$$
\begin{aligned}
& x^{4}-2 x^{3}-x^{2}+2 x<0 \\
& x\left(x^{3}-2 x^{2}-x+2\right)<0 \\
& x(x-2)\left(x^{2}-1\right)<0 \\
& x(x-2)(x-1)(x+1)<0
\end{aligned}
$$

So for the equation :

$$
x(x-2)(x-1)(x+1)=0
$$

Roots are 0, 2, $-1,1$

The solution for the inequality is $S=[-1,0] \cup[1,2]$

Name Diamonique Johnson
 Directions: Show all steps and label and simplify answers.

1. Divide by long division and check:

$$
\frac{x^{3}-4 x^{2}+3 x-4}{x-2}=x^{2}-2 x-1+\frac{-6}{x-2}
$$

Check - Bring down -4

- $(x-2)$ goes into $(-x-4)-1$ times somutiply $x\left(x^{2}-2 x-1+\frac{-6}{x+2}\right)+-2\left(x^{2}-2 x-1+\frac{-6}{x+2}\right) \quad-(x-2)$ then subtract from $-x-4$ $\left(x^{3}-2 x^{2}-1 x+\frac{-6 x}{x+2}\right)+\left(-2 x^{2}+4 x+2+\frac{12}{x}\right)$. Pya the remainder (-6) over $(x-2)$ and add
(combine liketerms that fraction $x^{3}-4 x^{2}+3 x+2+\frac{-6 x+12}{x-2}$

$$
6=\frac{-6 x+12}{x-2} \quad x-2 \sqrt{-6 x+12}
$$

$$
\ldots x^{3}-4 x^{2}+3 x+2-6=x^{3}-4 x^{2}+3 x-4
$$

2. Find all real roots of the polynomial. Express the irrational roots in simplest radical form.

$$
\begin{aligned}
& f(x)=3 x^{3}-11 x^{2}+2 x+2 \\
& \text { Roots }=-1 / 3,2+\sqrt{2}, 2-\sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
& p= \pm 1, \pm 2 \\
& q= \pm 1, \pm 3 \\
& \text { (D) } \frac{p}{q}= \pm 1, \pm \frac{1}{3}, \pm 2, \pm \frac{2}{3}
\end{aligned}
$$

first root

$$
\begin{aligned}
& 0=3\left(\frac{-1}{3}\right)^{3}-11\left(\left(-\frac{1}{3}\right)^{2}+2\left(-\frac{1}{3}\right)+2\right. \\
& 0=-\frac{1}{9}-\frac{11}{9}-\frac{2}{3}+2
\end{aligned}
$$

$$
\partial=0
$$

Then divide to get it ines standard form

$$
\begin{array}{r}
\begin{array}{r}
x^{2}-4 x+2 \\
\frac{-3 x^{3}+x^{2}}{-12 x^{2}+2 x} \\
-\frac{-12 x-4 x}{6 x+2} \\
-\frac{6 x+2}{0}
\end{array}
\end{array}
$$

$$
\begin{array}{r}
3 x+y=0 \\
-1-1
\end{array}
$$

$$
\begin{aligned}
& \frac{3 x}{x}=\frac{-1}{3} \\
& x=\frac{-1}{3}<\operatorname{root} \text {. }
\end{aligned}
$$

$$
\begin{array}{r}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x=\frac{4 \pm \sqrt{16-8}}{2}
\end{array}
$$

$$
x=\frac{4 \pm \sqrt{8}}{2}=\frac{4 \pm 2 \sqrt{2}}{2}
$$

$$
\begin{aligned}
& \frac{4+2 \sqrt{2}}{2}=2 \sqrt{2}_{2}^{2} \\
& \frac{4-2 \sqrt{2}}{2}=\sqrt{2}
\end{aligned}
$$

3. Draw the complete graph of the function. State the domain, horizontal and vertical asymptotes, and the x and y intercepts.
$f(x)=\frac{4 x+8}{x^{2}+2 x-3}=\frac{4(x+2)}{(x+3)(x-1)}>$ To find the vertical asymptote, vertical set the denominator
vertical asymptotes $=x=1, x=-3$

$$
\begin{aligned}
& \text { Domain }=(x+3)(x-1)=x=1 \\
& D=(-\infty,-3) \cup(-3) \cup(1, x)
\end{aligned}
$$

- Because the graph infinetly approaches $x=1$ and $x=3$
bat does M
tach it.

(x) numerator equal to zero: $\quad(-2,0)$

$$
4 x+8=0 \quad 4 x=-8 \quad x=-2
$$

Horizontal asymptote
plug in. O to find the -y intercept
4. Solve the inequality using the graphing method. Express your answer in interval notation.

$$
x-1 \geqslant \text { of } x-6 \geqslant 0 \text { or } x-1 \leq 0 \text { of } x-6 \leqslant 0
$$

$x \geqslant 1 n x \geqslant 6$ Solve then and explain:!

$$
S=\{x \in R / x \geqslant 6\}
$$

$$
\operatorname{ors}=[6, \infty)
$$

$$
x \leq 1 \cap x \leq 6
$$

$$
S=\{x \in R / x \leq 1\}
$$

$$
\text { or } S=(-\infty, 1]
$$

5. Solve the inequality using the graphing method. Express your answer in interval notation.
(8) $\frac{4}{x-2} \geq 4$

Bring everything to one side.

$$
\frac{4}{x-2}-4 \geq 0
$$

then turned
(-4) into $\frac{-4 x-8}{x-2}$ to have a corminon denominator.

$$
\begin{aligned}
& \frac{4-4 x+8}{x-2} \geq 0 \\
& (s=(2,3] \\
& b \frac{12-4 x}{x-2} \geqslant 0
\end{aligned}
$$

Think of how could
you sketch the graph
if you didn't have
explain more about how to find that part of the graph that our Inequality states, are the what are (Why) the intercepts lect.

Gcinien

Exit Ticket: Inverse Functions Mat 1175
 Student Name: Diamonique (johnson
 Instructor: L.Mingla
 Date..4.||6|.15..........

For each question answered correctly and explained there are 10 points available.
State whether the given functions are inverse or not. Explain the reason why
they are or they are not. $g(n)$ is the inverse of $f(n)$ because * On the back $1 f(n)=-(n+1)^{3}$

$$
\begin{aligned}
& g(n) \text { as }(n) \text { in } \\
& f(n) \text {, you } g e t{ }^{g}(n)=\frac{4+\sqrt[3]{4 n}}{2}
\end{aligned}
$$

$$
2\left(\frac{41+\sqrt[3]{4 n}}{2}-\frac{4}{2}\right)^{3}>
$$

Since $\sqrt[3]{n}$ can be written as Since $\sqrt[3]{-n}$ can be written as
$-1 \sqrt[3]{n}$, the answer. can be written as: $-\sqrt[15]{n}-1=y$
$\sqrt{ }$ Find the inverse of each function. Write down the procedure for finding the
inverse, explain reasoning and check your answer applying the property of inverse
functions.
(10) $\begin{aligned} & \text { 3) } g(x)=-4 x+1\end{aligned} \begin{aligned} & g\left(g^{-1}(x)\right)=x-1+1 \\ & g\left(g^{-1}(x)\right)=x\end{aligned}$
replace $g(x)$ with $(y): y=-4 x+1$

