Radical Equations

$$
\begin{array}{l|l}
\sqrt[3]{x}=5 & \begin{array}{l}
x^{\frac{1}{3}}=5 \\
\left(x^{\frac{1}{3}}\right)^{3}=5^{3}
\end{array} \\
(\sqrt[3]{x})^{3}=5^{3} & x^{\prime}=125 \\
x=125
\end{array} \quad \begin{aligned}
& \text { Check } x=125 \\
& \sqrt[3]{125}=5 \rightarrow \sqrt[3]{5^{3}}=5 \rightarrow 5=52
\end{aligned}
$$

Note: we are multiplying both sides of an equation by an algebraic factor.
A new equation is formed and often, there are new solutions to the equation.
Thus, it is important to check all possible solutions.

$$
\begin{aligned}
& \sqrt[3]{x}=-5 \\
& (\sqrt[3]{x})^{3}=(-5)^{3} \\
& x=-125 \\
& \frac{\text { check } x=-125}{\sqrt[3]{-125}=-5} \\
& \sqrt[3]{(-5)^{3}}=-5 \\
& -5=-5 \sqrt{x}
\end{aligned}
$$

$$
\begin{align*}
\sqrt{x} & =-7 \\
(\sqrt{x})^{2} & =(-7)^{2} \\
x & =49
\end{align*}
$$

$$
\text { Check } x=45
$$

$$
+\sqrt{49}=-7
$$

extraneous solution
Since $x=49$ does not check,
$x=49$ is not a solution to the equation
$\therefore 0$ There is no solution to this equation

* Note: We are only assuming principal (positive) square root at this time.

There is no point where $\sqrt{x}=-7$
intersection

$$
\begin{array}{rr}
\sqrt{p}+5=9 & \frac{\text { Check } p=16}{\sqrt{16}+5=9} \\
-5-5 & 4+5=9 \\
\sqrt{p}=4 & 9=9
\end{array}
$$

$$
\begin{aligned}
& (\sqrt{9 a-18})^{2}=a^{2} \\
& 9 a-18=a^{2}<\text { quadectic aquation } \\
& -\frac{a^{2}-a^{2}}{-a^{2}+9 a-18=0} \\
& -\left(a^{2}-9 a+18\right)=0 \\
& -1+0 \mid(a-6)(a-3)=0 \\
& a-b=0 \text { or } a-3=0 \\
& \frac{+6+6}{a=6} \text { or } \frac{+3+3}{a=3} \\
& \text { Check } a=6 \\
& 3 \sqrt{9(6)-18}-3(6)=0 \\
& \sqrt[3]{54-18}-18=0 \\
& 3 \sqrt{36}-18=0
\end{aligned}
$$

$$
\begin{gathered}
3(6)-18=0 \\
18-18=0 \\
0=0
\end{gathered}
$$

$$
\begin{aligned}
& 0=0 \\
& \text { Check } a=3 \\
& 3 \sqrt{9(3)-18}-3(3)=0 \\
& 3 \sqrt{27-18}-9=0 \\
& 3 \sqrt{9}-9=0 \\
& 3(3)-9=0 \\
& 9-9=0 \\
& 0=\partial V \\
& \text { Check } a=3 \\
& \therefore a=3 \text { is } c \text { solution } \\
& 0=\partial \checkmark \\
& \begin{array}{l}
\text { *idea } \\
\sqrt{9(a-2)}-a=0
\end{array} \\
& \begin{array}{l}
\text { *idea } \\
\sqrt{9(a-2)}-a=0
\end{array} \\
& \sqrt{9(a-2)}=a \\
& \sqrt{9} \sqrt{a-2}=a
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\frac{3 \sqrt{a-2}}{3} & =\frac{a}{3} \\
\sqrt{a-2} & \rightarrow \frac{a}{3}
\end{aligned} \quad(3 \sqrt{a-2})^{2}=(a)^{2} . \quad 3^{2}(\sqrt{a-2})^{2}=a^{2} . \\
& \text { * } \sqrt{a b}=\sqrt{a} \sqrt{b} \\
& *(a b)^{n}=a^{n} b^{n} \\
& \text { Solution set } \\
& a \in\{3,6\} \\
& \sqrt{a} \sqrt{a-2}=a
\end{aligned}
$$

$\therefore a=6$ is a solution

$$
\begin{aligned}
(\sqrt{a-2})^{2} & =\left(\frac{a}{3}\right)^{2}
\end{aligned} \begin{aligned}
& 9(a-2)=a^{2} \\
& a-2=\frac{a^{2}}{9} \\
& 9(a-2)=a^{2} \\
& 9 a-18=a^{2} \\
& 9=a^{2} \\
& \vdots
\end{aligned}
$$

$$
\begin{aligned}
2 \sqrt{8-w} & -\omega=0 \\
& +\omega+\omega
\end{aligned}
$$

$2 \sqrt{8-\omega}=\omega \leftarrow$ isolate term with radical

$$
(2 \sqrt{8-u})^{2}=\omega^{2}
$$

$2^{2} \cdot(\sqrt{8-\omega})^{2}=\omega^{2}$

$$
*(a b)^{n}=c^{n} \cdot b^{r}
$$

$$
4(8-\omega)=\omega^{2}
$$

$$
32-4 \omega=\omega^{2}
$$

$$
\frac{-32+4 \omega+4 v-32}{0=\omega^{2}+4 \omega-32}
$$

$$
0=(\omega+8)(\omega-4)
$$

$0=\omega+8$ or $\omega-4=0$

$$
\omega=-8 \quad \omega=4
$$

Check $\omega=4$	Check $\omega=-8$
$2 \sqrt{8-(4)}-(4)=0$	$2 \sqrt{8-(-8)}-(-8)=0$
$2 \sqrt{4}-4=0$	$2 \sqrt{16}+8=0$
$2(2)-4=0$	$2(4)+8=0$
$0=0$	$16 \neq 0$
$0 \quad v=4$ is a solution	$0 . w=-8$ not a solution

$$
\begin{aligned}
& \sqrt{2 x+6}-\sqrt{x+4}=1 \\
& \forall(a+b)^{2} \neq c^{2}+b^{2} \\
& +\sqrt{x+4} \quad+\sqrt{x+4} \\
& (a+b)^{2}=a^{2}+2 c b+b^{2} \\
& (\sqrt{2 x+6})^{2}=(1+\sqrt{x+4})^{2} \\
& 2 x+6=(1)^{2}+2(1)(\sqrt{x+4})+(\sqrt{x+4})^{2} \\
& 2 x+6=1+2(\sqrt{x+4})+x+4 \\
& 2 x+6=x+5+2 \sqrt{x+4} \\
& \frac{-x-5-x-5}{(x+1)^{2}=(2 \sqrt{x+4})^{2}} \\
& (x+1)(x+1)=4(x+4) \\
& x^{2}+2 x+1=4 x+16 \\
& -4 x-16 \quad-4 y-16 \\
& x^{2}-2 x-15=0 \\
& \text { (Factor }+ \text { Check) } \\
& \text { * Isl leave the } \\
& \text { rest to you. }
\end{aligned}
$$

