New York City College of Technology Department of Mathematics

MAT 1275 Final Exam Review Problems¹

1. Evaluate (and find on a number line)

(a)
$$-2^{-4} + 3^0 - (2/3)^{-1}$$

(b)
$$5 - 3(7 - 9) + 27^{\frac{2}{3}}$$

(c)
$$7 - 4(5 - 6) + 9^{\frac{3}{2}}$$

2. Simplify $\frac{9x^4y^3 - 12x^2y^4 + 3xy^3}{3xy^3}.$

3. (a)
$$-2(x-1) - (4-3x) = -2(-1+x) - 7 + x - 3$$

(b)
$$3(x-2) - 7(x+3) = -2(x+6) + x$$

4. Solve for x and simplify the answer.

(a)
$$6x^2 - 2x - 3 = 0$$

(b)
$$-2x^2 + 4x - 5 = 0$$

(c)
$$2x^2 + 2x = -3$$

5. Solve the following equation

(a)
$$4\sqrt{2x+1}-3=17$$

(b)
$$5\sqrt{1-2x}+3=18$$

6. Given the following quadratic equation, state the x- and y-intercepts (solutions of the form (x,0) and (0,y), the vertex, and then use this information to sketch the graph.

(a)
$$y = x^2 - 2x - 3$$

(b)
$$y = x^2 + 2x$$

(c)
$$y = -x^2 + 4x - 2$$

7. Simplify the complex fraction.

(a)
$$\frac{\frac{2}{y^2} + \frac{1}{y}}{\frac{4}{y^2} - \frac{1}{y}}$$
(b)
$$\frac{\frac{2}{x} + \frac{1}{y}}{\frac{3}{y} - \frac{4}{x}}$$

(b)
$$\frac{\frac{2}{x} + \frac{1}{y}}{\frac{3}{y} - \frac{4}{x}}$$

(c)
$$\frac{3-\frac{1}{2x}}{2+\frac{1}{x^2}}$$

¹Revised by Profs. Nadia, Will, Graznya, Alex, Holly, et el (Spring 2024).

- **8.** Simplify $\frac{2x^2 + 4x 30}{x^2 9}$ (for values of x for which the denominator is not zero).
- **9.** Solve $\frac{2}{x^2 4x + 3} = \frac{2x}{x 1} + \frac{1}{x 3}$.
- 10. Write the equation of the circle given below in standard form. Identify the center and radius of the circle and graph it. Label four points on the graph with coordinates.
 - (a) $x^2 + y^2 6x + 4y 4 = 0$
 - **(b)** $x^2 + y^2 + 8x 2y 8 = 0$
 - (c) $x^2 + y^2 + 10x + 6y + 18 = 0$
- 11. Perform the indicated operation and express the answer in the form a + bi.
 - (a) (-2+3i)(5-7i)
 - **(b)** (4-9i)(3-2i)
 - (c) $\frac{3-2i}{1-i}$
 - (d) $\frac{2-7i}{3+4i}$
- 12. Solve the system of equations.
 - (a) $\begin{cases} 3x + y = 4 \\ x^2 3y = -32 \end{cases}$
 - (b) $\begin{cases} x^2 + y^2 = 5 \\ x y^2 = -3 \end{cases}$
 - (c) $\begin{cases} 4x y = 2 \\ x^2 + 2y = 5 \end{cases}$
 - (d) $\begin{cases} x^2 y^2 = 3\\ 2x + y^2 = 5 \end{cases}$
- **13.** For the given expressions,
 - 1. identify the quadrant in which the angle is located,
 - 2. find the reference angle,
 - 3. calculate the exact value.
 - (a) $\tan(-135^{\circ})$
 - **(b)** $\cos(240^{\circ})$
 - (c) $\sin(330^{\circ})$
 - (d) $\cos(-120^{\circ})$
 - (e) $\cot\left(-\frac{5\pi}{4}\right)$
 - (f) $\csc\left(-\frac{4\pi}{3}\right)$
 - (g) $\sec\left(\frac{2\pi}{3}\right)$
- 14. For the given information, state the value of the five remaining trig functions of θ .