Then switch the (x) and the (y): $x=-4 y+1$
Then solve by bringing (y) to one side isolated to find the inverse. subtract 1 on both sides $\begin{gathered}\text { Subtraction } \\ \text { property of } \\ \text { equality }\end{gathered}$
$x-1=-4 y+1-1 \rightarrow x-1=-4 y$
$\begin{array}{ll}\text { divide both sides by }-4 \text { (Division property } & \text { of equality }\end{array} \sqrt[3]{\frac{x-3}{2}}=\sqrt[3]{y^{3}} \quad h(x)=2\left(\sqrt[3]{\frac{x-3}{2}}\right)+3$ $\frac{(x-1)}{-4}=\frac{(-4 y)}{-4} \rightarrow \frac{x-1}{-4}=y \quad g^{-1}(x)=\frac{x-1}{-4}$
4) $h(x)=2 x^{3}+3$

$$
y=2 x^{3}+3
$$

$$
\begin{aligned}
& x=2 y^{3}+8 \\
& -3
\end{aligned}
$$

$$
\frac{x-3}{2}=\frac{2 y^{3}}{2}
$$

$$
h^{-1}(x)=\sqrt[3]{\frac{x-3}{2}}
$$

$$
\frac{x-3}{2}=y^{3}
$$

$$
\sqrt[3]{\frac{x-3}{2}}=\sqrt[3]{y^{3}}
$$

$$
\begin{array}{ll}
y=\sqrt[3]{\frac{x-3}{2}} & h(x)=x-3+3 \\
h(x)=x
\end{array}
$$

$$
\begin{aligned}
& f(n)=-(n+1)^{3} \\
& g(n)=3+r^{3}
\end{aligned}
$$

If $g(n)$ is the inverse of $f(n)$ then $n=-(y+1)^{3}$ will be the same as $y=3+n^{3}$ (i fyou replace $f(n)$ and $g(n)$ with y).
$n=-(y+1)^{3} \rightarrow$ switch the variables then solve
$\frac{n}{-1}=\frac{-(y+1)^{3}}{-1} \Rightarrow n=(y+)^{3} \rightarrow$ divide both sides by -1, to isolate the y. Division property of 7 then to remove the exponent (3) find the cubic root of both sid (switch avoid the equation to get yon the loft side) $y H=\sqrt[3]{-n} \longrightarrow$ The cubic root of 1 is -1 , so you can take it out of the $y_{H} \mid=-\sqrt[3]{n}$ radical.
$y+1=-\sqrt[3]{n} \rightarrow y=\sqrt[3]{n}-1$ Subtract I from both sides so that y can be by itsaf. Subtraction property of equality.
$y=-\sqrt[3]{n}-1 \quad y=-\sqrt[3]{n}-1$ is the inverse of $f(n)$. Since it isn't equivilant to $g(n), g(n)$ is not the inverse of $f(n)$
5) Find the inverse of function $f(x)=-\sqrt{x-2}, x \geq 2$. Determine whether the inverse is also a function, and find the domain and the range of the inverse. Draw the inverse function if it exists. Explain the procedure and reasoning.

To find the inverse, replace $f(x)$ with y, then switch the places of x and y, then solve for y.
$f(x)=-\sqrt{x-2} \rightarrow y=-\sqrt{x-2} \rightarrow x=-\sqrt{y-2}$ divide both sides by -1 to remas
$y=x^{2}+2$ is a parabola, so
$-x=\sqrt{y-2}$
$y=x^{2}+2$ is only the inverse when
x is less than or equal to zero because the inverse should be a reflection over ty (the dotted line on the graph)
Therefore,

$$
f^{-1}(x)=x^{2}+2, x \leq 0
$$

\downarrow
$(-x)^{2}=(\sqrt{4-2})^{2}$ Then to get rid of the radical $x^{2}=y-2$
$x^{2}+2=y$ then add 2 to both sides Addition property of equalit
1.1)

Tarik Alexander
MAT 1375 Bold Assignments $|3 x-9|=6$

Drop the absolute value signs and set up two equations, one equal to 6 and -6
$3 x-9=6$

$$
3 x-9=-6
$$

You set these two equations up because the equation without the absolute value signs can equal either 6 or -6
Solve both equations for x

$$
\begin{aligned}
& \text { An interpretation } \\
& \text { of absolute value } \quad 3 x-9=-6 \\
& \text { is needed here } \quad \begin{array}{l}
3 x=3 \\
x=1
\end{array}
\end{aligned}
$$

$3 x-9=6$
$3 x=15$
$x=5$

What x equals is now your solution set.
$\mathrm{S}=\{5,1\}$
1.2)

Please write
question!

This graph is $y=x$ with transformations applied to it. The line intercepts the y-axis at 1 , and continues on a slope of $-\frac{1}{2}$, as seen in the graph. This means that the formula for this graph is $y=-\frac{1}{2} x+1$
How do you see this?

$$
\frac{\text { How do you see this! }}{\square \text { Please explain! }}
$$

 $f(5)=2$
When your input is δ for function f, your output will be 2 .
$f(7)=4$
When your input is 7 for function f, your output will be 4 . $f(9)=$ Undefined
When your input is 9 for function f, your output will be undefined.
1.6)

This graph is $y=x^{2}$ with transformations applied onto it. The parabola is reflected over the x -axis and has been shifted up 2 units, as seen in the graph. This means that the formula is $y=-x^{2}+2$
1.7)

$$
\begin{aligned}
& f(x)=5 x+4 \\
& g(x)=x^{2}+8 x+7
\end{aligned}
$$

To find $\left(\frac{f}{g}\right)(x)$, you simply create a fraction in which $f(x)$ is the numerator and $g(x)$ is the denominator,
' is
1.3)

$$
x^{3}-3 x^{2}+2 x-2=0
$$

If you were to graph this equation in your T1 84 , you would get this:

Now to find the solutions of the equation, what you have to do is press 2ND and TRACE on your calculator. Hit $\mathbf{2}$ to find solutions, or zeros. To get the exact point, what you would do is use the left and right keys to specify a point on the graph that a bit left and a bit right of the zero we seek. Press ENTER once you have gotten your point, press ENTER on "Guess?" and you will be presented with your solution, which in this case is $x=2.521$.

