Prepared by: Lucie Mingla

	Main Properties of Exponents and Radicals		Applications:
1	$a^{m}=a^{n+m}$	1	$3^{5}=3^{4+5}=3^{9}$
2	$(a \cdot b)^{n}=a^{n} b^{n}$	2	$(2 \cdot 3)^{5}=2^{5} 3^{5}=32 \cdot 243=7776$
3	$\left(a^{m}\right)^{n}=a^{m n}$	3	$\left(5^{2}\right)^{3}=5^{2 \cdot 3}=5^{6}=15625$
4	$a^{-n}=\frac{1}{a^{n}}$	4	$(7)^{-3}=\frac{1}{7^{3}}=\frac{1}{343}$
5	$\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$	5	$\left(\frac{7}{8}\right)^{2}=\frac{7^{2}}{8^{2}}=\frac{49}{64}$
6	$\frac{a^{m}}{a^{n}}=a^{m-n}$	6	$\frac{9^{7}}{9^{5}}=9^{7-5}=9^{2}=81$
7	$a^{0}=1$	7	$\begin{aligned} & 5 x^{0}+\left(3 y^{0}\right)+102^{0}=5 \cdot 1+ \\ & 3 \cdot 1+1=9 \end{aligned}$
8	$\sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b}$	8	$\sqrt[4]{2 b}=\sqrt[4]{2} \cdot \sqrt[4]{b}$
9	$\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$	9	$\sqrt[7]{\frac{x^{3}}{y^{7}}}=\frac{\sqrt[7]{x^{3}}}{\sqrt[7]{y^{7}}}=\frac{\sqrt[7]{x^{3}}}{y}$
10	$\sqrt[n]{\left(\frac{a}{b}\right)^{m}}=\left(\frac{a}{b}\right)^{\frac{m}{n}}$	10	$\sqrt[8]{\left(\frac{a}{b}\right)^{7}}=\left(\frac{a}{b}\right)^{\frac{7}{8}}$
11	$\sqrt[n]{a^{n}}=a$	11	$\sqrt[4]{6^{4}=} \sqrt[4]{1296}=6$
12	$(a)^{\frac{1}{n} \cdot n}=a$	12	$(19){ }^{8}{ }^{1} 8=19^{1}=19$