- (a) $\sin \theta = \frac{2}{5}$ and $\cos \theta < 0$
- (b) $\tan \theta = 2$ and $\sin \theta < 0$
- (c) $\cos \theta = \frac{2}{3}$ and $\tan \theta < 0$
- (d) $\cos \theta = \frac{3}{7}$ and $\sin \theta < 0$
- 15. Given a $\triangle ABC$, draw a picture of the triangle and label it with the information provided. Round each answer to the nearest tenth. You may use either the law of sines:

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

or the law of cosines:

$$c^2 = a^2 + b^2 - 2ab\cos(C)$$

$$a^2 = c^2 + b^2 - 2cb\cos(A)$$

$$b^2 = a^2 + c^2 - 2ac\cos(B).$$

- (a) If a = 12, b = 8 and c = 5, find $\angle C$.
- (b) If $\angle A = 50^{\circ}$, $\angle B = 75^{\circ}$ and a = 20, find side b.
- (c) If b = 9, c = 6 and $\angle A = 67^{\circ}$, find side a.
- (d) If $\angle C = 37^{\circ}$, $\angle B = 79^{\circ}$ and b = 13, find side a.
- **16.** Find the exact solutions to the trigonometric equations for $x \in [0, 2\pi)$.
 - (a) $4\sin x + 2 = 0$
 - **(b)** $6\cos x 3 = 0$
 - (c) $2 \tan x 2 = 0$
 - (d) $6 \tan x = -2\sqrt{3}$
- 17. Suppose that you are are asked to find the exact solutions to equations in problems 4, 12, and 16.
 - (a) What kind of problem is this?
 - (b) What does x represent?
 - (c) Are there values that you can see without computation can not possibly be a solution? Explain.
 - (d) Describe your strategy for solving this problem and explain why you think this will work. Provide a picture as part of your explanation where appropriate.
- 18. Evaluate the logarithm without using a calculator.
 - (a) $\log_2 \sqrt[3]{2}$
 - **(b)** $\log_3 \frac{1}{9}$
- 19. Consider the equation $0 = -1 + x + 3x^2 + x^3$. Note that x = -1 is a solution. Find all other solutions exactly. Hint: identify a factor and use long division to find the other factor.
- **20.** Write a cubic expression with one variable whose leading coefficient 4, and whose roots are 0, -2, and 7.
- **21.** Write down a polynomial with one variable, x, which when evaluated at each of x = 2, x = -3, and x = 1 gives 0.
- **22.** Use the Binomial Theorem to find the coefficient of x^3 in the expression $(2x-1)^5$.

23. Assuming the variables take on positive values, simplify and write your answer as a simple fraction using only positive exponents with each variable appearing at most once:

(a)
$$\left(\frac{4x^3y^{-2}}{16x^{-3}y^4}\right)^{-1/2}$$

(b)
$$\left(\frac{4x^3}{x^{-3}}\right)^{-\frac{1}{2}}$$

(c)
$$(4y^{-3}y^2)^{-\frac{1}{2}}$$

- **24.** Write an equation of a line which is perpendicular to the line y-3=2(x+4) which passes through (2,-1). Graph both lines.
- **25.** Write an equation of a line passing through (-2,3) and (3,4).
- **26.** Given the graph of $y = ax^2 + bx + c$,

- (a) How many solutions of the form (a, -4) does this equation have? Explain.
- (b) How many solutions of the form $(\sqrt{3}, b)$ does this equation have? Explain.
- (c) How many solutions with an y-coordinate of -15 does the equation have? Explain
- (d) Find the roots of $0 = ax^2 + bx + c$.
- (e) What is the value of the constant coefficient c? Explain.
- (f) Is the coefficient a, positive, negative or zero? Explain.
- (g) How many solutions does the system $\begin{cases} y = ax^2 + bx + c \\ y = 3 \end{cases}$ have? Explain.
- (h) Find the equation for the line of symmetry.
- 27. A 10-foot ladder is leaning up against a wall. If the base of the ladder is situated 4 feet away from the base of the wall, what is the angle of elevation of the ladder? Draw a picture that depicts the situation and label the relevant information. Round your answer to the nearest tenth of a degree.
- **28.** Solve for x and round your answer to the nearest tenth:

$$3^x = 12.$$

- 1. (a) $-\frac{9}{16}$, which is between -1 and 0 on the number line
 - (b) 12, to the right of zero
 - (c) -4, to the left of zero
- **2.** $3x^3 4xy + 1$
- 3. (a) x = -3
 - (b) x = -5
- 4. (a) $\frac{1 \pm \sqrt{19}}{6}$
 - (b) $\frac{2 \pm i\sqrt{6}}{2}$
 - (c) $\frac{-1 \pm i\sqrt{5}}{2}$
- **5.** (a) x = 12
 - (b) x = -4
- **6.** (a) Vertex: (1, -4), x-intercepts: (3, 0) and (-1, 0), y-intercept: (0, -3)
 - (b) Vertex: (-1,-1), x-intercepts: (0,0) and (-2,0), y-intercept: (0,0)
 - (c) Vertex: (2,2), x-intercepts: $(2-\sqrt{2},0)$ and $(2+\sqrt{2},0)$, y-intercept: (0,-2)
- 7. (a) $\frac{2+y}{4-y}$
 - (b) $\frac{2y+x}{3x-4y}$
 - (c) $\frac{6x^2-x}{4x^2+2}$ or $\frac{x(6x-1)}{2(2x^2+1)}$
- 8. $\frac{2(x+5)}{x+3}$
- **9.** $x = \frac{-1}{2}$
- **10.** (a) Center: (3, -2), radius: $r = \sqrt{17}$
 - **(b)** Center: (-4, 1), radius: r = 5
 - (c) Center: (-5, -3), radius: r = 4
- 11. (a) 11 + 29i
 - **(b)** -6 35i
 - (c) $\frac{5}{2} + \frac{1}{2}i$
 - (d) $-\frac{22}{25} \frac{29}{25}i$
- **12.** (a) (-5,19), (-4,16)
 - **(b)** (-2,1), (1,2), (1,-2), (-2,-1)
 - (c) (-9, -38), (1, 2)
 - (d) $(2,1), (2,-1), (-4,\sqrt{13}), (-4,-\sqrt{13})$
- **13.** (a) III, 45°, 1