1.4)

$$
f(x)=x^{2}-2 x+5
$$

To simplify the difference quotient, $\frac{f(x+h)-f(x)}{h}$, for $f(x+h)$, substitute all x 's with $(x+h)$, and plug in $x^{2}-2 x+5$ for $f(x)$
$\frac{(x+h)^{2}-2(x+h)+5-\left(x^{2}-2 x+5\right)}{h}$
Now begin to simplify

You should end up with
$2 x+h-2$

$$
\begin{aligned}
\left(\frac{f}{g}\right)(x) & =(5 x+4) /\left(x^{2}+8 x+7\right) \\
& =(5 x+4) /[(x+7)(x+1)] \text { You Can use the "Insert" "Equations } \rightarrow \text { "Insert new epuah }
\end{aligned}
$$ The denominator of a fraction cannot equal zero. As such, x cannot equal 7 or 1 . This means that \downarrow the domain of $\left(\frac{f}{g}\right)(x)$ is all real numbers, except for 7 or 1 .

$$
\begin{aligned}
(f \circ g)(x) & =(2 \mathrm{x}-3)^{2}+\sqrt{(2 x-3)-3} \\
& =4 \mathrm{x}^{2}-12 \mathrm{x}+9+\sqrt{2 x-6}
\end{aligned}
$$

write the condition,

$$
\begin{aligned}
& \text { the condition, } \\
& 2 x-6 \geqslant 0 \text { solve it । }
\end{aligned}
$$

The inside of the square root cannot be negative. As such, x cannot equal anything less than 3 . This means that the domain of $(f \circ g)(x)$ is all real numbers, except for those less than 3 .
$\mathrm{D}=[3, \infty(1) \quad D=[3, \infty)$ $\begin{gathered}\text { Write in } \\ \text { symbols, justify the answers. }\end{gathered}$
1.9)

x	2	3	4	5	6
$f(x)$	5	0	2	4	2
$g(x)$	6	2	3	4	1
$(f \circ g)(x)$	2	5	0	2	Undefined

In order to get $(f \circ g)(x)$, you simply substitute $g(x)$ for all x 's in $f(x)$. For example, if I were to find the output for $(f \circ g)(2)$, I'd find $g(2)$, which is 6 . Then, I'd substitute 6 for x in $f(x)$, resulting in $f(6)$ which is 2 .

1.10)

$$
f(x)=\frac{1}{2 x+5}
$$

To find the inverse of a function, first replace $f(x)$ with y

$$
y=\frac{1}{2 x+5}
$$

Now switch all the x 's and the y 's

1.3)

$$
x^{3}-3 x^{2}+2 x-2=0
$$

If you were to graph this equation in your T1 84 , you would get this:

Now to find the solutions of the equation, what you have to do is press 2ND and TRACE on your calculator. Hit $\mathbf{2}$ to find solutions, or zeros. To get the exact point, what you would do is use the left and right keys to specify a point on the graph that a bit left and a bit right of the zero we seek. Press ENTER once you have gotten your point, press ENTER on "Guess?" and you will \checkmark be presented with your solution, which in this case is $x=2.521$.

1.4)

$$
f(x)=x^{2}-2 x+5
$$

To simplify the difference quotient, $\frac{f(x+h)-f(x)}{h}$, for $f(x+h)$, substitute all x 's with $(x+h)$, and plug in $x^{2}-2 x+5$ for $f(x)$
$\frac{(x+h)^{2}-2(x+h)+5-\left(x^{2}-2 x+5\right)}{h}$

Now begin to simplify

$\frac{2 x h+h^{2}-2 h}{h}$
You should end up with
$2 x+h-2$

1.5)

Domain of $f:[2,7]$ The domain of a function is all of its inputs Range of f : 1,4$]$ The range of a function is all of its outputs $f(3)=2$
When your input is 3 for function f, your output will be 2 . $f(5)=2$

I asked you to display graph
the here!

When your input is 5 for function f, your output will be 2 .
$f(7)=4$
When your input is 7 for function f, your output will be 4
$f(9)=$ Undefined
When your input is 9 for function f, your output will be undefined.
1.6)

This graph is $y=x^{2}$ with transformations applied onto it. The parabola is reflected over the x -axis and has been shifted up 2 units, as seen in the graph. This means that the formula is $y=-x^{2}+2$
1.7)

$$
\begin{aligned}
& f(x)=5 x+4 \\
& g(x)=x^{2}+8 x+7
\end{aligned}
$$

To find $\left(\frac{f}{g}\right)(x)$, you simply create a fraction in which $f(x)$ is the numerator and $g(x)$ is the denominator,
$\left(\frac{f}{g}\right)(x)=\frac{5 x+4}{x^{2}+8 x+7}$

$$
=\frac{5 x+4}{(x+7)(x+1)}
$$

The denominator of a fraction cannot equal zero. As such, x cannot equal 7 or 1 . This means that the domain of $\left(\frac{f}{g}\right)(x)$ is all real numbers, except for -7 or -1 .
$\mathrm{D}=\mathrm{R}-\{-7,-1\}$

$$
\begin{align*}
& f(x)=\mathrm{x}^{2}+\sqrt{x-3} \\
& g(x)=2 \mathrm{x}-3
\end{align*}
$$

Find the composition $(f \circ g)(x)$ and state its domain.

To find $(f \circ g)(x)$, you simply substitute all x 's in $f(x)$ with $g(x)$.

$$
\begin{aligned}
(f \circ g)(x) & =(2 \mathrm{x}-3)^{2}+\sqrt{(2 x-3)-3} \\
& =4 \mathrm{x}^{2}-12 \mathrm{x}+9+\sqrt{2 x-6}
\end{aligned}
$$

The inside of the square root cannot be negative $(2 x-6 \geq 0)$. As such, x cannot equal anything less than 3. This means that the domain of $(f \circ g)(x)$ is all real numbers, except for those less than 3.
$\mathrm{D}=[3, \infty)$
1.9)

x	2	3	4	5	6
$f(x)$	5	0	2	4	2
$g(x)$	6	2	3	4	1
$(f \circ g)(x)$	2	5	0	2	Undefined $($

In order to get $(f \circ g)(x)$, you simply substitute $g(x)$ for all x 's in $f(x)$. For example, if I were to find the output for $(f \circ g)(2)$, I'd find $g(2)$, which is 6 . Then, I'd substitute 6 for x in $f(x)$, resulting in $f(6)$ which is 2 .
1.10)

$$
f(x)=\frac{1}{2 x+5}
$$

To find the inverse of a function, first replace $f(x)$ with y

$$
y=\frac{1}{2 x+5}
$$

Now switch all the x 's and the y^{\prime} s

$$
x=\frac{1}{2 y+5}
$$

Now solve for y

$$
\begin{gathered}
(2 y+5) x=\frac{1}{2 y+5}(2 y+5) \\
2 y x+5 x=1 \\
2 y x=1-5 x \\
y=\frac{1}{2 x}-\frac{5}{2}
\end{gathered}
$$

Now finally, replace y with $f^{-1}(x)$

$$
f^{-1}(x)=\frac{1}{2 x}-\frac{5}{2}
$$

A checking of your answer
would be good to have after you

$$
\left.f\left(f^{(x)}\right)=x \text { or } f^{-(f(x)}\right)=x
$$

Exercise 1.4

Exercise I.4. Let $f(x)=x^{2}-2 x+5$. Simplify the difference quotient $\frac{f(x+h)-f(x)}{h}$ as much as possible.

Exercise 1.5

Exercise $\mathbf{I} .5$. Consider the following graph of a function f.

Find: domain of f, range of $f, f(3), f(5), f(7), f(9)$.
Domain of f : $D=[2,7]$ The domain of the function shown above is $[2,7]$, it includes the numbers 2 and 7 , and all numbers in between because the line and Range of $f: R=(1,4] \cup$ the dots that past these numbers on the x-axis are dark and shaded.
$f(3)=2$
$f(5)=2$
$f(7)=4$
$f(9)=$ Undefined

The rage of the function is $(1,4]$ because dot is hollow when the lines past by the number 1 on the y-axis, therefore 1 is not included. For $f(3)$, it means if x is 3 then what y would be, which is 2 on this graph; resulting me $f(3)=2$. the same method apply for $f(5)$ and $f(7)$. On the other hand, $f(9)$ is quite different, since $f(9)$ is out of the rage of this graph's domain, the answer is undefined.

