Incginery / Complex Numbers * Recall if we square any number, the reilly is always positive, Let a = positive integer Then $a^2 = a^2$ four come is clucys $(-a)^2 = a^2$ four come is clucys -> Arguebly, no negative number can have a square root. The imaginary number i= -1 J-b. if bis a positive number ther J-b = Jb i $|-\sqrt{-4} = -\sqrt{-4}$ $eg. \sqrt{-64} = \sqrt{-64}i$ = -2i= 8i $\sqrt{-29} = \sqrt{29} i$ $\sqrt{-50} = \sqrt{50} i$ $= \sqrt{25} \sqrt{2} L$ = 5V2 i

Simplifying quotients in terms of i $\frac{\sqrt{-100}}{\sqrt{-25}} = \frac{\sqrt{100}}{\sqrt{25}} = \frac{101}{54} = 2$

* Nole: if radicande are negative, then you must work with radicels first

 $\sqrt{-100}$ \mp $\sqrt{-100}$ \times only if radiands $\sqrt{-25}$ \mp $\sqrt{-25}$ are positive.

1=1-1 $J-25 \quad J-G = \sqrt{25} \quad c \cdot \sqrt{9} \quad c$ $l^2 = (\sqrt{-1})^2$ = (5i)(3i): ²:--| $= 15i^{2}$ = 15(-1)= -15

Powers
$$rfi$$

 $i = \sqrt{-1} = i$
 $i^{5} = i$
 $i^{5} = i$
 $i^{6} = -1$
 $i^{9} = -i$
 $i^{7} = -i$
 $i^{7} = -i$
 $i^{9} = -i$
 $i^{9} = -i$
 $i^{9} = -i$
 $i^{9} = 1$
 $i^{12} = 1$
 $i^{12} = 1$
 $i^{9} = -i$
 $i^{9} = 1$
 $i^{12} = 1$
 $i^{9} = -i$
 $i^{9} = 1$
 $i^{9} = 2$
 $n \in \mathbb{Z}$
 $i^{9} n + 2 = i^{2} = -1$
 $i^{9} n + 3 = i^{3} = -i$
 $i^{9} n + 3 = i^{3} = -i$
 $i^{9} n + 3 = i^{3} = -i$
 $i^{9} n + 4 = i^{9} = i^{9} = 1$
 $i^{9} n + 4 = i^{9} = i^{9} = 1$

(2(odd #) = -1) $(2(e_{JOA} \#) = 1$

$$\frac{\beta \cdot \epsilon(c)}{\alpha^{2} + b^{2}}$$
 is not factorable at this point

$$-blc \quad not \quad like \quad terms$$

$$-not \quad difference \quad of \quad squares$$

$$Let's \quad multiply \quad two \quad complex \quad conjugates$$

$$(a+bi) \quad (a-bi) = a^{2} - (bi)^{2}$$

$$= a^{2} - b^{2}i^{2}$$

$$= a^{2} - b^{2}(-1)$$

$$(a+bi) \quad (a-bi) = a^{2} + b^{2}$$

 $l_{1}g_{1}$ $\chi^{2} + 36 = \chi^{2} + (6)^{2}$ $= (\chi + 6i)(\chi - 6i)$