Incgincry / Complex Numbers

* Recall. if we square any number, the rest lt is always positive,
Let $a=$ positive integer
Then $a^{2}=a^{2}$] outcome is clucys

$$
\begin{gathered}
a^{2}=a \\
\left.(-a)^{2}=a^{2}\right] \text { out come is always } \\
\text { pos five }
\end{gathered}
$$

\rightarrow Arguably ono negative number can have a square root.

The imaginary number $i=\sqrt{-1}$
$\sqrt{-b}$. if b is a positive number then $\sqrt{-b}=\sqrt{b} i$

$$
\text { eg. } \begin{array}{rl|l}
\sqrt{-64} & =\sqrt{64} i \\
& =8 i & -\sqrt{-4}
\end{array}=-1 \sqrt{4} i
$$

Simplify ins quotients in terms of i

$$
\frac{\sqrt{-100}}{\sqrt{-25}}=\frac{\sqrt{100} i}{\sqrt{25} i}=\frac{10 i}{5 i}=2
$$

* Note: if radicand are negative, then
you must work with radicals first

$$
\frac{\sqrt{-100}}{\sqrt{-25}} \neq \sqrt{\frac{-100}{-25}} \not \approx \text { only if radicands } \begin{gathered}
\text { are positive. }
\end{gathered}
$$

$$
\begin{aligned}
\overline{\sqrt{-25}} \sqrt{-9} & =\sqrt{25} i \cdot \sqrt{9} i \\
& =(5 i)(3 i) \\
& =15 i^{2} \\
& =15(-1) \\
& =-15
\end{aligned}
$$

Powers if i

$$
\begin{aligned}
& i=\sqrt{-1}=i \\
& i^{2}=-1 \\
& i^{3}=-1 \cdot i=-i \\
& \begin{aligned}
i^{4} & =-i i=1 \\
& =-i^{2} \\
& =-(-1)
\end{aligned}
\end{aligned}
$$

Patterns: cycles every 4th power.

$$
\begin{aligned}
& i^{4 n}=1 \quad, \quad n \in\{0, \pm 1, \pm 2, \ldots\} \\
& i^{4 n+1}=i^{1}=i \\
& i^{4 n+2}=i^{2}=-1 \\
& i^{4 n+3}=i^{3}=-i \\
& i^{4 n+0}=i^{0}=i^{4}=1 \\
& i^{\text {even power }}= \pm 1 \\
& i^{2(\operatorname{codd} \#)}=-1 \quad i^{2 \operatorname{lesen} \#)}=1
\end{aligned}
$$

$$
i^{18}=i^{16+2}=i^{2}=-1
$$

using cycles of 4 - largest number less then 18

$$
i^{18}=\left(i^{2}\right)^{9}=(-1)^{9}=-1 \quad \text { divisible by } 4
$$

power inkle for exponents

$$
\begin{aligned}
i^{23}=i^{22} i^{1} & =\left(i^{2}\right)^{11} i \\
& =(-1)^{11} i \\
& =-1 i \\
& =-i
\end{aligned}
$$

$$
i^{5}=i
$$

$$
i^{6}=i^{2}=-1
$$

Complex Numbers are if the form $a+b i$ a is real component bi is imaginary component.
$a, b \in \mathbb{R}$ "real numbers"

$$
i=\sqrt{-1}
$$

* if $b=0, a+b i$ is real number $b \neq 0$, $a+b$ i is iraginery number
* Recall $a^{2}-b^{2}=(a-b)(c+b)$
\rightarrow difference of squevec
$\rightarrow a-b$ and $a+b$ are "conjugctos".
\rightarrow the factors of a difference of squares are conjugates of each other.

Recall
$a^{2}+b^{2}$ is not factorcble ct this point

- blue not like terms
- not difference of squares

Let's multiply two complex conjugates

$$
\begin{aligned}
(a+b i)(a-b i) & =a^{2}-(b i)^{2} \\
& =a^{2}-b^{2} i^{2} \\
& =a^{2}-b^{2}(-1) \\
(a+b i)(a-b i) & =a^{2}+b^{2}
\end{aligned}
$$

0, 9 ,

$$
\begin{aligned}
x^{2}+36 & =x^{2}+(6)^{2} \\
& =(x+6 i)(x-6 i)
\end{aligned}
$$