Exercise 1.6

Exercise I.6. Find the formula of the graph displayed below.

The formula of the graph is $y=-x^{\wedge} 2+2$. This is because it is the same as $y=x^{\wedge} 2$ but an upsidedown one, which was $y=-x^{\wedge} 2$. This is also known as the transformation graph of $f(x)=x^{\wedge} 2$, $-f(x)=x^{\wedge} 2$ can rewrite as $f(x)=-x^{\wedge} 2$. The y-intersect of this graph was shown on the graph crossing the y-axis, which is 2 . Therefore, it resulted me with the formula $y=-x^{\wedge} 2+2$.

Exercise 1.7

 $\left(\frac{f}{g}\right)(x)$ and state its domain.

Exercise 1.1

Find all solutions of the equation $|3 x-9|=6$

$$
\begin{aligned}
& 3 x-9=6 \\
& 3 x=15-(3 x-9)=6 \\
& \frac{3 x}{3}=\frac{15}{3} \\
& \mathbf{X}=\mathbf{5} \text { OR } \\
& \mathbf{x}=\mathbf{1}
\end{aligned}
$$

Check

$$
\begin{array}{ll}
|3 x-9|=6 & \\
|3(5)-9|=6 \\
|15-9|=6 \\
|6|=6 & \text { AND } \\
& |3(1)-9|=6 \\
|3-9|=6 \\
\mid & \\
|-6|=6
\end{array}
$$

Explanation

The reason why we create two different equations when solving an absolute value equation is because, the number inside of an absolute value notation can also be that number's opposite, being that an absolute value can not be negative. An example of this is in the equation above when $|x|=6 . X$ can either pe or -6 . Due to the fact that absolute values can only produce numbers greater than zero and -6 is the same distance away from zero as 6 ; the numbers are opposite.

Exercise 1.3

Solve for x

$$
x^{3}-3 x^{2}+2 x-2=0
$$

In order to find the solution, I used the TI-84 Plus graphing calculator. The steps are listed below.

Exercise 1.2

Find the equation of the line

Explanation:

By using the formula $y=m x+b, I$ was able to find the formula of the line above. In the given formula, you can use two points on the line, $(0,1)$ and $(2,0)$ and substitute it into the equation $y=m x+b$; where y and x will be the x and y in the chosen point $(0,1)$ or $(2,0) ; m$ will be the slope of the line, and b will be the y intercept of the line. In this case, the line intercepts the equation x $=0$ at $y=1$; therefore " 1 " is the y intercept. After studying the two points $(0,1)$ and $(2,0)$, you can find the slope by using the slope formula $m=\frac{y_{2-y_{1}}}{x_{2}-x_{1}}$ and substituting the Ys and Xs with the corresponding points in $(0,1)$ and $(2,0)$. With the substitution, $m=\frac{0-1}{2-0^{\prime}}$ the slope now becomes $-\frac{1}{2}$. With both the slope and the y intercept, we are now able to complete the equation as a value of y; making the equation of the line
$y=\frac{1}{2} x+1$.

Check

Point $(2,0)$

$$
y=m x+b
$$

$$
y=-\frac{1}{2} x+b
$$

$$
0=-\frac{1}{2}(2)+1
$$

$$
0=-1+1
$$

$$
0=0
$$

Exercise 1.8

Given the functions $f(x)=x^{2} \sqrt{x-3 \text { and }}$ and $g(x)=$ $2 x-3$, find $(f \circ g)(x)$
$(f \circ g)(x)=f(g(x))=(2 x-3)^{2}+\sqrt{2 x-6}=0$ $\sqrt{2(0)-6}=\sqrt{-6}$?
you must wite $\sqrt{2(3)-6}=0$
e condition

$$
\begin{aligned}
& 2 x-6 \geqslant 0 \quad \text { Domain: }[3, \infty) \\
& \text { Solve for } x ?_{0}^{0}
\end{aligned}
$$

Explanation:

When studying the domain of a function with a square root, we must beware of negatives. Being that the square root of zero is zero, that number is acceptable. However, numbers less than zero could not work because they produce negative numbers. An example of this is the Not number two. If you have $\sqrt{2(1)-6}$ you would end up with $\sqrt{-4}$. The
problem with negative numbers in the square root of the domain is, they produce imaginary numbers. When there is an imaginary domain (input) then there is not a domain and the function does not exist.

Exercise 1.9:

Fill in the chart for $(f \circ g)(x)$. Is f a function?

F is a function because for every output, there is an input. However, $\mathrm{f}(\mathrm{x})$ is not one to one because for the inputs " 4 " and " 6 ", there is a similar output; " 2 "

\mathbf{x}	2	3	4	5	6
$\mathrm{f}(\mathrm{x})$	5	0	2	4	2
$\mathrm{~g}(\mathrm{x})$	6	2	3	4	1
$(\mathrm{f} \circ \mathrm{g})(\mathrm{x})$	2	5	0	2	Und

Explanation:

To find out $(\mathrm{f} \circ \mathrm{g})(\mathrm{x})$, you must take the values of $\mathrm{g}(\mathrm{x})$ and place them into the values of $f(x)$. An example of this is when $\mathrm{g}(2)$ is 6 . You take that output and place it into the input for $f(x)$. With this, $f(x)$ now becomes $f(6)$ which is equal to two. This is why $(f \circ g)(2)$ is two. With this same theory, ($\mathrm{f} \circ \mathrm{g}$)(6) is undefined because $\mathrm{g}(6)$ is one and "one" is not included on the chart; making it not an input.

Exercise I.4. Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-2 \mathrm{x}+5$. Simplify the difference quotient $\frac{f(x+h)-f(x)}{h}$ as much as possible.

First I found $\mathrm{f}(\mathrm{x}+\mathrm{h})$ by replacing all the " x "s in $\mathrm{x}^{2}-2 \mathrm{x}+5$ with " $\mathrm{x}+\mathrm{h}$ "

$$
f(x+h)=\quad x^{2}+2 x h+h^{2}-2 x-2 h+5
$$

Donor
Then $I \operatorname{did} f(x+h)-f(x)$
separate the rational $\left(x^{2}+2 x h+h^{2}-2 x-2 h+5\right)-\left(x^{2}-2 x+5\right)=$
expression! $x^{2}+2 x h+h^{2}-2 x-2 h+5-x^{2}+2 x-5=$
Then I divided that by h and got the answer

Exercise I.5. Consider the following graph of a function f

The domain would be $\mathrm{D}=[2,7]$ because
there is a line from two to five not including five, and from five to seven not including seven. The point at $(5,2)$
replaces the points in both lines that don't
include five.
The range of the function is $(1,4]$ because the line at the bottom does not include one, which is indicated at point $(5,1)$.

$$
f(3)=2 \quad f(5)=2 \quad f(7)=4 \quad f(9)=\text { undefined }
$$

To find these values, I used the number in the parenthesis and used x from " $\mathrm{f}(\mathrm{x})$ " and plugged it in to the graph to find what value would be appropriate for y . There was no y value when x equaled 9 , therefore, $f(9)$ is undefined.

Exercise I.6. Find the formula of the graph displayed below.

