$\|\|$
 Ex.2. $6 x^{2}+8 x=0$

$$
\begin{aligned}
& \text { Ex.2. } 6 x^{2}+8 x=0 \\
& \bullet 2 x(3 x+4)=0 \\
& \bullet X=0 \text { or } \quad 3 x+4=0 \\
& \bullet \quad 3 x=-4 \\
& \text { • } \quad \text { Check the answer. }
\end{aligned}
$$

II Ex.3. $9 x(4 x+2)-10 x=8 x+25$

Ex.3. $9 x(4 x+2)-10 x=8 x+25$

$-36 x^{2}+18 x-10 x=8 x+25$
$-36 x^{2}+8 x=8 x+25$

- $36 \mathrm{x}^{2}+8 \mathrm{x}-8 \mathrm{x}-25=0$
- $36 x^{2}-25=0$
- $(6 x)^{2}-5^{2}=0$
- $(6 x-5)(6 x+5)=0$
- $\mathrm{X}=5 / 6$ or $\mathrm{x}=-5 / 6$
\#Ex.7.The product of two consecutive odd integers is 35 . Find integers.
- First odd integer x
- Second odd integer will be $\mathrm{x}+2$
- Product: $x(x+2)=35$
- Solve it for x. \& find the consecutive numbers.

Application using the quadratic

 equation- The length of a basketball court is 6 ft less than 2 times the width. If the total area is $4700 \mathrm{ft}^{2}$, find the dimensions of the court.

L

Application using the quadratic

 equation- The length of a basketball court is 6 ft less than 2 times the width. If the total area is $4700 \mathrm{ft}^{2}$, find the dimensions of the court.

2w-6

$$
\mathrm{A}=\mathrm{L} \cdot \mathrm{~W} \quad 4700=(\mathrm{w}-6) \cdot \mathrm{w} \quad \text { Solve it for }
$$ w that find the $\mathrm{L} w=50(\mathrm{w}=-47)$

$a x^{2}+b x+c=0$ where $a x^{2}+b x+c$ is a perfect square

$$
-4 x^{2}+8 x+4=0
$$

|l| $4 x^{2}+8 x+4$

$4 x^{2}+8 x+4=0$

Factor first

- Method 1: $\quad-4 x^{2}+8 x+4=0$
- $4\left(\mathrm{x}^{2}+2 \mathrm{x}+1\right)=0 \cdot(2 \mathrm{x}+2)^{2}=0$
- $4(x+1)^{2}=0$
- X+1=0
- $\mathrm{X}=-1$

Use the formula first

- $2 x+2=0$
- $2(\mathrm{x}+1)=0$
- $\mathrm{X}+1=0$
- $\mathrm{X}=-1$

Solve equations by using the zero product rule
 $-x^{2}-2 x-24=0$

$x^{2}-2 x-24=0$

- $x^{2}-2 x-24=0$
$-(x-6)(x+4)=0$
- $\mathrm{x}-6=0$ or $\mathrm{x}+4=0$
- So: $x=6$ or

$$
\mathrm{X}=-4
$$

- Using AC rule to factor
- Pr. -24, sum -2
- Numbers: -6, 4
- Use zero product rule

II $9 x^{2}-12 x=0$

$9 x^{2}-12 x=0$

- $9 \mathrm{x}^{2}-12 \mathrm{x}=0$
- $3 x(3 x-4)=0$
- List the strategies to factor:
- Look for common factor
- $3 x=0$ or $3 x-4=0$
- $\mathrm{X}=0$ or $\mathrm{x}=4 / 3$
- Check:
- $9 \cdot 0^{2}-12 \cdot 0=0$
- $9 \cdot(4 / 3)^{2}$
$12 \cdot(4 / 3)=0$
- $0=0$
- Factor completely
- Check by multiplying

II $3 x(2 x-1)-x=2 x(x-2)+25$

Simplify First

- $3 x(2 x-1)-x=2 x(x-2)+25$
- $6 x^{2}-3 x-x=2 x^{2}-4 x+25$
- $6 x^{2}-4 x=2 x^{2}-4 x+25$
- $6 x^{2}-2 x^{2}-4 x+4 x-25=0$
- $4 \mathrm{x}^{2}-25=0$
- $(2 \mathrm{x}-5)(2 \mathrm{x}+5)=0$
- $\mathrm{X}=5 / 2$ or $\mathrm{x}=-5 / 2$

Solving higher-degree polynomial equation

$$
-Z^{3}+3 z^{2}-4 z-12=0
$$

Solving higher-degree

 polynomial equation $z^{3}+3 z^{2}-4 z-12=0$$$
\left(z^{3}+3 z^{2}\right)-(4 z+12)=0 \quad(\text { group })
$$

$$
z^{2}(z+3)-4(z+3)=0
$$

$$
(z+3)\left(z^{2}-4\right)=0
$$

$$
(z+3)(z-2)(z+2)=0
$$

$$
\mathrm{Z}=-3 ; \mathrm{z}=2 ; \mathrm{z}=-2
$$

HW \#10

Summarizing of the session

Solving equations by zero product rule

- * Simplify the equation in the standard form
- $a x^{2}+b x+c=0$
- Factor completely

Apply the product rule by equaling to zero each factor and solving the equations that you get.

- For the higher degree equations the rules work almost the same.