- **(b)** III, 60° , $-\frac{1}{2}$
- (c) IV, 30° , $-\frac{1}{2}$
- (d) III, 60° , $-\frac{1}{2}$
- (e) II, $\frac{\pi}{4}$, -1
- (f) II, $\frac{\pi}{3}$, $\frac{2\sqrt{3}}{3}$
- (g) II, $\frac{\pi}{3}$, -2

14. (a)
$$\cos \theta = -\frac{\sqrt{21}}{5}$$
, $\tan \theta = -\frac{2}{\sqrt{21}} = -\frac{2\sqrt{21}}{21}$, $\sec \theta = -\frac{5}{\sqrt{21}} = -\frac{5\sqrt{21}}{21}$, $\csc \theta = \frac{5}{2}$, $\cot \theta = -\frac{\sqrt{21}}{2}$

(b)
$$\cos \theta = -\frac{1}{\sqrt{5}} = -\frac{\sqrt{5}}{5}$$
, $\sin \theta = -\frac{2}{\sqrt{5}} = -\frac{2\sqrt{5}}{5}$, $\sec \theta = -\sqrt{5}$, $\csc \theta = -\frac{\sqrt{5}}{2}$, $\cot \theta = \frac{1}{2}$

(c)
$$\sin \theta = -\frac{\sqrt{5}}{3}$$
, $\tan \theta = -\frac{\sqrt{5}}{2}$, $\sec \theta = \frac{3}{2}$, $\csc \theta = -\frac{3}{\sqrt{5}} = -\frac{3\sqrt{5}}{5}$, $\cot \theta = -\frac{2}{\sqrt{5}} = -\frac{2\sqrt{5}}{5}$

(d)
$$\sin \theta = -\frac{2\sqrt{10}}{7}$$
, $\tan \theta = -\frac{2\sqrt{10}}{3}$, $\sec \theta = \frac{7}{3}$, $\csc \theta = -\frac{7}{2\sqrt{10}} = -\frac{7\sqrt{10}}{20}$, $\cot \theta = -\frac{3}{2\sqrt{10}} = -\frac{3\sqrt{10}}{20}$

- **15.** (a) 17.6°
 - **(b)** 25.2
 - (c) 8.6
 - (d) 11.9

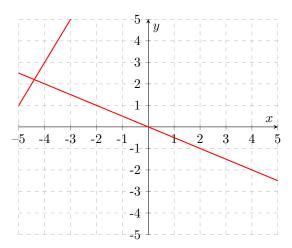
16. (a)
$$\frac{7\pi}{6}$$
, $\frac{11\pi}{6}$

- **(b)** $\frac{\pi}{3}, \frac{5\pi}{3}$
- (c) $\frac{\pi}{4}, \frac{5\pi}{4}$
- (d) $\frac{5\pi}{6}$, $\frac{11\pi}{6}$

17.

- 18. (a) $\frac{1}{3}$
 - **(b)** -2

19.
$$-1+\sqrt{2}, -1-\sqrt{2}$$


20.
$$4x(x+2)(x-7)$$

- 21. Answers vary.
- **22.** 80

23. (a)
$$\sqrt{\frac{3y^6}{2x^6}}$$

(b)
$$\frac{1}{2x^3}$$

- (c) $\frac{\sqrt{y}}{2}$
- **24.** The equation is not unique but is equivalent to $y+1=-\frac{1}{2}(x-2)$
- **25.** The equation is not unique but is equivalent to $y-3=\frac{1}{5}(x+2)$ or $y=\frac{1}{5}x+\frac{17}{5}$

- **26.** (a) 2
 - (b) 1
 - (c) 0
 - (d) -4 and 2
 - (e) -9
 - (f) positive
 - (g) 2
 - (h) x = -1
- **27.** $\cos^{-1} \frac{4}{10} \approx 66.4^{\circ}$
- **28.** 2.3