This graph shows a parabola $y=x^{2}$. Since the graph is flipped upside down, the parabola is $y=-x^{2}$. Also, the parabola is shifted up 2 units so the formula is $y=-x^{2}+2$

Exercise I.7. Let $f(x)=5 x+4$ and $g(x)=x^{2}+8 x+7$. Find the quotient $(f / g)(x)$ and state its domain.

First I set up (f / g)(x) and simplified it:

$$
\frac{f(x)}{g(x)}=\frac{5 x+4}{x^{2}+8 \mathrm{x}+7} \quad=\quad \frac{5 x+4}{(x+1)(x+7)}
$$

\square
The denominator of a fraction cannot equal zero. Therefore, the domain would be any number except those that would make the denominator equal zero.
$x+1=0$
$x=-1$
$x+7=0$
$x=-7$

Exercise I.8. Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+\sqrt[2]{x-3}$ and $\mathrm{g}(\mathrm{x})=2 \mathrm{x}-3$. Find the composition (f o $\mathrm{g})(\mathrm{x})$ and state it's domain.

$$
\begin{gathered}
\text { Substitute: } \\
(\mathrm{fog})(\mathrm{x})=\mathrm{f}(\mathrm{~g}(\mathrm{x}))=(2 \mathrm{x}-3)^{2}+\sqrt[2]{2 x-3-3}=4 \mathrm{x}^{2}-12 \mathrm{x}+9+\sqrt[2]{2 x-6}
\end{gathered}
$$ The domain of the function will be any value that the numbers inside the square root does not equal to a negative number. I had to find what value of x would make $2 \mathrm{x}-6$ equal zero.

$$
\begin{aligned}
& 2 x-6 \geq 0 \Rightarrow 2 x \geq 6 \Rightarrow x \geq 6 / 2 \Rightarrow x \geq 3 \\
& D=[3, \infty)
\end{aligned}
$$

Exercise I.9. Consider the assignments for f and g given by the table below.

x	2	3	4	5	6
$f(x)$	5	0	2	4	2
$g(x)$	6	2	3	4	1

Is f a function? Is g a function? Write the composed assignment for (f o g)(x) as a table.

Both f and g are functions because each value for x has exactly one value for $f(x)$ and one value for $g(x)$.

x	2	3	4	5	6
$f(x)$	5	0	2	4	2
$g(x)$	6	2	3	4	1
$(f o g)(x)$	2	5	0	2	undefined

Diamonique Johnson

March $12^{\text {th }} 2015$

Mat 1375 L. Mingla

Research Paper: Inverse Functions

The concept of inverse functions can be difficult to interpret. Getting a thorough understanding of what they are and the way the work can be made easier with detailed explanations. In order to understand inverse functions, you need to know what they are, how to find them, and finding the domain and range.

Inverse functions reverse other functions. They switch the roles of the inputs and outputs. For instance, $\mathrm{f}(\mathrm{x})=\mathrm{y}$ is the same as having $f^{-1}(\mathrm{y})=\mathrm{x}$. The relationship between these two values are reflected over the $\mathrm{x}=\mathrm{y}$ line on a graph. The inverse of a function won't always be a function as well. Having a one-to-one function guarantees that the inverse will definitely be a function.

When solving for the inverse of a function, there is more than one approach. It can be solved by switching the x and the $\mathrm{y}(\mathrm{f}(\mathrm{x}))$, or finding the values and then switching it at the end. The first step to finding the inverse of a function is replacing $f(x)$ with " y ". Once you have " y " alone on one side of the equal sign, switch the positions of the " x " and the " y ", solve for " y ". Once " y " is completely isolated, that is the value of the inverse of the function.

sometimes, questions will ask about the domain and range of the inverse of a function. values
The domain of the function is all suitable values for " x ". Therefore, the range of the function is all suitable values for " y ". However, it can get tricky because if the function is a fraction, the denominator cannot equal zero, because it would lead to an undefined function. In addition,

Exercise II.2. Find the remainder when dividing $x^{3}+3 x^{2}-5 x+7$ by $x+2$

$$
\frac{x^{3}+3 x^{2}-5 x+7}{x+2}
$$

Checking:

$=\frac{(x+2)\left(x^{2}+x-7\right)+21}{x+2}$

$$
=\left(x^{2}+x-7\right) R 21
$$

$$
\text { Remainder : } 7
$$

$$
\begin{aligned}
& (x+2)\left(x^{2}+x-7\right)+21 \\
= & \left(x^{3}+3 x^{2}-5 x-14\right)+21 \\
= & x^{3}+3 x^{2}-5 x+7
\end{aligned}
$$

Exercise II.1. Divide the polynomials: $\frac{2 x^{3}+x^{2}-9 x-8}{2 x+3}$

$$
\begin{aligned}
& \frac{2 x^{3}+x^{2}-9 x-8}{2 x+3} \quad \begin{aligned}
\text { Checking: }
\end{aligned} \\
&=\quad\left(x^{2}-x-3 x+3\right)\left[\left(x^{2}-x-3\right)+\right. \\
&=\quad x^{2}-x-3+\frac{1}{2 x+3} \quad= \\
&=(2 x+3)\left(x^{2}-x-3\right)+\left(2 x^{3}+x^{2}-9 x-9\right)+1 \\
&= 2 x^{3}+x^{2}-9 x-8
\end{aligned}
$$

$\frac{x^{2}-x-3 R 1}{2 x+3} \begin{gathered}2 x^{3}+x^{2}-9 x-8 \\ -\left(2 x^{3}+3 x^{2}\right) \\ -2 x^{2}-9 x\end{gathered}, ~$
To divide polynomials, I first set the problem up in long division form instead of fraction form. Then I put the divisor (the number that is doing the dividing) on the outside and the dividend (the number that is being divided) on the inside. Then the first term of the divisor divides the first term of the dividend. Then I put the resolve at top where the answer goes. Afterwards I multiply the answer by the divisor then subtract it from the equation creating a whole new polynomial. I repeat these steps until there's no new polynomial to be divided or there's a number that can't be divided which is called the remainder. However, I can rewrite the remainder in a faction form, which is $1 /(2 x+3)$.

Exercise II.3. Which of the following is a factor of $x^{400}-2 x^{99}+1$

$$
\begin{aligned}
& x-1, \quad x+1, \quad x-0 \\
& x^{\wedge} 400-2 x^{\wedge} 99+1 \\
& x+1 ; x=-1 \quad x-0 ; x=0 \\
& x-1 ; x=1 \quad(-1)^{\wedge} 400-2(-1)^{\wedge} 99+1 \quad 0^{\wedge} 400-2(0)^{\wedge} 99+1 \\
& 1^{\wedge} 400-2(1)^{\wedge} 99+1=1-(-2)+1=0-2(0)+1 \\
& =1-2+1=1+2+1=1 \\
& =0 \quad=4
\end{aligned}
$$

Answer: $x-1 ; x=1$. Positive 1 is a factor.

To find which one of these factors is the actual factor for the given equation, I found the roots of each factor by isolating the " x ". Then I plug the roots into the equation to see/ which one makes the equation equals zero.

