Midterm Exam

Mathematics Department/Fall 2015
Name: \qquad .

1) Evaluate the following limits if they exist:
a) $\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x^{2}-x}$
b) $\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+100}-10}{x^{2}}$
c) $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\sin 2 \theta}$
d) $\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+1}}{x+1}$
e) $\lim _{x \rightarrow 3}\left(\sec ^{2}(x)-\tan ^{2}(x)\right)$
f) $\lim _{x \rightarrow 0} \frac{e^{-6 x}-e^{3 x}}{-6 x}$
2) The graph of the function: $f(x)=\frac{1}{x^{2}-1}$ is given below.

Determine graphically and analytically:

* Horizontal and vertical asymptotes
* The domain and the range of this function
* $\lim _{x \rightarrow-1} f(x)$
* $\lim _{x \rightarrow 1} f(x)$
* Whether this function is continuous. If yes state the interval(s) where the function is continuous.
Based on the theorems that you know justify your answers.

3) Approximate analitically and graphycally: (sketch the graph in the open inteval $(0, \pi)$

$$
\begin{aligned}
& \lim _{x \rightarrow \pi / 2} f(x), \text { where } \\
& f(x)= \begin{cases}\sin x & x \leq \pi / 2 \\
\cos x & x>\pi / 2\end{cases}
\end{aligned}
$$

4) Determine intervals in which the function is continuous:

$$
f(x)=\sqrt{\ln x}
$$

5)

Use the graph of $f(x)$ provided to answer the following.
(a) $\lim _{x \rightarrow-3^{-}} f(x)=$?
(b) $\lim _{x \rightarrow-3^{+}} f(x)=$?

(c) $\lim _{x \rightarrow-3} f(x)=$?
(d) Where is f continu ous?
6)

The graph of $f(x)=\frac{1}{x+1}$ is shown.
(a) Use the graph to approximate the slope of the tangent line to f at the following points: $(0,1)$ and $(1,0.5)$.
(b) Using the definition, find $f^{\prime}(x)$.
(c) Find the slope of the tangent line at the points $(0,1)$ and (1, 0.5).

7) Find the equation of the tangent line, in slope y-intercept form to the curve:

$$
f(x)=4 x-x^{2}, \text { at }(1,3)
$$

8) Using implicit differentiation, find the equation of the tangent line to the given point: $y^{2}-7 x y+x^{3}-2 x=9$, at $(0,3)$
9) Use L'Hopital's Rule to evaluate the limit:

10) Compute the derivatives of the given functions:

Pick three functions from each group to differentiate.
a)

$$
\begin{aligned}
& f(t)=\sqrt[5]{t}\left(\sec t+e^{t}\right) \\
& f(x)=\frac{\sin x}{\cos x+3} \\
& g(x)=e^{2}(\sin (\pi / 4)-1) \\
& g(t)=4 t^{3} e^{t}-\sin t \cos t \\
& h(t)=\frac{2^{t}+3}{3^{t}+2} \\
& f(x)=x^{2} e^{x} \tan x \\
& \text { b) }
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\left(4 x^{3}-x\right)^{10} \\
& f(t)=(3 t-2)^{5} \\
& g(\theta)=(\sin \theta+\cos \theta)^{3} \\
& h(t)=e^{3 t^{2}+t-1} \\
& f(x)=\left(x+\frac{1}{x}\right)^{4} \\
& f(x)=\cos (3 x)
\end{aligned}
$$

c)

- $f(x)=2 \ln x-x$

$$
p(s)=\frac{1}{4} s^{4}+\frac{1}{3} s^{3}+\frac{1}{2} s^{2}+s+1
$$

. $h(t)=e^{t}-\sin t-\cos t$
. $f(x)=\ln \left(5 x^{2}\right)$
. $f(t)=\ln (17)+e^{2}+\sin \pi / 2$
. $g(t)=(1+3 t)^{2}$
d)

$$
\begin{aligned}
& g(x)=\tan ^{-1}(2 x) \\
& f(x)=x \sin ^{-1} x \\
& g(t)=\sin t \cos ^{-1} t \\
& f(t)=\ln t e^{t}
\end{aligned}
$$

$$
h(x)=\frac{\sin ^{-1} x}{\cos ^{-1} x}
$$

$$
g(x)=\tan ^{-1}(\sqrt{x})
$$