To find the roots you must equal to zero.

$$
x^{400}-2 x^{99}+1=0
$$

If $x=c$ makes this equation
a true statement, than the

$$
\begin{aligned}
& x \text { true statement, its factor. } \\
& x \rightarrow c \text { is its }
\end{aligned}
$$

Exercise II.4. Identify the polynomial with its graph.

a)

b)

c)

d)

graph: \qquad
graph: \qquad
graph: \qquad
i) $f(x)=-x^{2}+2 x+1$,
ii) $f(x)=-x^{3}+3 x^{2}-3 x+2$,
iii) $f(x)=x^{3}-3 x^{2}+3 x+1$,
iv) $f(x)=x^{4}-4 x^{3}+6 x^{2}-4 x+2$,

ANSWER and EXPLANATION:

Graph C, because although $-x^{\wedge} 2$ takes the similar shape of $x^{\wedge} 2$ it is flipped upsidedown, resulted to look like something similar to an upside-down U.
Graph D, because the function is negative (which flips the graph), y-intercept is 2 and largest degree is odd (which makes the function go into the positive and negative y infinity.
III) Graph \mathbf{A}, because the function is positive, y -intercept is 1 and largest degree is odd (which makes the function go into the positive and negative y infinity.
IV) Graph B, because the function isn't negative, y-intercept is 2 and the largest degree is even (it looks like a parabola only going in one direction.)

Exercise II.5. Sketch the graph of the function:

$$
f(x)=x^{4}-10 x^{3}-0.01 x^{2}+0.1 x
$$

- What is your viewing window?
- Find all roots, all maxima and all minima of the graph with the calculator.

> Roots: $-0.1,0,0.1$
> Relative Maxima: $(0.0576,0.00383)$
> Relative Minima: $(-0.0578,-0.00387)$

The roots are $-0.1,0$, and 0.1 because they are touching the x -axis where the output is 0 . The roots are also called the zeros. Also, there is no maxima or minima because the graph goes on to infinity, therefore this two points on the graph are the relative maxima and minima, which is that the relative maxima is $(0.0576,0.00383)$ and the relative minima is $(-0.0578,-0.00387)$.
oubsolute

Exercise II.6. Find all roots of $f(x)=x^{3}+6 x^{2}+5 x-12$.
Use this information to factor $f(x)$ completely.
p - Possible factors of 12 so $p= \pm(4,3,2,1,12)$
q - Possible factor of 1 so $\mathrm{q}= \pm 1$
Possible roots $=-4,-3,-2,-1,1,12,2,3,4 \pm 6$

$$
\begin{gathered}
x^{3}+6 x^{2}+5 x-12=0 \\
x=1 \\
1^{3}+6(1)^{2}+5(1)-12=0 \\
1+6+5-12=0 \\
0=0 \\
x=-3 \\
(-3)^{3}+6(-3)^{2}+5(-3)-12=0 \\
-27+54-15-12=0 \\
0=0 \\
x=-4 \\
(-4)^{3}+6(-4)^{2}+5(-4)-12=0 \\
-64+96-20-12=0 \\
0=0
\end{gathered}
$$

Exercise II.7. Find a polynomial of degree 3 whose roots are 0,1 , and 3 , and so that $f(2)=10$.

$$
\begin{aligned}
& 0=x \quad 1=x \quad 3=x \\
& f(2)=10 \\
& x-0=0 \quad x-1=0 \quad x-3=0 \quad(x)(x-1)(x-3)=10 \\
& 0-0=0 \quad 1-1=0 \quad 3-3=0 \\
& (2)(2-1)(2-3)=10 \\
& \text { (x) } \\
& (x-1) \quad(x-3) \\
& (x)(x-1)(x-3) \\
& (-5)(x)(x-1)(x-3)
\end{aligned}
$$

$$
\begin{aligned}
&(-5)(x)(x-1)(x-3) \\
& f(2)=10 \\
&(-5)(2)(2-1)(2-3)=10 \\
& 10=10
\end{aligned}
$$

Answer: $f(x)=(-5 x)(x-1)(x-3)$

$$
\text { simplify: } f(x)=\cdots
$$

To solve this question I need to do the reverse of solving a polynomial because instead of trying to get factors to get roots I am trying to use factors to get roots. As shown above, I resulted with $(x)(x-1)(x-3)$. Then I plugged in 2 to see if it equals to 10 . However, it didn't so I multiply x by -5 because then both side would equal, and resulted the final equation as $f(x)$ $=(-5 x)(x-1)(x-3)$.
Please note that if cisaroot than the polynomial is divisible by $x-c$.
So: $(x-0)(x-1)(x-3)$ are factors.
Another condition is that $f(2)=10$ So you can find the $f(x)=-5 x^{3}+20 x^{2}-15$.

Exercise II.8. Find a polynomial of degree 4 with real coefficients, whose roots include $-2,5$, and $3-2$.

Answer: $f(x)=(x+2)(x-5)(x-3-2 i)(x-3+2 i)$ Simplify!

To solve this question I use the similar method in Exercise 11.7 for this question. I plugged in the given roots and resulted $(x+2)(x-5)(x-3-2 i)(x-3+2 i)$. Therefore my answer is $f(x)=$ $(x+2)(x-5)(x-3-2 i)(x-3+2 i)$.

Exercise II.9. Let $f(x)=\frac{3 x^{2}-12}{x^{2}-2 x-3}$. Sketch the graph of f. Include all vertical and horizontal asymptotes, all holes, and all x - and y-intercepts.
(土 $\frac{3 x^{2}-12}{x^{2}-2 x-3}$

X -intercept = -2, 2
Y -intercept $=4$
horizontal
ratio of
X -intercept is the point where the graph hits on the x -axis; Y -intercept is the point where the graph hits on the y-axis. This resulted me with the x -intercept of -2 and 2 , and y intercept of 4 . For the vertical asymptote, I notice that the denominator cannot equal to zero, because if it does then the equation is undefined. Therefore, $I \operatorname{did} x^{\wedge} 2-2 x-3 \neq 0$, and it resulted me with $x \neq-1$ and $x \neq 3$, which is also that my vertical asymptote is $x=-1$ and $x=3$. For the horizontal asymptote, I first look at the greatest degree both the numerator and denominator, the rule if the degree of both is the same is that then the horizontal asymptote is the line $y=a / b$, which is that $2 / 2$ in this equation. This resulted me with a horizontal asymptote of $\mathrm{y}=1$.

$$
\begin{array}{r}
f(x)=\frac{3 x^{2}-12}{x^{2}-2 x-3} \\
f(x)=\frac{3(x-2)(x+2)}{(x-3)(x+1)} \\
(x-3)(x+1) \neq 0 \\
\text { Vertical asymptote } \Theta x=-1 ; \mathbf{x}=3
\end{array}
$$

$\operatorname{Deg}(p)=\operatorname{Deg}(q)$; then the horizontal
asymptote is the line $y=a / b ; 2 / 2=1$.
Horizontal asymptote $=\mathbf{y}=\mathbf{1}$

$$
\frac{3}{1}=3
$$

Exercise II.10. Solve for x :
a) $x^{4}+2 x<2 x^{3}+x^{2}$,

$$
x^{2}-2 x^{3}-x^{2}+2 x<0
$$

A)

$$
x^{\wedge} 4+2 x<2 x^{\wedge} 3+x^{\wedge} 2
$$

$$
x^{\wedge} 4-2 x^{\wedge} 3-x^{\wedge} 2+2 x<0
$$

$$
x\left(x^{\wedge} 3-2 x^{\wedge} 2-x+2\right)<0
$$

$$
x(x-2)\left(X^{\wedge} 2-x\right)<0
$$

$x(x-2)\left(x^{\wedge} 2-x\right)<0$
$x \neq 2, x \neq 1, x \neq 0$

$(1 / 2)^{\wedge} 4+2(1 / 2)<2(1 / 2)^{\wedge} 3+(1 / 2)^{\wedge} 2$
$(1 / 16)+1<(1 / 4)+(1 / 4)$
$(17 / 16)<(1 / 2)$
b) $x^{2}+3 x \geq 7$,
c) $\frac{x+1}{x+4} \leq 2$

False

For this problem, I first move everything to one side and make another 0 . Since I realized that it is dividable by x , for that reason I rewrote the inequality as $x\left(x^{3}-2 x^{2}-x+2\right)=0$. Then I use the method of FOIL, which resulted me with $x(x-2)\left(x^{2}-x\right)<0$. Therefore, I resulted with $x \neq 2, x \neq 1$, and $x \neq 0$. As shown in the checking, any numbers in between 0 and 1 makes this inequality false. This proves that x cannot be any numbers between 0 and 1. My final answer for this question is $S=(-1,0) \cup(1,2)$.

Please try to use the same type and Size of Writing!

$$
S=[1,2.27]
$$

$$
\begin{aligned}
& \text { B) } \\
& x^{2}+3 x \geq 7 \\
& x^{2}+3 x-7 \geq 0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-3 \pm \sqrt{3^{2}-4(1)(-7)}}{2(1)} \\
& =\frac{-3 \pm \sqrt{37}}{2} \\
& S=\left(-\infty, \frac{-3-\sqrt{37}}{2}\right] \cup\left[\frac{-3+\sqrt{37}}{2}, \infty\right) \\
& \begin{array}{rll}
\mathrm{x}=0 & \\
x^{2}+3 x \geq 7 & x^{2} \\
0^{2}+3(0) \geq 7 & & 10^{2} \\
0+0 \geq 7 & \\
\text { False } & \\
& \text { agaín } \\
& \text { donot }
\end{array} \\
& \mathrm{x}=10 \\
& x^{2}+3 x \geq 7 \\
& 10^{2}+3(10) \geq 7 \\
& 130 \geq 7 \\
& \text { True }
\end{aligned}
$$

Similar to Exercise 11.10A), I moved everything to one side leaving another equal to 0 . For this problem, I then use the quadratic formula, $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$. As I plugged in the numbers, I got $x=\frac{-3 \pm \sqrt{3^{2}-4(1)(-7)}}{2}$. This resulted me with $x=\frac{-3 \pm \sqrt{37}}{2}$. My final answer for this problem is $S=\left(-\infty, \frac{-3-\sqrt{37}}{2}\right) \cup\left(\frac{-3+\sqrt{37}}{2}, \infty\right)$. As shown in my checking, $\mathrm{x}=0$ and it makes the inequality false, this proves that x cannot equal to any numbers in between $\frac{-3-\sqrt{37}}{2}$ and $\frac{-3+\sqrt{37}}{2}$.
C)

Checking:

$$
\begin{gathered}
\frac{\mathrm{x}+1}{\mathrm{x}+4} \leq 2 \\
x+1 \leq 2 x+8 \\
\frac{-x-8-x-8}{-7 \geq x} \\
S=(-\infty,-7] \cup(-4, \infty)
\end{gathered}
$$

Due to the fact that a denominator cannot equal zero because if the denominator is zero then the inequality is undefined. Therefore, $x \neq-4$, because $-4+4=0$ and this leaves the inequality undefined.

$$
x=-4 \text { is a vertical asymptote. }
$$

For this problem, I first multiply both side by $(x+4)$ to cancel the denominator, which resulted me with $x+1 \leq 2 x+8$. I then subtract x and 8 from both side to cancel some of the numbers, which resulted me with $-7 \geq x$. As I took notice that $(x+4)$ is a denominator, x cannot equal to -4 because $-4+4=0$ and it makes the denominator equals to 0 . The denominator cannot equal to zero because if the denominator equals to 0 then the inequality is undefined. For this reason, $x \neq-4$. This resulted me with my final answer that $S=(-\infty,-7) \cup(-4, \infty)$. As shown in the checking, when $x=-6$, this makes the inequality false. This can also proves that x cannot equal to any numbers between -7 and -4 .

$$
y=-1 \text { is horizontal asymptote. }
$$

For a future reference:

1) Always try to Solve the problem including all possible solutions, then check any specific vóluls) in specific intervals to make sure that you h have done the night thing.

I graphed it for you?
Please focus a little $S=[1,2.27]$ more in polynomial inequalities!

Exercise II.10. Solve for x :

a) $x^{4}+2 x<2 x^{3}+x^{2}$,
b) $x^{2}+3 x \geq 7$,
c) $\quad \frac{x+1}{x+4} \leq 2$

A) $x^{\wedge} 4+2 x<2 x^{\wedge} 3+x^{\wedge} 2$
You must $x^{\wedge} 4-2 x^{\wedge} 3-x^{\wedge} 2+2 x<0$

$$
f \begin{array}{r}
\quad \begin{array}{l}
x\left(x^{\wedge} 3-2 x^{\wedge} 2-x+2\right)<0 \\
x(x-2)\left(x^{\wedge} 2-x\right)
\end{array}<0
\end{array}
$$

$$
f(x)=x^{4}-2 x^{3}-x^{2}+2 x x \neq 2, x \neq 1, x \neq 0
$$

The post of the proyph $=[(-1,0)] \cup(1,2)]$
under x axes $w / \|$ Checking:

$(1 / 2)^{\wedge} 4+2(1 / 2)<2(1 / 2)^{\wedge} 3+(1 / 2)^{\wedge} 2$

$$
(3 / 2)^{\wedge} 4+2(3 / 2)<2(3 / 2)^{\wedge} 3+(3 / 2)^{\wedge} 2
$$

$(1 / 16)+1<(1 / 4)+(1 / 4)$
$(17 / 16)<(1 / 2)$
False
$(81 / 16)+(3)<2(27 / 8)+3$
$(129 / 16)<(156 / 16)$

For this problem, I first move everything to one side and make another 0 . Since I realized that it is dividable by x , for that reason I rewrote the inequality as $x\left(x^{3}-2 x^{2}-x+2\right)=0$. Then I use the method of FOIL, which resulted me with $x(x-2)\left(x^{2}-x\right)<0$. Therefore, I resulted with $x \neq 2, x \neq 1$, and $x \neq 0$. As shown in the checking, any numbers in between 0 and 1 makes this inequality false. This proves that x cannot be any numbers between 0 and 1 . My final answer for this question is $S=(-1,0) \cup(1,2)$.

Review of polynomials and rational Functions

Exercise II.1. Divide the polynomials :(2x^3+x^2-9x-8)/2x+3

Exercise II.2. Find the remainder when dividing $\mathbf{x}^{\wedge} \mathbf{3}+\mathbf{3 x} \wedge \mathbf{2}-5 x+7$ by $\mathbf{x}+\mathbf{2}$.

Review of polynomials and rational

Functions

Exercise II.1. Divide the polynomials :($\left.2 x^{\wedge} \mathbf{3}+x^{\wedge} \mathbf{2 - 9 x}-8\right) / 2 x+3$

Exercise II.2. Find the remainder when dividing $x^{\wedge} \mathbf{3}+3 x^{\wedge} \mathbf{2}-5 x+7$ by $\mathbf{x}+2$.

$$
\mathrm{X}^{\wedge} 2+\mathrm{x}-7+((21) / \mathrm{X}+2)
$$

$$
\mathrm{X}+2 \mid \mathrm{x}^{\wedge} 3+3 \mathrm{x}^{\wedge} 2-5 \mathrm{x}+7
$$

$$
-x^{\wedge} 3 \quad-2 x^{\wedge} 2
$$

$X^{\wedge} 2-5 x+7$
$-X^{\wedge} 2-2 x$
$-7 \mathrm{x}+7$

$$
7 \mathrm{X}+14
$$

If a>0, the parabola opens upwards
$a x^{\wedge} 2+b x+c$
if $\mathrm{a}<0$, it opens downwards.
$-a x^{\wedge} 2+b x+c$

If the highest degree is odd then the graph will stretch to both

- and $+y$ infinity .

If the highest degree is even then the graph will only stretch towards only one direction.

The function isn't negative
y-intercept $=1$
Largest degree $=$ odd
iii) $f(x)=x^{\wedge} 3-3 x^{\wedge} 2+3 x+1$

The function isn't negative
y-intercept $=2$
Largest degree $=$ even

iv) $f(x)=x^{\wedge} 4-4 x^{\wedge} 3+6 x^{\wedge} 2-4 x+2$

The function is negative
y-intercept=2
Largest degree=even

$$
\text { i) } f(x)=-x^{\wedge} 2+2 x+1
$$

c)

The function is negative
y -intercept=2
largest degree=odd
ii) $f(x)=-x^{\wedge} 3+3 x^{\wedge} 2-3 x+2$

Exercise II.5. Sketch the graph of the function:

$f(x)=x^{\wedge} 4-10 x^{\wedge} 3-0.01 x^{\wedge} 2+0.1 x$

- Find all roots, all maxima and all minima of the graph with the calculator.

Roots- a solution that satisfjes the equation. Also called the zeros because it's all the point where the graph hits the x -axis.

Maxima -the highest point of graph and relative maxima is the highest point on graph. In this graph there's no maxima because graph never ended and went onto infinity.
Minima- the lowest point of graph and relative minima is the lowest point on graph. In this graph there's no minima because graph never ended and went onto infinity.

Exercise II.6. Find all roots of $f(x)=x^{\wedge} 3+6 x^{\wedge} 2+5 x-12$.

Use this information to factor $f(x)$ completely.
(a0) p- possible factors of 12 so $\mathrm{p}=+\&-(4,3,2,1,12)$
(a3) q - pssible factor of 1 so $\mathrm{q}=+1,-1$
Possible roots $=-4,-3,-2,-1,1,12,2,3,4$
$x^{\wedge} 3+6 x^{\wedge} 2+5 x-12=0$
substitute possible roots to find real roots.

$\mathrm{X}=-3$
$(-3)^{\wedge} 3+6(-3)^{\wedge} 2+5(-3)-12=0$
$-27+54-15-12=0$
$0=0$
$X=-4$
$(-4)^{\wedge} 3+6(-4)^{\wedge} 2+5(-4)-12=0$

Exercise II.7. Find a polynomial of degree 3 whose roots are 0, 1, and 3, and
so that $f(\mathbf{2})=\mathbf{1 0}$.

0
$0=x$
$\mathrm{X}-0=0$
(x)

$$
\begin{aligned}
& =10 . \\
& \text { Please Explain this procedure! }
\end{aligned}
$$

$$
\begin{gathered}
F(x)=(x)(x-1)(x-3) \\
F(2)=10 \\
(2)(2-1)(2-3)=10 \\
(2)(1)(-1)=10 \\
-2 \neq 10
\end{gathered}
$$

0 doesn't equal -5

$$
\begin{gathered}
-5(2)(2-1)(2-3)=10 \\
-5(2)(1)(-1)=10 \\
(-5)-2=10 \\
10=10
\end{gathered}
$$

$$
F(x)=(-5 x)(x-1)(x-3)
$$

Multiply back to see polynomial as answer.

Exercise II.8. Find a polynomial of degree 4 with real coefficients, whose roots include $-2,5$, and $3-2 i$.
-2
$X=-2$
$\mathrm{X}+2=0$
$-2+2=0$
($\mathrm{X}+2$)

-5
$\mathrm{x}=5$
$x-5=0$
$5-5=0$

3-2i
$3 \pm 2 \mathrm{i}=\mathrm{x}$
$x-3-2 i=0 ; x-3+2 i=0$
(x-3-2i) ; (x-3+2i)

) You have to explain that if C is the root than the polynomial is divisible by $x-c$ that is for all roots.
So if -2 , 5 , and $3-2 i$ are roots of the palynome thou you know that it is divisible by $[x-(-2)] ;(x-5) ; \underbrace{x-(3-2 i)}]$ another condition is

Exercise II.9. Let $f(x)=\left(3 x^{\wedge} \mathbf{2}-12\right) / x^{\wedge} \mathbf{2 - 2 x}-3$, Sketch the graph of f. Include + all vertical and horizontal asymptotes, all holess, and all x - and y-intercepts. ($\frac{3 x^{2}-12}{x^{2}-2 x-3}$

x-intercept-or the points where the graph hits x -axis $=-2,2$
y-intercept-or the points where the graph hits the y-axis $=4$
Horizontal asymptotes- since this graph as the rule $\operatorname{deg}(p)=\operatorname{Deg}(q)$ then the vertical asymptote would be the highest coeffient of $\mathrm{p} /$ highest coeffient of p .
Which is $3 / 1=0=3$
Horizontal asymptote $=1=y$
Vertical asymptote-1o get the vertical asymptote you need to factor out the whole equation, cancel out what u can then find the root for the denominator .The root would be the vertical asymptote.
$\left(3 x^{\wedge} 2-12\right) / x^{\wedge} 2-2 x-3$
$(3(x-2)(x+2))) /(x-3)(x+1)$
$(x-3)(x+1)=0$
$\mathrm{X}=3, \mathrm{x}=-1$
Vertical asymptote $\neq \mathrm{x}=-1, \mathrm{x}=3$

Exercise II.10. Solve for x :
a) $x^{\wedge} 4+2 x<2 x^{\wedge} 3+x^{\wedge} 2$

$$
x^{4}+2 x<2 x^{3}+x^{2}
$$

Subtract $2 x^{3}+x^{2}$ from both sides
$x^{4}+2 x-\left(2 x^{3}+x^{2}\right)<2 x^{3}+x^{2}-\left(2 x^{3}-x^{2}\right)$
Refine
$x^{4}-2 x^{3}-x^{2}+2 x<0$

Factor the left hand side $x^{4}-2 x^{3}-x^{2}+2 x: \quad x(x+1)(x-1)(x-2)$

$$
x^{4}-2 x^{3}-x^{2}+2 x
$$

Factor out x
$=x\left(x^{3}-2 x^{2}-x+2\right)$
Factor $x^{3}-2 x^{2}-x+2:(x+1)(x-1)(x-2)$
$=x(x-1)(x-1)(x-2)$
$x(x+1)(x-1)(x-2)<0$

